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The rough sound of salience enhances aversion
through neural synchronisation

Luc H. Arnal® ", Andreas Kleinschmidt?, Laurent Spinelli?, Anne-Lise Giraud' & Pierre Mégevand® "2

Being able to produce sounds that capture attention and elicit rapid reactions is the prime
goal of communication. One strategy, exploited by alarm signals, consists in emitting fast but
perceptible amplitude modulations in the roughness range (30-150 Hz). Here, we investigate
the perceptual and neural mechanisms underlying aversion to such temporally salient sounds.
By measuring subjective aversion to repetitive acoustic transients, we identify a nonlinear
pattern of aversion restricted to the roughness range. Using human intracranial recordings,
we show that rough sounds do not merely affect local auditory processes but instead syn-
chronise large-scale, supramodal, salience-related networks in a steady-state, sustained
manner. Rough sounds synchronise activity throughout superior temporal regions, subcortical
and cortical limbic areas, and the frontal cortex, a network classically involved in aversion
processing. This pattern correlates with subjective aversion in all these regions, consistent
with the hypothesis that roughness enhances auditory aversion through spreading of neural

synchronisation.
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first and foremost purpose of communication is to catch

the attention of conspecifics, a process that can be opti-

mised by adapting signal salience to maximize the recei-
ver’s sensory-motor responses. To amplify sensory salience and
ensure efficient reactions on the receiver’s end, a generic strategy
is to increase signal intensity, e.g. by screaming or shouting.
However, signal magnitude is not the only parameter that
changes when we increase vocal sound levels. Another important
emerging feature is roughness, an acoustic texture that arises from
fast repetitive acoustic transients. Although the delimitation of
the roughness range—whether psychoacoustic or perceptual—
may slightly vary depending on experimental settings!-3,
empirical observations consistently suggest that sensory systems
and perception are exceedingly well tuned to recurring temporal
features in the 30-150 Hz range*-8.

Human sensory systems are not passive sensors or filters but
instead display nonlinear properties that constrain the way we
perceive and process incoming inputs®~11. As a result, sensation is
not a linear function of physical features, but depends on neural
coding transitions that determine perceptual categories or
attributes!213. In the auditory domain, the limited temporal
resolution entails a subjective transition from rough percepts to
continuous pitch sensations®!4. Despite its central position in the
audible spectrum and recent efforts to uncover the underlying
neuronal coding schemes!>19, the neural bases of the transition in
this frequency range and its consequences on subjective percep-
tion remain unclear!.

Fast repetitive modulations produce “temporally salient”
flickering percepts (e.g. strobe lights, vibrators, and alarm
sounds®), which efficiently capture attention, generally induce
rough and unpleasant sensations, and elicit avoidance®. Despite
the high ecological relevance of such flickering stimuli, there is
to our knowledge no existing operational definition of temporal
salience and only limited experimental work accounting for the
intriguing aversive sensation such auditory textures produce
and the reactions they trigger. Here, we introduce and explore
the notion of temporal salience and investigate its behavioural
and neural underpinnings. Of note, although salience may not
systematically result in aversive percept, we argue that in this
specific context, temporal salience—owing to the imperative
effect of exogenously saturating perceptual systems in time—
constitutes a valid proxy of aversion. Therefore, we hypothesise
that providing fast, but still discretisable and perceptible,
temporally salient acoustic cues should enhance neural pro-
cessing and ensuing aversive sensation. Such a strategy, how-
ever, is arguably constrained by the capacity of the auditory
system to discretize—i.e. to faithfully encode and ultimately
perceive—these temporal cues.

In this study, we assess the relevance of such temporal salience
in human neurophysiology and its impact on sensation. In a
series of psychoacoustic experiments featuring perceptual tasks,
we determine that aversion to repetitive sound transients varies in
a nonlinear manner with sound frequency and is maximal below
the perceptual discretization limit, in the lower roughness range
(40-80 Hz). Building upon this psychophysical characterisation of
temporal salience, we then exploit intra-cortical recordings in
patients with epilepsy to demonstrate that the aversion to rough
sounds results from the sustained synchronisation of auditory
networks, but also salience-related networks.

Results

Subjective characterisation of temporal salience. To determine
the subjective transition between discretisable (rough) and con-
tinuous (pitch) percepts, 16 participants listened to a series of 1-s
click trains of varying rates (ranging from 50 to 250 Hz) and

reported whether they perceived these sounds as discrete or
continuous. The pattern of responses (Fig. 1a) consistently fol-
lowed a sigmoid curve (goodness of fit: Pearson’s 2 =0.99; p =
10~12), evidencing that the subjective perceptual transition from
rough to continuous—the temporal discretisation limit—occurs at
frequencies exceeding 130 + 6.5 Hz (mean + SEM).

We then hypothesised that repeating sounds at frequencies
close below the temporal discretisation limit should maximise the
rate of discrete sensory responses across time, and in turn induce
a more aversive percept. In other words, temporal salience—here
reflected by subjective aversion—should depend on the auditory
system’s ability to discretize temporal fluctuations. We thus asked
the same participants to rate the subjective aversiveness of 1-s
click trains at varying rates (ranging from 10 to 250 Hz) from 1
(tolerable) to 5 (unbearable). Figure 1b reveals that aversion
varied in a nonlinear, non-monotonic manner with increasing
rates (Pearson r*=0.05; p=0.2). Qualitatively, this profile
suggests that the 130 Hz transition evidenced in the previous
study determines a bimodal effect on perceptual aversion across
frequency rates. While subjective responses linearly increased as a
function of stimulus frequency in the pitch (>130 Hz) range
(goodness of fit: 2, 30m, = 0.97; p =0.01), the response profile
was nonlinear below this value (goodness of fit with linear
extrapolation—see red line in Fig. 1b: r2_ 301, = 0.007; p = 0.4),
increasing up to 40 Hz and then decreasing progressively up to
the temporal discretisation limit (130 Hz). Click trains were
perceived as particularly aversive in the 40-80Hz range,
decreasing below and above this range, up to the
discretisation limit.

We noted significant variability across participants’ ratings
(grey circles in Fig. 1b). To test whether the nonlinear pattern of
aversion might depend on sound intensity, we replicated the
experiment repeating the exact same sounds presented earlier at
lower intensity (~50dB SPL). Although lower sound intensity
reduced overall aversion (F(; 20y = 193.8, p <1077, Fig. 1b upper
right inset), the pattern of ratings strikingly replicated the results
obtained in the previous experiment (Pearson correlation: 12 =
0.86, p < 107>, Fig. 1b lower right inset).

The fact that temporal salience (here reflected by subjective
aversion) varies non-monotonically as a function of stimulus rate
and is maximal in the roughness range suggests that nonlinear
neuronal phenomena occur in this frequency range. To better
understand the neural mechanisms underlying this effect, we
measured the neural responses to click trains of various
frequencies (2s duration ranging from 10 to 250 Hz) using
intracranial EEG (iEEG) in 11 patients with intractable epilepsy.
We hypothesised that the initial auditory-evoked response should
reflect the energy (ie. the rate) of the stimulus!’, but that
temporal salience should depend on whether the click trains
induce sustained, steady-state entrainment of neural responses
over time.

Neurophysiological correlates of temporal salience. To inves-
tigate basic auditory responses to these sounds, we measured the
high-gamma (HG, 70-200 Hz) responses (as a proxy of neuronal
firing!8) in one individual iEEG electrode, which lays in early
auditory cortex (anterior transverse temporal gyrus of Heschl,
Fig. 2a). Because response profiles exhibited strong HG responses
at the onset [0-0.4 s], and noticeably weaker HG responses in the
following peri-stimulus time-window [0.4-2 s], we analysed these
time-windows separately in subsequent analyses. We found that
HG onset responses proportionally increased as a function of
stimulus energy (Fig. 2a, onset window: 0-0.4's; %[y 45 = 0.92;
p < 107%) and rapidly decreased thereafter. HG responses did not
significantly correlate with salience in the early (r?(_g.45) = 0.245,
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Fig. 1 Temporal perceptual transition and subjective assessment of temporal salience. a Temporal discretisation limit experiment (Experiment 1). Averaged
subjective reports of discreteness (1-discrete, O-continuous) averaged across participants indicate that subjective percept switches from discrete to
continuous around 130 Hz (red dotted line: 50% discreteness ratings), which roughly corresponds to the upper limit of the roughness acoustic attribute.
The continuous red curve represents the sigmoidal fit to the average across participants. Dotted light grey lines correspond to individual data. b Temporal
salience experiments. Top panel: Experiment 2a. Averaged subjective aversion (reported on a 1-5 scale) follows a nonlinear pattern. Above the
discretisation limit (>130 Hz, i.e., in the pitch range), aversion is linearly proportional to the frequency (energy) of the stimulus. Below this limit, in the
roughness range, subjective aversion follows a nonlinear profile and is maximal at 40 Hz. Divergence from linearity in the roughness range is measured as
the difference with aversion values predicted by a linear extrapolation of averaged aversion values measured above the discretisation limit. Light grey
circles correspond to individual data Bottom panel: Experiment 2b: independent replication of Experiment 2a using the same stimuli at lower intensity
(50 dB SPL) in n =12 additional participants. Upper right inset: Main effect of sound intensity between Experiments 2a and 2b. Grey data points correspond
to stimuli frequencies. Lower right inset: correlation plot between averaged ratings at each frequency in Experiment 2a and 2b. Error bars indicate SEM. **

and *** indicate significant p-values at 0.01 and 0.001, FDR corrected

p = 0.094) nor late peri-stimulus periods (r?s_1.85) = 0.352; p =
0.058). In line with the hypothesis that temporally salient sounds
should entrain responses in a steady-state, sustained manner with
time, we aimed to measure the one to one temporal mapping
between the trains of transients (clicks) and brain responses.
Therefore, we extended our investigation to a measure that is
sensitive to the phase alignment of brain responses at the rate of
the exogenous stimulation, the Cerebro-Acoustic Coherence (CAC,
see “Methods”) between sounds and brain responses in the late
time window (restricted to [0.8-1.8's] to avoid potential con-
tamination by onset and offset responses). CAC showed a sus-
tained increase throughout the duration of the sound, and varied

nonlinearly as a function of frequency (Fig. 2a, bottom right). In
the late time window, CAC was maximal in the roughness
(40-130 Hz) range and qualitatively resembled subjective aver-
sion profiles (see Fig. 1b).

Extending this exploration to 11 patients, we functionally
identified auditory electrodes showing a significant HG onset
response to the stimuli. Most responsive electrodes lay in the
middle and superior temporal regions (Fig. 2b). Averaging
responses at these electrodes across patients, we found that early
HG activity reflected stimulus energy (Fig. 2b, rZ[O_MS] =0.6;p=
1073) but not salience (r? o4q=0.2; p=0.137). We then
measured the sustained entrainment (CAC) of brain responses
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Fig. 2 HG and CAC spatial response patterns differ across stimulation frequencies. a Neural responses to click trains in a representative electrode situated
in the right primary auditory cortex (Heschl's Gyrus) of patient S1. Lower left plot: time course of unfiltered event-related responses to the stimuli
expressed in t-values relative to baseline. Responses are aligned with an exemplar of a stimulus (here a 40 Hz click train). Upper right plot: time course of
high-gamma [HG, 70-200 Hz] amplitude in response to the stimulus, expressed in t-values relative to baseline, as a function of click train frequency
(ranging from 5 Hz, blue to 250 Hz, red). HG onset [0-0.4 s] response is linearly proportional to the rate of the stimulus (upper inset). Lower right plot:
magnitude squared stimulus-brain coherence (cerebro-acoustic coherence, CAC, expressed in t-values relative to baseline). CAC shows a sustained
pattern through the duration of the stimulus that varies nonlinearly as a function of the stimulus rate and is prominent in the roughness range (40-100 Hz;
lower inset). b-d Neural responses to click trains across all eleven patients. b Upper panel: spatial location of electrodes exhibiting significant HG onset
responses to sounds. Colours represent the stimulation frequency at which HG response is maximal. Lower plot: time course of HG [70-200 Hz]
responses averaged across these electrodes, expressed in t-values relative to baseline, as a function of stimulus frequency. HG amplitude at the response
onset [0-400 ms] is linearly proportional to the rate of the stimulus (inset). ¢ Electrodes showing sustained, significant stimulus-brain coherence (CAC)
are spatially located in widespread cerebral areas. Colours represent the stimulation frequency at which CAC is maximal. Lower plot: CAC as a function of
stimulus rate. Light grey circles correspond to individual data. d. Top panels: spatial location of all electrodes, colour-coded as a function of participant
number. Lower panel: spatial location of electrodes that did not show any significant HG or CAC response. Error bars indicate SEM. Asterisks in panels
a and b indicate significant correlation with stimulus frequency: *** indicates significant p-values at 0.001

by the stimuli during the late time window. Over all frequencies,
we found a larger proportion of electrodes exhibiting sustained
CAC (24%, Fig. 2¢) than HG onset responses (4%, tcacsna(io) =
2.9; p=0.016). CAC magnitude correlated with the behavioural
pattern of subjective aversion ratings identified earlier (g5 1 g =
0.358; p = 0.031) but not with stimulus energy (r2o5_1.85 = 0.057,
p=0.288). In addition, and in contrast with the more focal
concentration of HG onset responses, sustained stimulus-coherent
brain responses were anatomically more widespread, involving
multiple brain regions (Fig. 2c and Supplementary Movie 1). The
spatial extent of this effect (proportion of synced electrodes across
patients) differed across stimulus frequencies (Fo, 90y = 8.59; p =
0.003; Supplementary Movie 1), and correlated with salience
(Pos-185 =0.295; p=0.029) but not stimulus frequency
("%(08-185) = 0.072; p =0.238).

Regional selectivity in the temporal lobe. Given the apparently
distinct spatial patterns of responses in HG and CAC, we first
aimed at investigating the regional selectivity of these responses in
the temporal lobe, classically involved in rough sounds
processing!®20. Using an anatomically defined parcellation of
temporal sulci and gyri?!, we measured onset HG and sustained
CAC profiles in each electrode situated in the temporal lobe
(Fig. 3a). This approach first revealed that onset HG responses
averaged across anatomical regions were particularly prominent
in the electrodes located on the surface of the Superior Temporal
Gyrus (Fig. 3b, see also Fig. 2b). Sustained CAC responses, on the
other hand, were observed in widespread regions of the temporal
lobe (Fig. 3c). Measuring the correlations with either stimulus
frequency or perceived aversion (salience), we found that while
HG magnitude was proportional to stimulus frequency mainly in
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Fig. 3 HG and CAC response patterns in anatomically defined sub-regions of the temporal lobe. a Anatomical and functional categorisation of electrodes in
the temporal lobes, based on the Destrieux anatomical parcellation. b HG responses in onset [0-0.4 s] window (expressed in t-values relative to the

baseline) averaged within regions and across participants at each stimulus frequency. € Same as in b. for CAC in late [0.8-1.8 s] window. d Pearson's

correlation value (r2) between onset HG responses and stimulus frequency (coloured filled bars) and salience (empty bars). Error bars indicate SE of the
correlation. e Same as in (d) for CAC. f Proportion of activated electrodes exhibiting significant HG onset response (dark shading), sustained CAC (no
shading) or both (grey shading) in each network. Numbers on the y-axis indicate the number of electrodes located in each regions. *, ** and *** indicate
significant (corrected) p-values at 0.05, 0.01 and 0.001, respectively. ITG Inferior Temporal Gyrus, ITS Inferior Temporal Sulcus, MTG Middle Temporal

Gyrus, STS Superior Temporal Sulcus, STG-L Superior Temporal Gyrus-Lateral, STG-PT Planum Temporale, STG-TG Transverse Gyrus, STG-PP Planum

Polare, ATCS Anterior Transverse Collateral Sulcus

superior temporal regions (Fig. 3d), CAC correlated with salience
in temporal regions situated more ventrally to the STG, namely
the Inferior Temporal Sulcus, the Middle Temporal Gyrus and
the Superior Temporal Sulcus (Fig. 3e, all Pearson’s r% > 0.36, all
p<0.01).

Building upon the observation that sustained responses to
rough sounds are not confined to superior temporal auditory
cortical regions but instead spread to other brain regions, we next
sought to expand the anatomical and functional characterisation
of these effects to other cerebral areas.

Regional selectivity in subcortical and limbic regions. We first
investigated whether rough features might additionally recruit
regions classically involved in the processing of aversive stimuli,
namely key nodes in subcortical and limbic regions?>?3. To test
this, we localised the position of electrodes within anatomically
defined subcortical (Amygdala, Hippocampus) and limbic cortical
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regions (Insular, Parahippocampal and Entorhinal cortices)?42>
(Fig. 4a). While these regions exhibited rather weak HG responses
(Fig. 4b), CAC was particularly strong in the roughness range in
the Hippocampus and Insula (Fig. 4c). HG magnitude in the
insula was proportional to both stimulus frequency (r2=0.58,
p=0.02) and salience (r* = 0.54, p = 0.04, Fig. 4d), whereas the
CAC profiles correlated with salience in the hippocampus as well
as in the insular, parahippocampal and entorhinal cortices (all
r2>0.34, all p<0.05, Fig. 4e). Among those regions, the para-
hippocampal and insular cortices exhibited significant CAC
entrainment in more than 25% of all electrodes situated in these
regions (Fig. 4f).

Regional selectivity in parietal and frontal regions. In addition
to synchronising medial temporal and limbic cortical and sub-
cortical regions, one striking aspect of the widespread CAC pat-
tern evidenced at the outset of this work (Fig. 2¢) is the apparent
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Fig. 4 HG and CAC response patterns in subcortical and limbic regions. a Anatomical and functional categorisation of electrodes in subcortical nuclei and
limbic regions, based on the Desikan-Killiani anatomical parcellation. Left: left hemisphere, medial view. Centre: ventral view. Right: right hemisphere,

medial view. b HG responses (expressed in t-values relative to the baseline) averaged within regions and across participants at each stimulus frequency.
¢ Same as in b. for CAC. d Pearson correlation value (r2) between onset HG responses and stimulus frequency (colour-filled bars) and salience (empty
bars). Error bars indicate SE of the correlation. e Same as in (d) for CAC. f Proportion of activated electrodes exhibiting significant HG onset response (dark
shading), sustained CAC (no shading) or both (grey shading) in each region. Numbers on the y-axis indicate the number of electrodes located in each
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region.

spatial concentration of CAC-activated electrodes in the frontal
lobe. Pursuing our exploratory approach, we then sought to
measure HG and CAC patterns in the frontal and parietal lobes.
Localising the electrodes in anatomically defined cortical
regions of the frontal and parietal lobes, we measured HG and
CAC responses in each of these regions (Fig. 5a). Again, while
HG responses were rather weak in these regions (Fig. 5b), CAC
responses exhibited a reliable entrainment profile in the rough-
ness range, as hitherto observed in other regions (Fig. 5¢). Mea-
suring how these responses correlate with either stimulus
frequency or perceived salience, we found that while HG mag-
nitude was proportional to salience in the caudal Middle
Frontal region (Fig. 5d, r*=0.58, p=0.036), CAC correlated
with salience in most tested frontal regions (Fig. 5e, all significant
r2>0.36, all p<0.05) as well as in the inferior parietal cortex
(r2=0.79, p = 0.0001). Among frontal regions, those showing the
highest percentage of CAC-activated electrodes spanned the

indicate significant (corrected) p-values at 0.05, 0.01, respectively. Hippo Hippocampus, Parahipp Parahippocampal Gyrus

inferior frontal gyrus and orbital frontal cortices, anterior to
insular cortex, which we found to be highly recruited by rough
sounds earlier (Fig. 4).

Regional selectivity in resting-state networks. Given the broad
spatial extent of neuronal entrainment to rough sounds that
largely exceeds classical auditory regions, we hypothesised that
the selective propensity of rough sounds to induce aversive per-
cepts may rely on their capacity to recruit supra-modal (i.e. not
specifically auditory) cortical networks. To test this, we localised
the position of electrodes within functionally defined networks
using an atlas-based parcellation?® (Fig. 6a). First, we confirmed
that onset HG responses mostly activated the sensorimotor (SM)
network, which includes the auditory cortex (Fig. 6b) and cor-
related with stimulus frequency in the SM network only (Fig. 6d).
Then, focusing on sustained stimulus-brain coherence (CAC), we
found that in all of the seven tested networks (Fig. 6¢), coherence
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Fig. 5 HG and CAC response patterns in frontal and parietal sub-regions. a Anatomical and functional categorisation of electrodes in frontal and parietal
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y-axis indicate the number of electrodes located in each region. indicate

significant (corrected) p-values at 0.05, 0.01, respectively. rMFr rostral

Middle Frontal, parsTr Pars Triangularis, iOFr inferior Orbito-Frontal, parsOp Pars Opercularis, cMFr Caudal Middle Frontal, SFr Superior Frontal, SPar

Superior Parietal, iPar inferior Parietal, SMG Supra-Marginal Gyrus

profiles significantly correlated with the aversion pattern (Fig. 6e).
Comparing the proportion of electrodes showing reliable HG or
CAC responses, we found that about 30% of electrodes entrained
in a steady-state manner, not only in SM but also in neural
networks involved in the modulation of attention and arousal,
such as the default-mode (DMN) and the ventral attention (VA)
networks (Fig. 6f). Altogether, these results suggest that tempo-
rally salient, rough sounds massively synchronise cortical regions,
with a possible dominance of the effect in those networks
involved in exogenous attention and salience processing.

Discussion

Our results validate the hypothesis that fast repetitive acoustic
transients confer sounds a rough sonic texture and thereby
amplify their salience and enhance neural processing. In addition
to validating the relevance of the notion of temporal salience as a
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critical ingredient of exogenous attention, these findings shed new
light on how temporal information is coded, processed and
perceived by the human brain.

First, assuming that rough auditory percepts are analogous to
flickering phenomena in the visual modality, we predicted that
subjective aversion should be maximal at frequencies below the
transition from roughness to pitch perception. In a series of
psychophysical experiments, we demonstrate that temporally
enriching sounds enhanced perceived aversion in the roughness
range, namely below the transition from discrete to continuous
percepts.

The brain is not equally sensitive to all frequencies across the
audible spectrum. Since the work of von Helmholtz?, it has been
known that temporal modulations in the roughness range induce
more unpleasant subjective percepts than those in adjacent fre-
quency ranges227, Measuring aversion as a function of click train
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frequency, we show that subjective reports linearly follow sti-
mulus frequency above the subjective transition from discrete
(rough) to continuous (pitch) percepts (~130 Hz), but not below.
Instead, sounds in the roughness range induce highly aversive,
buzzing percepts that cannot be accounted for merely by stimulus
energy. The phenomenological distinction between roughness
and pitch is classically attributed to a dual neural auditory coding
strategy of temporal and spectral information!®1428, Adding to
this view, our data suggest a new account on the origin of this
subjective discrepancy: these two distinct response modes!>10
may actually reflect the recruitment of two different neural routes
for sound processing in the human brain. In one mode, sounds
induce a typical onset response in auditory cortical areas,
resulting in a transient neuronal activity (HG amplitude) increase
that reflects stimulus energy!®2°. The other mode differs in sev-
eral aspects. First, it is best measured as a sustained, phase-locked
response at the rate of stimulation and is maximal within the
roughness (40-80 Hz) range. Second, our intracranial data
unequivocally show that responses in this mode synchronise a

large network of supramodal brain areas extending well beyond
auditory cortex (Fig. 2c and Supplementary Movie 1), thereby
providing decisive evidence in favour of a distributed source of
steady-state responses in this range3). Indeed, rough sounds
massively synchronise widespread cortical regions in a sustained
manner, with a relative regional preference for those neural
networks that are involved in (or directly affected by) salience
detection (VA and DMN3132) over goal-oriented, central-
executive networks (DA and FP33-3%). More specifically, rough
sounds not only synchronise cortical auditory regions but also
subcortical and cortical limbic as well as frontal regions. Alto-
gether, these findings point to a supramodal neural correlate of
temporal salience: the aversive sensation induced by rough
sounds results from the persisting, exogenous synchronisation of
large-scale networks involved in salience—rather than specifically
auditory—processing. This also suggests that the negative percept
induced by rough sounds such as dissonant intervals®, alarm
sounds® or annoying vocal effects (e.g. vocal fry>”) might result
from their capacity to massively, exogenously hijack brain
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networks involved in aversion and pain processing?2. One alter-
native—but compatible—interpretation is that such negative
percept arises from the difficulty to focus on the task at hand, e.g.,
interpreting speech.

Neuronal synchronisation in the gamma range has been pro-
posed as a mechanism for selectively routing information and for
synchronising activity within and across brain networks3$. In the
context of the current study, one hypothesis that naturally arises
is that stimulus-driven, privileged entrainment in the gamma
range may reflect the long-range effective recruitment of atten-
tional and arousal related brain regions. In addition to the large
extent of spatial synchronisation patterns, it is remarkable that
these networks preferentially resonate in a frequency range
(30-80 Hz) that tightly matches a well-known endogenous brain
rhythm, the so-called gamma band3’. In the following, we will
argue that this correspondence is unlikely to be coincidental.

According to the “communication through coherence” (CTC)
hypothesis®®40:41, gamma oscillations play an instrumental role
in enabling communication across distant brain areas: neuronal
synchronisation in this frequency band enhances the gain of
information transmission, and thereby the effective connectivity
between them. In line with the CTC hypothesis, endogenous (top-
down) attention, or the voluntary effort to improve one’s detec-
tion and processing of sensory events, is known to enhance
gamma synchronisation in cortical networks*2. On the other
hand, exogenous (bottom-up) attention, which is driven by the
characteristics of the sensory stimulus (more specifically its sal-
ience) rather than by the cognitive requirements of the task®3, has
received less attention in the literature*; in particular, whether
exogenous attention relies on specific neural circuits and oscil-
latory mechanisms remains unclear4”. Introducing the concept of
temporal salience, we provide a new heuristic to address this issue.
Previous work suggested that gamma rhythms might subserve the
bottom-up propagation of information in the brain*®47. One
prediction that naturally ensues is that exogenously entraining
neural responses in the gamma range should facilitate neural
synchronisation across brain areas and, as a result, enhance
percept salience, a prediction that was indeed supported by our
results. As a consequence, in addition to validating the paradig-
matic pertinence of temporal salience, these results provide
indirect experimental support to the CTC hypothesis.

Our findings also have interesting implications for the under-
standing of acoustic communication. Producing salient auditory
features to catch the attention of others is a primordial purpose of
vocal communication. Here, we validate the hypothesis that
temporally enriching sounds—in the roughness range—amplifies
sensory salience and improves neural and behavioural efficiency.
This finding connects with the recent observation that roughness
is exploited in natural and artificial alarm signals as a privileged
acoustic niche to warn conspecifics®. Showing that such sounds
recruit salience systems in the human brain and enhance per-
ception, we confirm the fitness of these sounds to ultimately
promote the efficient transmission of alarm signals. We further
provide evidence in favour of the hypothesis that the use of
roughness in alarm signalling is not an epiphenomenon of vocal
production. Instead, the selection of communicative features
depends on their propensity to induce specific behavioural
responses. In this view, the use of roughness in alarm signals
reflects an adaptation of communication to the receiver’s auditory
sampling constraints to hijack her brain, enhance her perception
of incoming danger and manipulate her reactions from a distance
to ultimately promote survival.

Methods

Participants. These studies received IRB approval by the Commission cantonale
d'éthique de la recherche, République et canton de Genéve, and all participants

gave written informed consent to participate. Twenty-seven healthy participants
(15 women, 20-37 years) provided informed consent to participate in the beha-
vioural experiments; they received a monetary compensation for their participa-
tion. All participants were right-handed, with normal hearing and no history of
neurological disorders. Additionally, 11 patients with drug-resistant focal epilepsy
(six women, 18-42 years) undergoing iEEG recordings as part of the workup for
epilepsy surgery participated in an auditory experiment. To ensure adequate power,
the sample size of behavioural experiments was pre-determined on the basis of
prior experimental works assessing subjective ratings of auditory stimuli®. The
sample size for iEEG recordings was determined to match the preliminary beha-
vioural experiments as well as to ensure sufficient anatomical electrode coverage
across participants.

Stimuli and procedures. All stimuli were digitally generated using MATLAB with
a sampling rate of 96 kHz and presented in a pseudo-randomised order using
Psychtoolbox (Version 3.0.12).

The first behavioural experiment (Exp. 1) aimed at determining the temporal
discretisation limit. Sixteen participants subjectively reported the discreteness of
click trains (1 s duration, with 100 ms sine ramping onset and offset; click rise/fall
time of 0 ms, plateau time of 1 ms, presented at ~60 dB SPL). Participants used
button presses to report whether the sounds were discrete (1) or continuous (0).
Click train frequency varied between 50 and 250 Hz. The lowest frequency was
selected to avoid that subjective judgments of discreteness are biased by very slow
stimuli (<20 Hz). Below this frequency, trains are not perceived as a single stimulus
anymore, but rather as a succession of distinct auditory events!®!228, Since we
aimed to measure the limit at which one can discretize acoustic transients (clicks)
within a stream, we thus intentionally chose a reference value higher that the lowest
limit of the roughness range (~30 Hz).

The second behavioural experiment (Exp. 2a) aimed at measuring subjective
aversion as a function of the frequency of click trains. The same participants who
participated in Exp. 1 also reported the aversion of click trains of varying
frequencies on a 5-points Likert-like subjective scale ranging from tolerable (1) to
unbearable (5). Click trains (1 s duration, with 100 ms sine ramping onset and
offset; click rise/fall time of 0 ms, plateau time of 1 ms, presented at ~60 dB SPL)
were presented at frequencies varying between 10 and 250 Hz.

The third behavioural experiment (Exp. 2b) aimed at replicating Exp. 2a at
lower sound intensity. Twelve different participants reported the aversion of click
trains of varying frequencies on a 5-points Likert-like subjective scale ranging from
tolerable (1) to unbearable (5). Click trains (1 s duration, with 100 ms sine ramping
onset and offset; click rise/fall time of 0 ms, plateau time of 1 ms, presented at ~50
dB SPL) were presented at frequencies varying between 10 and 250 Hz.

Eleven patients with epilepsy undergoing investigation with iEEG electrodes
listened to click trains of varying frequencies and provided a rating of aversion on a
5-points scale. Click trains (2 s duration, with 100 ms sine ramping onset and
offset; click rise/fall time of 0 ms, plateau time of 1 ms, presented at ~70 dB SPL)
were presented at frequencies varying between 5 and 250 Hz. Patients rated all
sounds as highly aversive, regardless of stimulus frequency. This could be due to
the need for the sounds to be played at a louder than comfortable volume in order
to overcome the naturally noisy environment of the epilepsy monitoring unit, as
well as to heightened anxiety caused by the stressful situation the patients found
themselves in. Therefore, instead of using patients’ own subjective reports of
aversion, we correlated their neural data with the subjective values averaged across
the 16 normal participants in Experiment 1 (see Fig. 1b).

Processing and analysis. In Exp. 1, the discretisation limit was determined using a
sigmoidal fitting procedure in the individual discreteness values across frequencies.
The discretisation limit was calculated individually by predicting the frequency
corresponding to a discreteness of 0.5 and is reported, at the group level, using the
mean + SEM across participants. The goodness of fit (red line in Fig. 1a) is
determined by measuring the Pearson correlation between predicted and actual
data points (averaged across participants).

In Exp. 2a and 2b to test the linearity (or nonlinearity) of subjective aversion
responses as a function of stimulus frequency in the pitch (>130 Hz) and in the
roughness (<130 Hz) domains, we used a linear fitting procedure as follows. First,
we assessed the linearity of responses in the pitch range by measuring the goodness
of fit between predicted and actual responses (averaged across participants). We
then aimed to measure how much responses in the roughness range deviated from
the extrapolation of the linear prediction below the discretisation limit (red line in
Fig. 1b). To do so, we, (1) measured the goodness of fit between predicted and
actual values and (2) tested how much actual values (grey dots in Fig. 1b) differed
from predicted values (red crosses in Fig. 1b) by applying t-tests across participants
at each stimulus frequency. In both pitch and roughness windows, goodness of fit is
determined by measuring the Pearson correlation between predicted (red crosses)
and actual data points (empty black dots, averaged across participants).

Intracranial electrophysiological activity was recorded using linear shafts of
depth electrodes (Ad-Tech Medical, Racine, W1, or Dixi Medical, Chaudefontaine,
France) implanted by stereotactic surgery (N =9 patients), or grids and strips of
subdural electrodes (Ad-Tech Medical, N = 2) implanted through a craniotomy, in
order to localize the origin of epileptic seizures. Signals were digitised (2048-Hz
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sampling rate; Brain Quick LTM, Micromed, Treviso, Italy) and stored to disk for
offline analysis.

Intracranial electrodes were localised using the iELVis toolbox (http://ielvis.
pbworks.com;*8). Briefly, we co-registered a high-resolution post-implantation CT
scan with a pre-implantation 3-T 3D T1 MRI scan. We then identified iEEG
electrodes manually on the CT scan using Biolmage Suite 3 (http://www.
bioimagesuite.org). We used FreeSurfer (http://surfer.nmr.mgh.harvard.edu) to
segment the white matter and deep grey matter structures, reconstruct the pial
surface, parcellate the neocortex according to gyral anatomy?4, and register the pial
surface of individual patients onto a standardised atlas.

In order to attribute an iEEG electrode to one of the resting functional MRI
networks described by Yeo et al.*%, we first brought electrode coordinates from the
patient space to the MNI305 template space using an affine transformation
(implemented in iELVis). We then coregistered the ‘liberal’ 7-network parcellation
available for the MNI152 brain in FreeSurfer to the MNI305 brain using FSL’s
FLIRT?Y,

In order to label electrodes according to each individual patients’ anatomy, we
used the Destrieux parcellation?! for a precise labelling of cortical sulci and gyri in
the temporal lobe, and the Desikan-Killiany parcellation?* for the remaining
cortical regions, and the Fischl®> parcellation for subcortical regions. In order to
ensure the reliability and readability of our observations, we do not report effects in
those regions targeted by less than ten electrodes across patients (with the
exception of the enthorinal cortex, for an exhaustive assessment of temporo-limbic
areas). As a consequence, due to the limited number of electrodes available in the
cingular cortex (n < 10 electrodes across patients in each sub-region of the Desikan-
Killiany parcellation of the cingular cortex), we could not reliably assess the
response profiles in these regions.

All iEEG data analyses were performed in MATLAB (MathWorks) using the
Fieldtrip (http://fieldtrip.fcdonders.nl) package and in-house custom code.
Channels displaying excessive epileptiform activity or noise were excluded from the
analysis. Line noise was removed using the discrete Fourier transform filtering
option in fieldtrip at 50, 100 and 150 Hz. All electrodes were then re-referenced to a
common average and visually inspected for electrical artefacts. The filtered, re-
referenced, artefact-inspected iEEG data were then epoched using 1 s pre-stimulus
to 2's post-stimulus windows. For each trial, we then subtracted the pre-stimulus
baseline activity (from 800 ms before to stimulus onset) in each electrode.

Auditory electrodes were functionally defined as those exhibiting significant
high-gamma (HG) responses in the 400 ms following sound onset (significance
threshold for HG ‘activation’ was set at p <0.01 after FDR correction across all
electrodes). This window was determined based on visual inspection of the data, to
dissociate early onset effects to later sustained entrainment (see below). High-
gamma activity, which reflects local neuronal activity!®, was defined as the mean
normalised amplitude envelope of frequencies between 70 and 200 Hz. HG
amplitude time series were computed by band-pass filtering the iEEG signal in
10 Hz bands from 70 to 200 Hz. The envelope of each narrow band signal was
obtained by taking the absolute value of the analytic signal obtained from a Hilbert
transform. Amplitude time series were then amplitude normalised, averaged and
multiplied by the mean amplitude across all bands. This normalisation procedure
aims to correct for the 1/f decay in the EEG power spectrum. These processing
steps resulted in a single broadband amplitude time series representing a proxy for
local neuronal activity!® recorded at each electrode contact. We then transformed
these data into time-courses of t-scores (calculated at each time point across trials)
per contact, condition and participant. Overall, data were distributed normally,
which allowed us to use standard parametric tests (e.g., paired t-test, repeated-
measures ANOVA) to assess the statistical significance of observed effects.

In accordance with our hypothesis that temporal salience should be reflected in
the entrainment of neural responses to click trains, we sought neural responses
that, (1) were sustained across the peri-stimulus time-course and (2) correlated
with subjective aversion reports. As no sustained HG response was reliably
observed across electrodes, we extended our investigation to a measure that is
sensitive to the phase alignment of brain responses at the rate of the exogenous
stimulation. To do so, we measured the coherence between the stimulus waveform
and the preprocessed brain signals (cerebro-acoustic coherence, CAC) at the
stimulus frequency.

In order to best model the relationship between the stimulus and the brain
response while avoid spurious effects potentially due to the coherence measure we
used, we first transformed the waveform to model the peripheral transformation of
the sound occurring at the cochlear level. Sound waveforms were transformed into
a time-frequency representation (spectrogram) using a filter-bank approach.
Waveforms were filtered using 128 different linear-phase finite impulse
response filters (512th order). Filters were designed to estimate critical bands>!
with centre frequencies logarithmically spanning the frequency space and
corresponding to equivalent rectangular bandwidths (according to the equation:
BW =24.7 * (F * 4.37 + 1), where BW denotes bandwidth and F denotes a center
frequency in KHz>2). Each filter’s output was then Hilbert transformed in order to
extract the analytic amplitude and log-transformed. We then averaged the output
of this filter-bank processing to provide a novel waveform that better reflect the
output of the cochlea®!. Note that although this approach was meant to realistically
model the processes occurring at the cochlear level, not applying this
transformation did not significantly change the results.

CAC was obtained by measuring the Magnitude Squared Coherence Estimate
using the MATLAB function mscohere.m. This function calculates an estimate of
the magnitude-squared coherence between the input (the sound waveform) and the
output (the brain signal in the time window of interest) using Welch’s averaged,
modified periodogram method. Coherence is a function of frequency with values
between 0 and 1 that indicate how well the input corresponds to the output at a
considered frequency. The magnitude squared coherence, Cy, is given by C;, =
|P,»0|2/ (Pii X Pyy), where P;; and P,, are the power spectral density (PSD) estimate of
the input i and the output o, respectively; and P;, is the Cross-PSD estimate of i and
0. CAC was calculated in each electrode, individual and condition. In order to
avoid a potential contamination of entrained responses to sound onsets, we focused
our analysis on a later time window—defined by visual inspection of the data—
ranging from 800 to 1800 ms after stimulus onset. CAC values were baseline-
corrected by subtracting a surrogate measurement of CAC between stimulus and
brain activity during a 1000-ms period preceding sound onset to capture
endogenous activity at the stimulus frequency. We then transformed these data
into t-scores (calculated per time-window across trials) per contact, condition and
participant. Using this approach, we could then identify subsets of significantly
“entrained/sustained” electrodes for each stimulus frequency (significance
threshold for CAC ‘activation” was set at p <0.01 after FDR correction across all
electrodes). In order to qualitatively show how CAC evolves in time as a function of
stimulus frequency for illustrative purposes (Fig. 2a, bottom panel), we also applied
this method in a single electrode using a sliding 1000-ms window in 10-ms steps
across the whole peristimulus time-course.

Of note, we initially intended to use the CAC approach®? to measure the
temporal relationship between neural responses and click trains waveform while
taking into account the shape of these stimuli. However, because of the peculiar
spectral content of clicks and despite the use of a cochlear filter bank to model the
output of the cochlea (see previous section), it remained possible that the CAC
method might not be best suited to capture these effects and may introduce
unwanted confounds in the analysis. Therefore, we aimed to reproduce our basic
CAC finding (Fig. 2¢, bottom panel) using an alternative, frequency-tagging
approach that does not depend on the stimulus shape. Importantly, all other
analysis steps (e.g. baseline correction) were the same as those described earlier for
CAC. Here, instead of measuring stimulus-brain coherence (CAC), we measured
the power of neural responses filtered at the stimulus frequency. As for the
extraction of HG activity, amplitude time series were computed by band-pass
filtering the iEEG signal, but this time, at the stimulus frequency F+ 0.5 Hz. The
envelope of each narrow band signal was obtained by taking the absolute value of
the analytic signal resulting from a Hilbert transform. As this method appeared to
provide slightly less robust SNRs, significance threshold for frequency-tagging
‘activation” was set at p < 0.05 (instead of p <0.01 for CAC) after FDR correction
across all electrodes. We then obtained a similar graph of t-values across
frequencies and participants (Supplementary Fig. 1a) as the one we previously
obtained for CAC (Fig. 2¢, bottom panel). Measuring correlations between the
outcomes of each CAC and Frequency-tagging approaches on averaged
(Supplementary Fig. 1b) and individual (Supplementary Fig. 1c) data, we
demonstrated that the two approaches yielded very similar results, thereby
validating the use of CAC measurements to robustly measure sustained steady-
state responses.

All statistical tests were corrected for multiple comparisons using FDR
correction®* unless otherwise stated.

In order to assess the strength of HG and CAC measurements across
participants within clusters of electrodes of interest, two distinct approaches were
taken. For electrode subsets defined functionally (i.e. on the basis of functional
activation, in Fig. 2b and c), individually t-scored HG or CAC data were averaged
within subsets of electrodes at the individual level, before statistical testing at the
group level. For anatomically defined electrode subsets (i.e. on the basis of atlas-
based parcellations, in Figs. 3-6), we had to use a different averaging strategy
because in most cases electrodes from only a few patients were available per
anatomical region of interest. Therefore, we did not perform analyses at the group
level, but instead we pooled data from all available electrodes in the considered
subset of interest. Our aim here was to quantify the putative relationship between
activation profiles (namely HG or CAC across stimuli frequencies) and stimulus
energy or perceptual salience. To do so, we measured Pearson’s correlations
between these response profiles (averaged across all the electrodes of the considered
subset) and either stimulus energy or subjective aversion reports. Pearson’s
correlation analyses were subjected to a specific statistical correction approach.
Because correlations with stimulus frequency or salience often involved fewer than
10 data points, we aimed to correct for potential biases using a non-parametric
approach. The non-parametric correlation statistic was performed by repeating
5000 times the calculation of a permutation test where the experimental conditions
(stimulus frequency or salience) are randomly intermixed before measuring the
correlation with neural data. Finally, we calculated the corrected p-values by
comparing the values of the statistics of our original data with the statistics of all
permutations.

Data availability

Data are available upon reasonable request from Luc H. Arnal (luc.arnal@unige.ch).
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Code availability

Custom made code is available at https://github.com/LucArnal/SoundOfSalience.
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