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An integrated transcriptomic 
analysis of autism spectrum 
disorder
Yi He1,2, Yuan Zhou1, Wei Ma3 & Juan Wang1,2

Autism spectrum disorder (ASD) is not a single disease but a set of disorders. To find clues of ASD 
pathogenesis in transcriptomic data, we performed an integrated transcriptomic analysis of ASD. 
After screening based on several standards in Gene Expression Omnibus (GEO) database, we obtained 
11 series of transcriptomic data of different human tissues of ASD patients and healthy controls. 
Multidimensional scaling analysis revealed that datasets from the same tissue had bigger similarity 
than from different tissues. Functional enrichment analysis demonstrated that differential expressed 
genes were significantly enriched in inflammation/immune response, mitochondrion-related function 
and oxidative phosphorylation. Interestingly, genes enriched in inflammation/immune response 
were up-regulated in the brain tissues and down-regulated in the blood. In addition, drug prediction 
provided several compounds which might reverse gene expression profiles of ASD patients. And we also 
replicated the methods and criteria of transcriptomic analysis with datasets of ASD animal models and 
healthy controls, the results from animal models consolidated the results of transcriptomic analysis 
of ASD human tissues. In general, the results of our study may provide researchers a new sight of 
understanding the etiology of ASD and clinicians the possibilities of developing medical therapies.

Autism spectrum disorder (ASD) represents a set of neurodevelopmental disorders characterized by two core 
symptoms, impaired social interaction and restrictive and repetitive behaviors. It is sex-biased that ASD affects 
boys four to five times more than girls1. The pathogenesis of ASD still remains perplexing. Biological researches 
supported that it was a set of disorders with multiple non-genetic and genetic factors as well as their interac-
tions rather than a single disease2–6. About 10–20% of ASD patients have a definite genetic risk7. However, the 
genetic etiology of ASD is heterogeneous. Up till now, hundreds of genes have been found associated with ASD6. 
For example, synaptic genes such as neuroligin 3(NLGN3), neuroligin 4X-linked(NLGN4X)8, SH3 and multiple 
ankyrin repeat domains 3(SHANK3)9,10 were certified as the ASD genes. Monogenetic diseases like Fragile-X syn-
drome and Rett Syndrome associated with the mutations of fragile X mental retardation 1(FMR1)/methyl-CpG 
binding protein 2(MECP2) were also found with autistic symptoms11. Ubiquitin protein ligase E3A (UBE3A) gene 
coding for E3 ubiquitin-protein ligase was linked to both ASD and Angelman Syndrome2. The results above came 
from the researches of DNA sequence, but they cannot identify the cause of ASD in a large number of cases11.

Transcriptomic analysis plays an important role in exploring genome structure and function and identify-
ing genetic networks in aspect of gene transcription. Gene expression patterns in autistic population have been 
demonstrated in different tissues including lymphoblastoid cell lines, peripheral blood, brain cells and pluripotent 
stem cell-derived neurons6,12–14. Several researches pointed out that aberrant gene expression in the blood of chil-
dren with ASD involved in transcriptional regulation, biosynthesis of protein, processing of ribosomal RNA and 
neural-related pathways13,15,16. Transcriptome analysis between autistic brain and normal brain identified discrete 
modules by gene co-expression network analysis: a neuronal module and a module enriched for immune genes 
and glial markers12. Another finding of brain transcriptional association with ASD revealed two abnormal areas 
of metabolism: mitochondrial oxidative phosphorylation and protein translation17.

Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) has collected the raw and processed 
data for studies of high-throughput gene expression and genomics18. To date, GEO has gene expression datasets 
coming from hundreds of studies related to ASD. Although widely assumed, it remains unknown whether the 
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transcriptomic signatures were consistent among ASD population. Evidence certainly denoted that differential 
expressed genes in the blood could be an indicator of ASD, however, whether the transcriptomic signatures in dif-
ferent tissues were consistent with each other hasn’t been explored. Whether we could find some potential drugs 
based on transcriptomic signatures of ASD. The purpose of our study is to systematically explore the status of 
gene expression between ASD and healthy control by integrating several human datasets. In this work, we chose 
the transcriptomic datasets from GEO based on several criteria and screened the differential expressed genes by 
a computational method and carried on a series of bioinformatic analysis. And we attempted to predict potential 
drugs based on these differential expressed genes. In addition, we also replicated the strategy and criteria of the 
analysis in transcriptomic datasets of animal model to validate the results of human tissues.

Results
Datasets derived from same tissue had bigger similarity.  To obtain the spatial or geometric rep-
resentations of the datasets, multidimensional scaling (MDS) was utilized in our study. As shown in Fig. 1, three 
series of datasets (GSE28475, GSE28521, GSE38322) were derived from brain tissues gathered together, and they 
were apart from other datasets spatially. In other words, the dimensional distances between any two of three data-
sets derived from brain tissue were smaller than that between any of them and dataset which came from blood. 
Similarly, datasets from blood (GSE18123, GSE25507, GSE29691, GSE37772, GSE42133) gathered together. 
Given the above, datasets derived from the same tissue had the bigger similarity than from different tissues. 
(The average distance of datasets derived from brain tissues = 1.18, the average distance of datasets derived from 
blood = 1.40, P = 0.0013).

Gene expression level between brain tissues and blood.  Based on the fold change of expression level, 
we found that differential expressed genes of ASD patients/controls in brain tissues and blood, had different gene 
expression patterns. The number of up-regulated genes in brain tissues were apparently more than that in blood, 
meanwhile the number of down-regulated genes in brain tissues was less than that in blood (Supplementary 
Fig. S1). Especially, several genes up-regulated in brain tissue were down-regulated in blood, like TIMP met-
allopeptidase inhibitor 1(TIMP1), phospholipase A and acyltransferase 4(RARRES3), DNA damage inducible 
transcript 4(DDIT4), cytochrome b-245 alpha chain (CYBA), bone marrow stromal cell antigen 2(BST2) (Fig. 2). 
Namely, there existed a transcriptomic difference in ASD patients’ tissues between brain tissues and blood.

Functional enrichment of the differential expressed genes.  In terms of fold change and P-value 
of Wilcoxon rank-sum test, each dataset had two gene lists, one for up-regulated genes and the other for 
down-regulated genes. We input them into the DAVID respectively, and obtained two sets of functional anno-
tations in each dataset. Pathway analysis indicated that multiple pathways associated with inflammation/
immune response, mitochondrion-related function and other significantly meaningful pathways (Figs 3 and 
4, Supplementary Fig. S2), which were consistent with previous studies12,17,19,20. In this work, genes enriched 
in the KEGG pathway of inflammation/immune related disease, e.g. systemic lupus erythematosus (KEGG 

Figure 1.  Multidimensional scaling map of 11 series of datasets. Multidimensional scaling analysis was 
performed among these datasets based on the distance matrix. Each dot represented a series of dataset. For each 
dataset, the tissue source was noted on the dot, brain tissues were presented by red, blood was presented by blue. 
Spatial distance among datasets derived from same tissue was smaller than that derived from different tissues 
(P = 0.0013). That meant datasets coming from same tissue had bigger similarity.
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pathway identifier: hsa05322), staphylococcus aureus infection (KEGG pathway identifier: hsa05150), etc., were 
up-regulated in the brain tissues and down-regulated in the blood (Fig. 3). It was similar with the Gene Ontology 
(GO) terms. Genes enriched in inflammation/immune response were up-regulated in the brain tissues and 
down-regulated in blood (Fig. 4). Increasing evidence indicated that neuropsychiatric diseases were associated 
with brain inflammation, such as ASD, schizophrenia21. And the immune dysfunction might be the key point 
for the genetic and environmental factors to develop ASD22. However, we were the first to point out that genes 
enriched in inflammation/immune response were differential expressed in brain and blood. Moreover, we also 
found down-regulated genes both in the brain tissues and blood were enriched in some significant pathways, 
such as oxidative phosphorylation and mitochondrion-related function (Fig. 4, Supplementary Fig. S2). This 
suggested that there might exist energy metabolism disorders in ASD population. Previous studies have shown 

Figure 2.  Gene expression levels in different tissues. Each dataset had a differential expressed gene list, gene 
symbols of y-coordinate were present in at least three datasets. Up-regulated genes were represented by red, and 
down-regulated genes were blue. The shade of the color reflected the value of fold change of each gene.

Figure 3.  Heat-map for the enriched KEGG pathways. Functional enrichment analysis were performed by 
DAVID. P value of each KEGG pathways was <0.05. KEGG pathways of y-coordinate were the pathways which 
overlapped in two datasets or more. Up-regulated genes enriched KEGG pathways were represented by red, and 
down-regulated genes enriched KEGG pathways were blue. The shades of the colors reflected the −log (P value) 
of the enrichment analysis.
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that ASD might be associated with mitochondrial disorders. About twenty years ago, researchers reported a boy 
whose origin of the ASD might be the mitochondrial DNA mutation23. A systematic review has reported that the 
prevalence of the mitochondrial disease in general population of ASD was 5.0%, which was much higher than 
the prevalence of general population24. Functional analysis also demonstrated that differential expressed genes 
enriched in protein translation and ribosome related functions were down-regulated both in brain tissues and 
blood. Previous study has confirmed that changes in the efficiency of protein translation were related to ASD by 
using a published set of 1,800 autism quartets and genome-wide variants25.

Drug prediction based on the transcriptomic signatures.  The connectivity map (CMap) provides a 
way to find inverse relationship between disease signature and compound-based signature. In this context, the 
compounds could potentially present an opportunity to reverse the status of differential expressed genes in ASD 
population. On account of technical limitation of the online tool, we conducted CMap queries in 5 datasets. And 
we chose the compounds whose connectivity score ranged from −80 to −100. One dataset (GSE18123-GPL570) 
was excluded to conduct subsequent analysis because it only had one compound meeting the condition. The 
compounds overlapping in four datasets were shown in Table 1. Whether these compounds could improve the 
symptoms of ASD needs to be further explored.

To assess the targets and pathways of the compounds obtained from CMap, we chose the compounds over-
lapping in more than three datasets as the list of interested drugs derived from human tissues, then used the 
DrugPattern to conduct enrichment analysis of these drugs. DrugPattern is an online tool for drug set enrich-
ment analysis and contains 7019 drug sets, including indications, adverse reactions, targets, pathways, etc.26. 
The results of DrugPattern were detailed in Supplementary Table S1. The significant drug targets that our inter-
ested drugs enriched were 30S ribosome protein, gamma-aminobutyric acid receptor, sodium channel protein, 
voltage-dependent calcium channel and etc.

Transcriptomic analysis of ASD animal models validated the results of human tissues.  After 
screening in GEO database, we obtained 8 datasets of ASD animal models and healthy controls (Supplementary 
Table S2). One dataset was from rattus norvegicus, and other seven datasets were from mus musculus. All these 
samples in the datasets were derived from brain tissues. We defined differential expressed genes and performed 
functional enrichment analysis and made drug prediction by using the similar strategy and criteria which were 

Figure 4.  Heat-map for the enriched GO terms. Functional enrichment analysis were performed by DAVID. 
P value of each GO term was <0.05. GO terms of y-coordinate were the pathways which overlapped in three 
datasets or more. Up-regulated genes enriched GO terms were represented by red, and down-regulated genes 
enriched GO terms were blue. The shades of the colors reflected the −log (P value) of the enrichment analysis.

Compounds Description

efavirenz HIV protease inhibitor

SB-525334 TGF beta receptor inhibitor

RHO-kinase-inhibitor-III[rockout] Rho associated kinase inhibitor

rilmenidine Adrenergic receptor agonist

PKCbeta-inhibitor PKC inhibitor

deferiprone Chelating agent

nifedipine Calcium channel blocker

cholic-acid Bile acid

Table 1.  Compounds overlapping in four datasets.
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used in transcriptomic analysis of human tissues. Our results demonstrated all differential expressed genes 
derived from animal models were up-regulated (fold change >1.5, P value < 0.05, Supplementary Table S2), and 
none of differential expressed genes was down-regulated. And we separately performed enrichment analysis for 
differential expressed genes of mus musculus and rattus norvegicus. One dataset (GSE77972) had only one differ-
ential expressed gene, so we performed functional enrichment analysis in other 7 datasets and chose statistically 
significant GO terms. Functional enrichment analysis demonstrated that genes were enriched in oxidative stress 
related pathway, inflammation/immune response, ribosome and protein translation (Fig. 5), which were consist-
ent with the results of human tissues.

On account of technical limitation of the online tool, we conducted CMap queries in 6 datasets derived from 
animal models. After CMap query, the compounds whose connectivity score ranged from −80 to −100 overlap-
ping in more than four datasets were defined as the list of interested drugs derived from animal models. There 
were 18 drugs overlapping in interested drug lists of human tissues and animal models (Supplementary Table S3). 
Finally, we performed enrichment analysis of interested drugs of animal models by DrugPattern. The results also 
suggested that there were several significant drug targets overlapping with the results of human tissues, namely 
epidermal growth factor receptor, sodium channel protein type5 and type9 subunit alpha, tubulin alpha-4A chain 
(Fig. 6, Supplementary Table S3).

To validate whether the similar results between human tissues and animal models were generated by ran-
dom or on account of autism spectrum disorder, we separately performed ten thousand random experiments for 
enrichment analysis and drug prediction. Random experiment of enrichment analysis and drug prediction based 
on genes were similar to that based on functional annotations and drugs. We calculated the number of same GO 
terms derived from randomly enrichment analysis for human tissues and animal models based on the same crite-
ria in our study in each random experiment. Random experiments suggested that the number of same GO terms 
was mostly zero, which was statistically different from our result (P < 0.0001). According to the total number of 
drugs in CMap database, each random experiment accounted the number of same drugs derived from randomly 
drug prediction for human tissues and animal models based on the same criteria in our study. Finally, our result 
that there were 18 drugs overlapping in interested drug lists of human tissues and animal models was statistically 
different from ten thousand random experiments (P < 0.0001) (Supplementary Fig. S3). In general, the results 
from animal models statistically validated the results of transcriptomic analysis of human tissues.

Discussion
As a complex disorder which has significant individual differences, a majority of researchers pay more atten-
tion to ASD. Mutations in a limited number of genes could not account for a large number of cases in ASD 
population. Changes in the shape of the entire gene expression distribution suggest alterations at global levels 
of gene expression regulation. Here we obtained 11 series of datasets from GEO database to explore the gene 
expression distribution derived from different human tissues. In the previous studies, differential expressed genes 
were defined according to different fold change. We screened the differential expressed genes based on the same 
criterion among datasets included in our study. We performed multidimensional scaling analysis among them 
and concluded that datasets of the same tissue had the bigger similarity compared with the datasets of different 
tissues. Subsequently, we reinforced the different role of transcriptional regulation between brain tissues and 
blood by demonstrating with enrichment analysis that, genes enriched in some significant pathways, like inflam-
mation/immune response, were up-regulated in the brain tissues and down-regulated in blood. And we exploited 
two online tools, CMap and DrugPattern, to find several compounds which may reverse the expression pattern 
of ASD and explore the possible therapy of ASD. And we replicated the methods and criteria of transcriptomic 
analysis with animal models and healthy controls, the results were similar to that of human tissues.

Figure 5.  Functional enrichment analysis of differential expressed genes derived from animal models. 
Functional enrichment analysis were separately performed in differential expressed genes derived from rats and 
mice. P value of each GO term was < 0.05. (A) Rattus norvegicus, (B) Mus musculus.
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Alterations of the transcriptomic regulation could have tissue specificity. For instance, in our study, gene 
expression patterns in the brain and blood were apparently different. The number of up-regulated genes in the 
brain tissues was significantly higher than that in the blood. Multidimensional scaling analysis demonstrated 
datasets derived from brain tissues gathered together spatially. However, the postmortem brain tissues of ASD are 
scarce, the brain samples of three datasets were procured from the Harvard Brain Tissue Resource Center (www.
brainbank.mclean.org). If there were any sample shared by different studies, it would contribute to the dataset 
similarity. In addition, animal experiment demonstrated that gene expression level might alter along with the 
fixation times and storage conditions27. Blood samples were usually processed fresh, however, human brain tis-
sues were obtained post-mortem. Since lack of the information of sample fixation in GEO database, whether the 
differences between brain and blood could be at least partially explained by tissue processing need to be further 
researched.

Immune dysregulation or inflammation, oxidative stress, mitochondrial dysfunction and environmental tox-
icant exposures are the four major areas implicated in ASD and other psychiatric disorders28. A large percentage 
of publications implicated an association between ASD and these four major areas28. Transcriptomic profiling 
may be particularly important in understanding the pathogenesis of diseases such as ASD where multiple systems 
are involved. Thus, it is possible that changes of transcriptomic regulation could offer a unifying understanding 
of multi-systemic effects of ASD. Our results were consistent with previous studies. Differential expressed genes 
were enriched mainly in inflammation/immune response, mitochondrion-related functions and oxidative phos-
phorylation. Interestingly, genes enriched in inflammation/immune response were up-regulated in the brain tis-
sues and down-regulated in the blood. ASD children are vulnerable to environmental factors, such as infection, 
stress or other toxicants exposure6. Corticotropin-releasing hormone (CRH) is secreted under stress, and it can 
stimulate mast cells and microglia along with neurotensin, which results in brain inflammation and neurotoxic-
ity29. Mast cells and microglia were found to be activated in brains of children with ASD30,31. Increasing evidence 
indicated that mast cells activation was related to the disruption of blood-brain barrier29,32,33. So, inflammation 
related cytokines may enter into blood across the blood-brain barrier. In fact, alterations in immune function 
have been reported in ASD patients, such as increased pro-inflammatory cytokine profiles in the cerebrospinal 
fluid and blood, elevated brain-specific auto-antibodies34. Thus, we speculated that when inflammatory cytokines 
entered the blood, it would inhibit the related-genes expression, which may provide an explanation why genes 
enriched in inflammation/immune response were up-regulated in brain tissues but down-regulated in the blood.

Risperidone and aripiprazole are the only two drugs which have been approved by the US Food and Drug 
Administration for the treatment of ASD, however, these two drugs both target irritability rather than social 
deficits and repetitive behavior35. In this work, we described eight overlapping compounds which have the reverse 
expression profiles of ASD patients, such as efavirenz, rilmenidine, PKCbeta-inhibitor, deferiprone, nifedipine 
and etc. Extended-release guanfacine, alpha2 agonists, has an effect on hyperactivity, impulsiveness and distracti-
bility in children with ASD36. Rilmenidine, a alpha2A-adrenoceptors agonist, has an effect on cardiovascular sys-
tem in D79N alpha2A-adrenoceptor transgenic mice37. Whether rilmenidine could improve some symptoms in 
children with ASD, like guanfacine, needs to be further explored. Moreover, other compounds also need to con-
duct some experiments to testify their clinical effects on ASD. In addition, DrugPattern provides us some impor-
tant information based on the compounds overlapping in more than three datasets. These compounds targeted 
30S ribosome protein, gamma-aminobutyric acid (GABA) receptor, sodium channel protein, voltage-dependent 
calcium channel and etc., which might be potential therapies of ASD. In fact, previous study has verified that 

Figure 6.  Same drug targets of interested drugs derived from animal models. The compounds overlapping in 
more than four datasets were defined as the list of interested drugs derived from animal models. Then they were 
inputted into DrugPattern to perform drug set enrichment. The shade of the color reflected the value of −log(P 
value) of each term.

https://doi.org/10.1038/s41598-019-48160-x
http://www.brainbank.mclean.org
http://www.brainbank.mclean.org


7Scientific Reports |         (2019) 9:11818  | https://doi.org/10.1038/s41598-019-48160-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

mutations in GABAA receptor subunit was associated with epilepsy, autism and other neuropsychiatric disor-
ders38. Taken together, our results provided some information to explore the etiology and therapy of ASD.

Simultaneously, our study had some limitations. First, we didn’t conduct false discovery rate (FDR) correction 
for multiple testing, because the number of differential expressed genes we obtained after FDR correction was too 
small to perform analysis. Thus we screened the differential expressed genes based on fold change and P value of 
Wilcoxon rank-sum test. Second, we can hardly perform further experimental study to explore the compounds 
found in our study and ASD on account of limited resources. Because of the complexity of ASD, it is important to 
take advantage of the bioinformatics methods to explore the pathogenesis and therapy of this disorder.

Methods and Materials
Transcriptomic datasets of ASD.  We searched the transcriptomic datasets from GEO database based on 
the key words “autism”, “autism spectrum disorder” and “ASD”, then picked up the datasets by using the follow-
ing criteria: (1) samples derived from human tissues, (2) samples in each dataset must include ASD and healthy 
controls, (3) gene expression datasets which are tested by DNA microarray must be on one channel. Finally, we 
acquired 11 series of transcriptomic datasets (Table 2).

The concept of differential expressed genes is the genes showing different expression level in human tissues 
between ASD patients and healthy controls. We used R software to perform our analysis. Specially, each gene’s 
differential expression level can be evaluated by fold change and Wilcoxon rank-sum test. If we defined differen-
tial expressed genes according to FDR, the number of differential expressed genes was too small to perform the 
sequent analysis (Supplementary Table S4), so we chose the genes meeting the conditions that fold change >1.5 or 
<1/1.5 with P value < 0.05 as the differential expression genes. Calculated differential expressed genes in different 
datasets have been summarized in Supplementary Table S5.

Multidimensional scaling analysis of datasets.  MDS is a method of quantitatively estimating the simi-
larity among groups of items, and it refers to a set of statistical techniques that are used to reduce the dimensions 
of the data, so as to find out the visual appreciation of the underlying relational structures39. The result of MDS 
is a “map” which spatially denotes the relationships among items, wherein similar items are located proximal to 
one another, and dissimilar items are located proportionately further apart39. Given that, we performed MDS to 
quantify similarity judgements among datasets. First, we separately calculated fold change of all genes for each 
dataset. Then we carried out the spearman rank correlation analysis between each two datasets based on fold 
change. And we obtained the Euclidean distance between each two datasets according to correlation coefficients. 
Finally we chose 2 as the value of dimension and used distance matrix of these datasets to perform MDS by R3.4.4 
software stats package.

Enrichment analysis of differential expressed genes.  The enrichment analysis of interesting gene 
lists which are derived from microarray or next-generation RNA sequencing (RNA-seq) is a basic method to find 
significant information about the biological pathways40. Compared with the analysis of all differential expressed 
genes together, enrichment analysis of up- and down-regulated genes separately was proven to be more pow-
erful41. For each dataset in our study, we conducted enrichment analysis of up- and down-regulated gene lists 
respectively by the DAVID v6.8 (https://david.ncifcrf.gov/)40,42.

Drug prediction.  The CMap database contains over 7000 expression profiles tested in five human cell lines, 
and utilizes gene expression profiling to reveal the associations among genes, chemicals and biological conditions 
such as disease43,44. The next generation connectivity map termed as L1000 is more than a 1000-fold scale-up 
of the CMap (https://clue.io/L1000)45. The set of differential expressed genes in our study can be used to query 
and compare against a large reference catalogue of gene expression profiles derived from drug or other pertur-
bagen treatment cell lines in the connectivity map. The CMap provides an online tool to perform CMap que-
ries against the chemical reference catalogues. For the query CMap, up-regulated genes are essential, however, 
down-regulated genes are optional. The number of valid genes inputted into the query CMap should be limited to 

GEO accession 
number Platform Tissue

ASD:healthy 
control

GSE1812320 GPL570 peripheral blood 104:82

GSE1812320 GPL6244 peripheral blood 66:33

GSE2550713 GPL570 peripheral lymphocytes 82:64

GSE2641515 GPL6480 peripheral leucocytes 21:42

GSE2847546 GPL6883 postmortem brain tissues 52:71

GSE2852112 GPL6883 postmortem brain tissues 39:40

GSE29691 GPL570 lymphoblastoid cell lines (LCLs) 2:13

GSE3777216 GPL6883 lymphoblast cell lines 233:206

GSE3832217 GPL10558 postmortem brain tissues 18:18

GSE4213319,47 GPL10558 peripheral leucocytes 91:56

GSE6510614 GPL6244 skin fibroblast, iPSC, iPSC-derived neural 
progenitors, and iPSC-derived neurons 21:38

Table 2.  Datasets from GEO database.
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10–150. So we chose the datasets whose number of valid up-regulated genes exceeded 10. If the valid up-regulated 
genes exceeded 150, we chose the top 150 valid genes according to fold change to conduct CMap query. Finally, we 
acquired 5 datasets meeting the conditions to perform CMap query (GSE18123-GPL570, GSE28475-GPL6883, 
GSE28521, GSE29691, GSE38322). The connectivity score ranges from +100 to −100. A positive connectivity 
score represents a positive correlation and a negative connectivity score denotes a negative correlation between 
our differential expressed gene list and a reference profile derived from an individual chemical perturbation. 
Thus a negative score may imply that exposure to a specific chemical may reverse the expression pattern of ASD. 
We chose the compounds whose connectivity score were between −80 to −100 in each dataset. The compounds 
overlapping in more than three datasets were inputted into DrugPattern (http://www.cuilab.cn/drugpattern) in 
order to mine regular rules and patterns behind a list of drugs26.

Transcriptomic analysis of animal model.  Increasing number of datasets will help to better understand 
the gene expression profiles of ASD, so we also analyzed transcriptomic data derived from ASD animal models 
and healthy controls. Similarly, we screened gene expression datasets from the GEO database according to the 
following criteria: (1) the samples are from animals, (2) there are ASD animal models and healthy controls in 
each dataset, (3) the number of ASD animal models and healthy controls both should be greater than four in 
each dataset. Finally, we obtained 8 series of datasets (Supplementary Table S2). Then, we identified differential 
expressed genes between ASD models and healthy controls according to fold change >1.5 or fold change <1/1.5 
and P value < 0.05, and performed enrichment analysis of these differential expressed genes by using DAVID, and 
made drug prediction by using CMap and DrugPattern. The number of valid genes inputted into the query CMap 
should be also limited to 10–150. So we performed CMap query in 6 datasets (GSE34058, GSE62594, GSE63303, 
GSE77971, GSE99277, GSE117327). Similarly, we chose the compounds whose connectivity score were between 
−80 to −100 in each dataset. The compounds overlapping in more than four datasets were defined as the list of 
interested drugs derived from animal models. Then they were inputted into DrugPattern to perform drug set 
enrichment.

Data Availability
All data generated or analyzed during this study are included in this published article (and its supplementary 
information files).
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