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Abstract

Mutated RNA splicing machinery drives many human diseases and is a promising therapeutic 

target for engineering and small molecule therapy. In the case of mutations in individual genes that 

cause them to be incorrectly spliced, engineered splicing factors can be introduced to correct 

splicing of these aberrant transcripts and reduce the disease phenotype. Mutations that occur in 

certain splicing factor genes themselves have been implicated in many cancers, particularly 

myelodysplastic syndromes. Small molecules that target splicing factors have been developed as 

therapies to preferentially induce apoptosis in these cancer cells. Specifically, drugs targeting the 

splicing factor SF3B1 have led to recent clinical trials. Here we review the role of alternative 

splicing in disease, approaches to rescue incorrect splicing using engineered splicing factors, and 

small molecule splicing inhibitors developed to treat hematological cancers.
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Introduction

Alternative splicing (AS) of precursor messenger RNA is responsible for the precise 

regulation of gene expression and AS dysregulation is the cause of various human genetic 

diseases [1]. The final spliced fate of an RNA transcript depends on which potential splice 

sites in a transcript are chosen by the spliceosome, a megadalton ribonucleoprotein complex 

[2]. Aberrant splicing can occur when 1) mutations arise in the splicing signals of a gene or 

*Corresponding author: DeNicola, Anthony B (adenicola@ucla.edu). 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Curr Opin Biotechnol. Author manuscript; available in PMC 2020 December 01.

Published in final edited form as:
Curr Opin Biotechnol. 2019 December ; 60: 72–81. doi:10.1016/j.copbio.2019.01.003.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2) mutations arise in the spliceosomal genes themselves. A splicing signal mutation can 

prevent proper association of the spliceosome at an intron/exon boundary or activate usage 

of a cryptic splice site in another location of the gene [3]. Mutations in splicing factor genes 

change alternative splicing patterns by altering the binding affinities of the splicing factor 

proteins for their targets in the RNA [4]. These two mechanisms lead to human disease. In 

this review, we will address therapeutic strategies utilized against both of these mutation 

modes of AS. AS also contributes to mechanisms of cancer resistance by modulating drug 

targets, which is well reviewed by Siegfried and Karni [5] and not further discussed here.

Spliceosomes dynamically assemble across introns and exons

The excision of introns and ligation of exons to process a pre-mRNA into a protein-coding 

transcript is completed by a multitude of trans-acting factors that comprise the spliceosome. 

The main building blocks of the major spliceosome are 5 small nuclear ribonucleoproteins 

(snRNPs) composed of small nuclear RNAs (U1, U2, U4, U5, and U6) that interact with a 

variety of associated protein factors [6]. The spliceosome dynamically assembles on the pre-

mRNA via stepwise recruitment of the snRNPs and additional protein factors. Introns in pre-

mRNA contain four sequence motifs: 5’ splice site, branchpoint site (BS), polypyrimidine 

tract, and 3’ splice site. These motifs are among the splice signals that are recognized 

multiple times by different splicing factors during splicing to ensure fidelity and to 

determine alternative splicing patterns of the pre-mRNA. The subunits of the spliceosome 

undergo extensive remodeling during splicing as the RNA active site components are 

initially sequestered as inactive conformations through a network of RNA-RNA interactions 

[7]. These subunits become active through conformational changes in the spliceosome 

initiated by RNA helicases [8]. The spliceosome operates through two general principles: 1) 

splicing reactions are catalyzed by the snRNAs bound to intron splice sites; and 2) proteins 

maneuver these snRNAs into correct position for splicing, forming snRNPs and various 

other protein complexes in the spliceosome. The therapeutic strategies discussed below 

primarily focus on engineering or interfering with the components of the spliceosome in the 

A complex, particularly the U1 and U2 snRNPs (Figure 1).

Recovering splicing of mutated splice signals

If a disease-causing mutation is in a splicing signal of a gene (i.e., splice sites and intronic/

exonic splicing enhancer/silencer sequences), then engineered splicing factors can be 

introduced to the host to correct the erroneous splicing at the level of the transcript (Figure 

2). This precision engineering of splicing factors has therapeutic potential for many RNA 

diseases, according to promising preclinical data from experiments on mammalian cell lines, 

patient-derived cells, and mouse models. For example, exon-specific U1 snRNAs 

(ExSpeU1s) have been engineered to correct splicing defects in genes causing spinal 

muscular atrophy (SMA) [9,10],[11•], propionic acidemia [12], Netherton syndrome [13], 

blood coagulation disorders [14-18], and familial dysautonomia [19]. In the studies 

discussed here, gene constructs containing ExSpeU1s have been virally transfected into 

human and mammalian cell lines or microinjected into mouse models for expression of the 

engineered splicing factor without modification to the wild-type copy of U1 snRNA. 

Corrected splicing of disease-relevant transcripts was detected using RT-PCR and RNA 
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sequencing. Protein expression arising from these properly processed transcripts has been 

demonstrated via protein blotting or functional assays [11•, 13,15-19]. ExSpeU1s have been 

particularly effective when combined with antisense oligonucleotide molecules [20], 

generating more spliced transcripts than application of either strategy alone. The engineered 

U1 snRNAs provide more stable binding to a mutated splicing signal and promote correct 

splicing of these transcripts. These approaches take advantage of the positive effect on 

human splicing observed by hyperstabilization of extended U1 snRNA on 5’ss [21].

To restore correct splicing of a gene causing retinitis pigmentosa, researchers transfected 

mutant U1 snRNAs into patient-derived primary skin fibroblasts and demonstrated improved 

splicing of the target transcript [22,23]. Another study focused on another engineered 

splicing protein, U2AF, to promote the wild-type splicing isoform [24]. These engineered 

U1 snRNAs have also been studied as HIV-1 inhibitors. Targeting the U1 snRNP to the 3' 

end of HIV-1 mRNA substantially reduced viral protein expression in cell lines by blocking 

pre-mRNA polyadenylation and targeting the HIV-1 mRNA for degradation [25]. These 

studies highlight the wide variety of diseases that can potentially be treated using this 

approach, but also show that current research has been primarily focused on using U1 

snRNA as a splicing modulator in cell lines or mice expressing human minigenes.

In addition to engineering splicing factor genes, small molecules have been identified that 

can stabilize the spliceosome on mutated splicing signals. A small molecule stabilizer of 

SMN2 pre-mRNA and the U1 snRNP complex elevates levels of full-length SMN protein 

and extends the survival of SMA mice [26] (Figure 2C). These small molecule therapies 

have been proven to increase motor function and longevity in these mice models [27]. 

Despite the low toxicities and therapeutic successes observed in mouse studies, there have 

not been any clinical trials attempted yet using this engineered splicing factor approach. 

Further studies will be needed to determine the specificity of this technology and any 

potential off-target effects before application to human patients.

Common splicing factor mutations that lead to cancer

Mutations in the spliceosome drive many cancers [28], as a disease-relevant mutation in a 

spliceosomal gene induces widespread changes to intron/exon recognition in the cell. Given 

the relationship between spliceosome mutations and cancer progression, the spliceosome 

also represents a therapeutic vulnerability [29]. As there are a limiting number of 

spliceosomes in the cell, spliceosome substrate competition will have strong global splicing 

affects [30,31]. Cancers with spliceosome mutations depend on wild-type spliceosome 

functionality for survival [32,33•]. High-throughput sequencing experiments have implicated 

four splicing factor mutations in various cancers. These mutations alter splicing factor 

functionality with far-reaching impacts on downstream genes and pathways that enable 

cancerous growth. Change/gain-of-function mutations in the genes for splicing factor 3B 

subunit 1 (SF3B1) [34], U2 small nuclear RNA auxiliary factor 1 (U2AF1) [35,36], and 

serine/arginine rich splicing factor 2 (SRSF2) [4,37] are frequent in patients with 

myelodysplastic syndromes (MDS) [38], chronic myelomonocytic leukemia (CMML), and 

chronic lymphocytic leukemia (CLL) [39••]. For a cell with splicing factor mutations, 

knocking down function of the limited wild-type spliceosomes will create a synthetic 
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lethality phenotype. Therefore, malignancies with mutated spliceosomal genes are more 

sensitive to pharmacological intervention [40], which has been exploited in the development 

of new therapeutic compounds. This is highly crucial as a report by Seiler et al. detailed the 

frequency of somatic mutations in splicing factor genes across 33 tumor types and found that 

119 splicing factor genes have recurring mutations in various cancers [41••].

Small molecule spliceosome inhibitors

Chemical compounds can modulate aberrant splicing in a variety of human RNA diseases 

[42]. Natural products derived primarily from bacteria have provided many leads for 

therapeutic compounds targeting splicing [43]. Medicinal chemistry has been useful to 

optimize tumor-selective spliceosome modulators and enhance potency [44]. The recent 

determination of the different stages of the spliceosome through cryo-electron microscopy is 

ushering in a new era in understanding spliceosome interactions by capturing splicing 

factors bound to their inhibitors [45••,46••,47••], and will undoubtedly lead to rational 

design of new small molecule inhibitors.

Shared pharmacophore

The natural products FR901464, pladienolide B, and herboxidiene are the three major 

splicing inhibitor classes that have given rise to a plethora of more potent derivatives. 

Spliceostatin A (a derivative of FR901464), pladienolide B, herboxidiene, as well as the 

sudemycins (structurally similar synthetic compounds) have been demonstrated to target 

SF3B1, one of six components of the SF3b subunit of the U2 snRNP and a highly influential 

target in splicing (Figure 3). These compounds inhibit the spliceosome at multiple stages, 

both at early steps and at exon ligation, indicating that the SF3B1 subunit is involved at 

multiple stages in splicing [48]. To point toward a common mechanism of action, 

spliceostatin A, pladienolide B, herboxidiene, and a synthetic cyclopropane analog [49] all 

share similar structures, mainly a central diene unit flanked by varying functional groups. In 

a recent study by Teng et al., spliceostatin A, pladienolide B, and herboxidiene have been 

shown to target the PHF5A-SF3B1 complex, as mutations in PHF5A and SF3B1 can cause 

cells to become resistant to the inhibitors [45••]. This target was conclusively visualized via 

cryo-EM structures of the SF3b complex with pladienolide B [47••] and a potent derivative 

E7107 [46••].

FR901464, spliceostatin A, and derivatives

Antitumor compound FR901464 was first isolated from fermentation broth containing 

Pseudomonas spp. 2663 [50-52], but the native producer was later identified to be 

Burkholderia spp. [53]. The 1-O-methylated derivative spliceostatin A (SSA) has increased 

potency [54] and displays strong effects on intron retention [55••]. SSA induces apoptosis at 

nanomolar concentrations in CLL cells through altered MCL-1 RNA splicing [56]. SSA has 

demonstrated the promise of targeting the spliceosome for combinatorial treatments in 

cancer. Combining SSA with Bcl-2/Bcl-xL antagonists has increased potential for CLL 

therapy as an approach to target residual disease in the lymph nodes [56]. The stimulation of 

CD40L/interleukin-4 (IL-4) occurs in the tumor microenvironment of CLL and reduces the 

effectiveness of monotherapies. Larrayoz et al. found that treatment with Bcl-2/Bcl-xL 
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antagonists along with SSA induced greater apoptosis of CLL cells compared to the 

monotherapies in the presence of CD40L/IL-4 [56]. Despite its promising use in research 

studies, SSA has not been attempted as a therapy in any clinical trials. This has likely been 

due to the lack of a reliable biomarker of efficacy as SSA has widespread effects on 

transcripts [57] and the demonstrated toxicity of similar compound E7107 in the clinic 

(described in the next section). Another compound related to FR901464 and SSA, 

Thailanstatin A, was first isolated from bacteria Burkholderia thailandensis [53]. It was 

recently used as the bioactive component of antibody-drug conjugates and found to be 

highly potent against gastric cancer xenograft models [58]. Furthermore, derivatives of 

Thailanstatin A have been generated through total synthesis with more potent antitumor 

activities [59], highlighting the possibility of improved payloads in future studies.

Pladienolide B and derivatives

Pladienolide B has a verified target in the SF3B1 subunit of the spliceosomal SF3b 

subcomplex [60]. Pladienolide B inhibits splicing by forcing SF3b to maintain an open 

complex, inhibiting stable BS-pocket formation for first step splicing, as identified by cryo-

EM [47••]. It is used widely as a tool for studying the sensitivity of cancer cells after 

exposure to genetic or environmental changes. Expression of wild-type p53 promotes 

pladienolide B-induced apoptosis in cutaneous squamous cell carcinoma cells [61•]. 

Pladienolide B and a related macrolide FD-895 induce intron retention and selectively 

induce apoptosis in CLL cells versus normal lymphocytes [62]. However, FD-895 is not 

stable [49] and more stable analogs have been synthesized by decorating the central scaffold 

with carbohydrate motifs [63].

E7107 has been a highly studied derivative of pladienolide B, including clinical data. A 

structure of E7107 bound to the SF3b spliceosome subcomplex was generated at 3.95 Å 

through cryo-EM [46••]. This structure suggests the mechanism of action of this inhibitor is 

to interfere with branch point adenosine recognition to prevent first step splicing. E7107 

displays dose-dependent reversible inhibition of pre-mRNA processing in patients, proving 

that splicing can be modulated with this drug in humans [64]. A phase I clinical trial, which 

involved testing the pharmacokinetic profile of E7107 in patients with advanced solid 

tumors, unfortunately resulted in two patients undergoing vision loss, likely due to global 

inhibition of the spliceosome in the optic nerve. The limited efficacy observed in this study 

indicates that more study should be done into which tumor types would be best treated by 

this inhibitor [65].

Splicing inhibitor E7107 is also well-studied in treating acute myeloid leukemia in mouse 

models [66]. Mouse models were built with a mutant allele of SRSF2(P95H) involved with 

MDS and acute myeloid leukemia (AML). Treatment of these models with E7107 resulted 

in greater reduction of leukemia burden in systems containing the spliceosome mutation 

versus wild-type leukemia [66]. The most common SF3B1 mutation in MDS (K700E) was 

constructed in a mouse model and E7107 was shown to selectively induce apoptosis in cells 

expressing this mutant [67]. E7107 also demonstrates the utility of targeting the spliceosome 

in combination therapy. When combined with the proteasome inhibitor bortezomib, E7107 

enhanced antitumor response [68•].
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Sudemycins share a pharmacophore with FR901464 and pladienolide B

Sudemycins (C, D1, D6, E, F1, F2, and K) are a class of synthetic analogs of FR901464. 

Cells treated with sudemycin exhibit differential activity on exon skipping [55••,69•]. Upon 

reanalysis of published RNA-seq data sets, exon skipping was also demonstrated in HeLa 

cells treated with SSA [69•], providing additional evidence for the effects of this shared 

pharmacophore.

Sudemycins have proven effective for treating hematological cancers. A study by Xargay-

Torrent et al. demonstrates that sudemycin D1 has greater toxicity in CLL patient cells 

compared to healthy lymphocytes or tumors from different B-lymphoid malignancies. CLL 

cells with mutations in SF3B1 or other splicing and RNA processing genes were more 

sensitive to sudemycin D1 than CLL cells without these mutations. Sudemycin efficacy was 

also demonstrated in vivo using immunodeficient mice engrafted with peripheral blood cells 

from CLL patients [70]. Sudemycin D1 and D6 show comparable cytotoxicity but D6 was 

optimized for in vivo stability [70]. Sudemycin D6 has dose- and time-dependent anti-tumor 

activity and changes to alternative splicing patterns were observed with RT-PCR [71]. In a 

recent study, sudemycin D6 shows effects on exon skipping in DUSP11 and SRRM1 pre-

mRNAs, which serve as pharmacodynamic markers at 9 hours after treatment of blood 

lymphocytes extracted from donors [72].

In MDS, patient-derived hematopoietic cells expressing mutant U2AF1 are more sensitive to 

sudemycin [73•]. Tests performed in transgenic mice with mutant U2AF1(S34F) found that 

sudemycin D6 increases exon skipping and intron retention, which when coupled with 

splicing changes caused by the mutant U2AF1, creates negative cumulative synergy on the 

cell and can offer an explanation for the increased sensitivity to sudemycin.

Novel sudemycins developed from the shared pharmacophore show improved potency, 

specifically sudemycin K, which has an amide group in place of an oxycarbonyl [74] (Figure 

3). Similar to the other splicing inhibitors, there is positive combinatorial benefit when 

combining sudemycins with other cancer therapies. Sudemycin combined with ibrutinib 

shows an enhanced antitumor effect, likely due to induction of alternative splicing of IBTK 
which promotes BtK expression, leading to ibrutinib sensitivity [70].

Additional SF3b complex inhibitors

Herboxidiene is a polyketide natural product first isolated from fermentation broth of the 

bacteria Streptomyces chromofuscus [75]. Given its potent inhibition of the SF3b protein 

complex in the spliceosome, it was targeted for synthesis of improved derivatives [76]. The 

study showed an efficient synthesis and that derivatives were functional in an in vitro 

splicing assay. Jerantinine A is an indole alkaloid which inhibits tubulin polymerization, 

inducing G2/M cell cycle arrest and tumor-specific cell death through upregulation of 

SF3B1 and SF3B3 and inducing dissociation of SF3B1 in the nucleosome [77].

A highly promising new inhibitor is H3B-8800, which is effective against epithelial and 

hematologic tumor cells. This compound was identified using medicinal chemistry. 

H3B-8800 is also an inhibitor of the SF3b complex (Figure 3) and demonstrated efficacy 

against a xenograft system for CMML [39••]. Cells with SF3B1(K700E) or SRSF2(P95H) 
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mutations were preferentially affected and tumor growth was halted. Seiler et al. found that 

upon exposure to H3B-8800, a large number of genes that encode splicing factors had 

increased rates of intron retention. However, SF3B1(R1074H) or PHF5A(Y36C) mutants 

conferred resistance to H3B-8800 [39••], indicating that this splicing factor complex is 

targeted by H3B-8800, similar to the shared pharmacophore of FR901464, pladienolide B, 

and herboxidiene. Notably, H3B-8800 also shares the central diene unit identified in the 

other inhibitors. Unlike E7107, H3B-8800 activity increases the retention of short, GC-rich 

introns, which are enriched in splicing factor genes [39••]. A clinical trial is currently 

recruiting to study the preliminary activity of H3B-8800 in patients with MDS, AML, or 

CMML (NCT02841540).

Inhibitors of additional splicing targets

Brr2 is an RNA helicase involved in the activation of the spliceosome’s catalytic center by 

unwinding the U4/U6 duplex (Figure 1). The Brr2 inhibitor spiro[indole-3,20-

pyrrolidin]-2(1H)-one has superior activity (inhibition at submicromolar concentrations) to 

the previously reported 4,6-dihydropyrido[4,3-d]pyrimidine-2,7(1H,3H)-dione series [78]. 

These potent and selective Brr2 inhibitors with helicase inhibition activity were uncovered 

using ATPase activity-based screening [79]. N-palmitoyl-L-leucine inhibits late stage 

assembly of human spliceosomes and was discovered in a high-throughput in vitro splicing 

screening platform for extracts from marine natural products [80]. Lynamicin D has been 

shown to alter the levels of SRPK1, which encodes a kinase involved in constitutive and 

alternative splicing [81]. A library containing cyclic and linear peptides was screened for 

interactions that inhibit the interaction between the UHM domain of splicing factor 45 

(SPF45) and the ULM motifs found in constitutive splicing factors [82] (Figure 1). 

Additionally, a small molecule has been shown to prevent the transition of human 

spliceosomal B complexes into activated B complex, revealing the new insight into 

spliceosome assembly. Specifically, U4/U6 snRNP proteins are released during activation 

before incorporation of the Prp19.CDC5L complex [83].

Spliceosome phosphorylation is another intriguing target for cancer therapies. TG003 targets 

the spliceosome phosphatase family of proteins, specifically inhibiting CDC2-like kinase 1. 

TG003 induces exon-skipping in shorter exons with fewer splicing factor binding sites than 

insensitive-exons, according to RNA-seq data from human and mouse skeletal cells [84], but 

it is unstable for clinical applications [85]. A more stable molecule, TG693, promotes the 

skipping of a mutated exon in Duchenne muscular dystrophy (DMD) patients and creates a 

functional protein. Administration to mice alters the pre-mRNA splicing in skeletal muscle 

[85]. T-025 also targets CDC-like kinases (CLK) and administration of the compound 

decreased CLK-dependent phosphorylation which increased the number of skipped exons. It 

shows in vivo antitumor efficacy in an allograft model of MYC-driven breast cancer [86]. 

Small molecules Cpd-1, Cpd-2, Cpd-3 all show inhibition of CLKs and serine/arginine 

protein kinases (SRPKs), resulting in modulation of pre-mRNA splicing and growth 

inhibition of breast cancer MDA-MB-468 cells [87].

Another promising therapeutic approach is to promote selective protein degradation in 

cancer cell lines using anticancer sulfonamides, which target RBM39/CAPERα (U2AF 
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related splicing cofactor activator) [88]. Compounds including indisulam, tasisulam, and 

chloroquinoxaline sulfonamide share the same mechanism of action of inactivation of 

RBM39. The sensitivity of cancer cell lines to these drugs correlates to their levels of 

DCAF15 expression, which could prove a useful biomarker [89].

Summary and conclusions

Spliceosomes dynamically assemble across introns and exons in order to process pre-mRNA 

as a crucial step toward protein synthesis. The multitude of splicing isoforms that can be 

created due to splicing logic is termed alternative splicing and plays a large role in human 

disease. There are two types of splicing mutations: 1) those in splicing signals which alter 

splicing of that specific transcript; and 2) splicing mutations in splicing factor genes, which 

can have global effects on transcripts. In order to recover aberrant splicing of mutated/

inefficiently splice signals, engineered splicing factors with specific recognition of the 

mutated splicing signal can be introduced into cells. Most research has focused on 

applications of U1 snRNA modifications for applications in blood diseases and spinal 

muscular atrophy. Mutations in splicing factor genes are prominent in many cancers, 

particularly hematological cancers such as MDS and leukemia; new research is unveiling an 

ever-increasing role of these splicing mutations in cancer. Small molecule spliceosome 

inhibitors have demonstrated high potential as novel therapies. Three widely studied natural 

product-based inhibitors have a shared pharmacophore and target the essential splicing 

factor SF3B1, as demonstrated by elegant genetic studies and the advent of cyro-EM. 

Inhibitors of additional splicing targets are in development and it is likely more therapeutic 

approaches will be determined. Increasingly, researchers are studying the positive 

synergistic effects observed when combining splicing inhibitors with other treatments for 

cancer therapy. Overall, learning how to control alternative splicing is crucial to designing 

new therapies for human spliceosomal diseases.
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Highlights

• Engineered U1 splicing factors rescue splicing of disease-relevant transcripts 

with mutated splice signals.

• Mutated splicing factor SF3B1 is an increasingly well-studied therapeutic 

target in certain blood cancers.

• Small molecule H3B-8800 targeting SF3B1 has begun clinical trials as a 

cancer therapy.

• Cryogenic electron microscopy is enabling a deeper understanding of how 

small molecule therapies interact with the spliceosome.

• Additional small molecules targeting different spliceosomal components have 

the potential to be new anticancer drugs.
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Figure 1. 
A spliceosome assembled on a pre-mRNA transcript and an overview of the two approaches 

to treating spliceosomal diseases. On the left-hand side, the modifications of the U1 snRNP 

are shown to improve binding of the splicing factor to the transcript. Various proteins in the 

spliceosome can be targeted for inhibition using small molecules, which leads to cancer-

selective apoptosis in certain cancers. The SR protein on the far right is a stand-in for the 

family of proteins targeted by that list of molecules. The spliceosome depicted is beginning 

to transition out of the A complex, as detailed by the arrival of the tri-snRNP (U4/U6.U5). 

Brr2, a protein target of several inhibitors discussed in this review, is one component of the 

U5 snRNP. N-palmitoyl-L-leucine inhibits late-stage splicing assembly.
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Figure 2. 
Recovering splicing of mutated and inefficiently spliced transcripts. (A) In this example 

diagram, the wild-type U1 snRNP binds poorly to a mutated splice signal. The transcript is 

broken into exons (depicted as solid blocks) and an intron with a mutated splice signal (line 

with a star). This results in an aberrantly spliced mature mRNA and potentially a disease 

phenotype. (B) An engineered U1 snRNP can be introduced to allow for improved binding 

to a mutated splice signal. This restores splicing of the correct mature mRNA. (C) Upon 

addition of the compound NVS-SM2, wild-type U1 snRNP is stabilized against the 

inefficiently spliced SMN2 transcript, allowing production of full length SMN mRNA [26].
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Figure 3. 
Five chemical scaffolds used to target the SF3b complex in cancer therapies. The 

compounds prevent the SF3B1-PHF5A complex from transitioning to a closed form and 

thus inhibit the splicing process. All compounds share a similar structure, featuring a central 

diene flanked by large functional groups, depicted in a general form inside the red box.
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