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Abstract
There is a strong link between the practice of regular physical exercise and maintenance of cognitive brain health. Animal and
human studies have shown that exercise exerts positive effects on cognition through a variety of mechanisms, such as changes in
brain volume and connectivity, cerebral perfusion, synaptic plasticity, neurogenesis, and regulation of trophic factors. However,
much of this data has been conducted in young humans and animals, raising questions regarding the generalizability of these
findings to aging adults. Furthermore, it is not clear at which doses these effects might take place, and if effects would differ with
varying exercise modes (such as aerobic, resistance training, combinations, or other). The purpose of this review is to summarize
the evidence on the effects of exercise interventions on various mechanisms believed to support cognitive improvements: cerebral
perfusion, synaptic neuroplasticity, brain volume and connectivity, neurogenesis, and regulation of trophic factors. We synthe-
sized the findings according to exposure to exercise (short- [1 day-16 weeks], medium- [24-40 weeks], and long-term exercise
[52 weeks and beyond]) and have limited our discussion of dose effects to studies in aging adults and aged animals (when human
data was not available).
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Introduction

Adding to the well-established benefits of physical exercise
for decreasing mortality and morbidity and improving physi-
cal function, there has been a wealth of evidence generated in

recent years to support a link between the practice of regular
exercise and cognitive brain health in older adults. The wealth
of data that supports improved cognition following the prac-
tice of regular exercise is particularly relevant given that older
adults (i.e., individuals aged 65 and older) represent the fastest
growing demographic worldwide. In approximately 10 years,
the older population will outnumber children for the first time
in United States history, reaching 20% of the overall popula-
tion [1]. The maintenance of cognitive brain health is consis-
tently cited as the top health-related concern for aging adults
and a key factor for the maintenance of maximum autonomy
and independence [2].

Age-related cognitive impairment mostly affects the speed
of processing of mental tasks and tasks that require memory
and executive functioning (which covers a broad spectrum of
abilities, but in short, refers to tasks that require organizing,
planning, reasoning, and problem solving) [2]. These age-
related cognitive impairments largely reflect brain atrophy,
most pronounced in the frontal lobe, resulting in decreased
gray matter in critical areas involved in higher-order cognitive
processes, such as the prefrontal, temporal lobes, and hippo-
campus [3, 4]. In addition, impaired conduction of neural sig-
nals arising from lesions to white matter tracts [5] and an
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unfavorable neurochemical environment caused by decreased
neurotrophins and trophic factors [6], neurotransmitter imbal-
ances [7, 8], and deposition of toxic protein aggregates such as
amyloid beta (Aβ) all contribute to increased free radicals and
impaired neuronal function [9].

It is encouraging that adopting a lifestyle change in the
form of the practice of regular exercise constitutes an oppor-
tunity for action to promote healthy cognitive aging, but in
order for exercise to be used as a “medicine” [10], it is neces-
sary to become much more specific with the dose. Most re-
cently, the Physical Activity Guidelines for Americans [11]
was updated and mentioned the importance of exercise for
brain health and emphasized generally moving more and sit-
ting less. However, within the literature, there is great hetero-
geneity in the methodologies and findings across studies re-
garding exercise dose, which have only now begun to be
addressed systematically. For example, there is no consensus
on the optimal doses or mode of physical exercise to maxi-
mize cognitive benefits, but a recent large-scale systematic
review and regression found that the total time spent exercis-
ing (~52 h) was the only significant correlate of improved
cognition. Additionally, the same study found that most con-
sistent improvements from physical exercise interventions oc-
cur in executive functions and processing speed, an encourag-
ing finding given that these are among the cognitive domains
that first begin to show age-related cognitive decline [12].

Although this initial examination of dose is a definite pos-
itive step in the right direction, a large proportion of the find-
ings regarding the structural and molecular effects of exercise
(hypothesized to drive cognitive improvements) have been
discovered in rodent studies, and the generalizability of these
results to humans is unclear. The neurobiological underpin-
nings linked to exercise-mediated cognitive improvements in-
clude the ability to counteract the age-related atrophy of gray
and white matter [13–17]; increase the vasculature, dendritic
spine density, and complexity of the hippocampus; enhance
synaptic plasticity [18]; and increase the release of fundamen-
tal biochemical mediators of neuronal survival (i.e.,
neurotrophins, trophic factors) [19–22]. Pertinently however,
it is not clear at which dose these effects take place and with
which exercise modes. Adding to the complexity, fewer of the
studies in animal models have been performed in aging ani-
mals, leading to questions in the generalizability to the aging
process itself.

Therefore, the purpose of this present study is to summarize
the evidence of the effects of participation in an interventional
exercise research study on the mechanisms believed to sup-
port cognitive improvements in the aging brain: cerebral per-
fusion, synaptic neuroplasticity, brain volume and connectiv-
ity, neurogenesis, and regulation of trophic factors [23–26]. In
addition, this study aims to synthesize these effects in function
of the dose (short-, medium-, and long-term exercise). For the
purposes of this review, we considered short-term exercise to

be 1 day to 16 weeks, medium to be 24 to 40 weeks, and long-
term to be 52 weeks and beyond. In addition, we have limited
our discussion of dose effects to studies in cognitively healthy
individuals at least 50 years of age and aged rodents of at least
18 months (when human data was not available). Given the
effects of exercise on cognitive function domains have been
addressed elsewhere [12], we herein describe cognitive func-
tions per their broad cognitive abilities and where possible
adhering to the Cattell–Horn–Carroll theory of human cogni-
tive abilities [27].

The majority of the included articles were found in the
medical database MEDLINE/PubMed and through additional
manual search in reference lists of included studies and expert
knowledge of relevant papers. The search strategy included
terms related to the intervention (exercise), participants (older
adults, aged rodents), and the main physiological outcomes
hypothesized to underlie cognitive improvements in the aging
brain (cerebral perfusion, synaptic neuroplasticity, brain struc-
ture, neurogenesis and synaptogenesis, and trophic factors).
Searches were conducted from May 2018 to February of
2019. The complete details of the inclusion criteria and search
strategy are presented as Supplemental Material.

Cerebral Perfusion

One of the mechanisms shown to support cognition following
regular exercise is the maintenance and improvement of cere-
bral blood flow. There is a decrease of approximately 30% in
global cerebral blood flow from midlife to older age [28],
which has been linked to age-related atrophy and decreased
metabolism [29].

Physical exercise is undoubtedly associated with not only
increased cardiac output but also a redistribution of the total
blood volume to meet the increased partial pressure of arterial
carbon dioxide (PaCO2) and the resultant increased demand of
the peripheral vasculature supplying the exercising muscles.
The cerebral vasculature undergoes changes as well, albeit
less pronounced. The elevation in arterial cerebral blood flow
seems to be less dramatic, showing progressive increases in
intensities up to 60% VO2max, reaching a plateau, and then
returning to resting levels with further increases in exercise
intensities [30].

In this context, exercise-mediated increases in middle ce-
rebral artery velocity (MCAv) enable the probing of the mech-
anism of cerebral homeostasis. Table 1 summarizes the results
regarding cerebral perfusion in the aging brain. Studies have
demonstrated smaller MCAv increases at rest and during ex-
ercise but did not report differences in the proportion of
exercise-mediated increase in MCAv between young and
older adults [31, 32]. The age-dependent decrease in MCAv
could represent a physiologic compensatory mechanism to
counteract the elevation in blood pressure and global
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decreased elasticity of blood vessels in older age. In addition,
improvement in cerebrovascular reactivity to hypercapnia
(i.e., cerebrovascular reactivity or the ability of blood vessels
to vasodilate) associated with exposure to short-term (i.e.,
12 weeks) moderate- to high-intensity aerobic exercise has
been found to be similar between young and older adults [33].

Studies have examined the effect of short-term (ranging
from 12-16 weeks) moderate-intensity aerobic exercise on
regional or whole-brain cerebral perfusion and have found
mixed results. Following one 12-week intervention, there
was increased cerebral blood flow (CBF) in the bilateral ante-
rior cingulate cortex (ACC) when compared with a waitlist
control [34], but a subsequent study utilizing the same exer-
cise dose found no changes in global or regional CBF when
making comparisons with a cognitive training group [35]. One
12-week intervention was not sufficient to improve hippo-
campal regional CBF, when compared with muscle
relaxation/stretching [17], but a 16-week intervention in
an older sample (~+ 10 years) who had subjective memory
complaints found improvements in bilateral hippocampal
CBF when compared with a comparison group of educa-
tion and light stretching [36].

Synaptic Neuroplasticity

Synaptic neuroplasticity is defined as long-lasting changes in
efficacy of synaptic connections (i.e., long-term potentiation
(LTP) or long- term depress ion (LTD). Synapt ic
neuroplasticity was first described following repetitive electri-
cal stimulation of hippocampal neurons, and when measured
with electrodes placed directly in hippocampal tissue, evi-
dence for the role of LTP and LTD in memory consolidation
was shown [37, 38]. LTP is currently the strongest candidate
to explain brain-wide synaptic activity implicated in cognitive
processes and learning (both cognitive and motor), and there
is a documented decreased LTP associated with aging in ex-
perimental rodent models [18, 39]. In experimental studies
with young rodent models, robust improvement in visuospa-
tial ability after regular exercise is observed and correlated
with enhanced LTP of synaptic activity in hippocampal cells
[18, 40]. Furthermore, exercise rescues LTP ability and pro-
motes cognitive gains in different young rodent models of
impaired LTP [41–44].

Only 2 studies have examined the influence of exercise on
LTP in aged rodent models and have found improved synaptic
plasticity following exposure to long-term exercise interven-
tions. Kumar et al. [45] assessed short-term exercise exposure
in the form of a 12-week intervention and found increased
LTP and improved performance on the cue discrimination task
of the water Morris maze and object recognition memory.
O’Callaghan et al. [46] assessed LTP in aged rats following
long-term exercise exposure (8-month-long aerobic exercise

intervention) initiated in middle age. The authors found that
the long-term exercise prevented age-related decreases in LTP
and spatial learning.

Brain Structure

Volume

The aging brain undergoes selective atrophy, mainly in the
prefrontal cortices and medial temporal lobes [47, 48]. For
instance, it has been reported that beginning at approxi-
mately age 50, the hippocampus shrinks 1 to 2% every year
in healthy older adults [47]. These decrements in volume
have been linked to age-related decreases in memory and
executive function [49, 50]. Decreased age-related atrophy
has historically been implicated in explaining exercise-
mediated improvements in cognitive performance for the
older adult population [13].

Table 2 summarizes the results of studies that investigated
the effects of exercise on brain volume. The 2 studies that
examined the influence of short-term (12-week) moderate-
intensity aerobic interventions on brain structure failed to find
differences in whole-brain gray matter volume, either when
exercise was compared to a waitlist control [51] or a
stretching/muscle relaxation comparison [17]. Although no
between-group differences were found, a subanalysis in the
Maass et al. [17] study demonstrated regional increases in the
volume of the hippocampal head exclusively in those who
exhibited improvements in fitness and hippocampal perfusion
[17]. Taken together, these results suggest that perhaps certain
individuals who show mediatory gains in secondary outcome
measures (such as cardiorespiratory fitness and hippocampal
perfusion) may also exhibit benefits in exercise-induced
changes in brain structure.

Medium length interventions may have greater impact in
the regional brain structure however. Kleemeyer et al. [52]
found that 26 weeks (i.e., 6 months) of both low and high
aerobic exercise was associated with increased neuron density
and volume in the hippocampus, and these 2 outcomes were
correlated [52]. Ruscheweyh et al. [15] found that both high-
intensity exercise in the form of Nordic walking and low-
intensity exercise in the form of gymnastics improved gray
matter volume, mainly in prefrontal and cingulate cortices,
when compared with a no-intervention control [15]. In addi-
tion, a low- to moderate-intensity aerobic exercise was asso-
ciated with increased regional brain volume in both gray and
white matter areas relevant to the processing of attentional
control and memory processes and shown to be implicated
in age-related atrophy, when compared with stretching and
toning [13]. Namely, the most prominent increases in volume
were found in the ACC, right superior temporal gyrus, right
middle frontal gyrus, and anterior white matter. However, a
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more recent intervention delivered with similar dose and ex-
ercise mode (differing in total time per week 90-180 vs
180 min) did not find differences in frontal and hippocampus
cortical thickness when compared with a stretching/toning
group, despite an improvement in a composite cognitive score
(episodic memory, processing speed, updating, task-
switching, visuospatial reasoning) in the aerobic exercise
group [53]. The author discussed 2 possible reasons for these
controversial findings, especially regarding brain volume.
First, it is possible that an exercise intervention longer than
6 months may be required to achieve greater changes in brain
volume. Second, the myriad cognitive improvements follow-
ing a 6-month exercise intervention may be driven by other
physiological processes, apart from macrostructural changes.

Furthermore, there is evidence suggesting differential
structural effects according to exercise mode. For instance,
individuals demonstrated increased brain volume in various
frontal and temporal cortical areas following a 26-week danc-
ing intervention, whereas individuals participating in a resis-
tance training and flexibility group demonstrated increased
brain volume in occipital and cerebellar regions [54].
Interestingly, both groups had similar increased aerobic fitness
and small changes in attention and visuospatial memory. It
was hypothesized that the constant novelty and greater de-
mand in attention and memory posed by the choreography
in the dancing group created a greater challenge than the re-
petitive routine in the resistance training and flexibility group,
possibly accounting for the larger improvements in brain
volume.

The only study we found proposing moderate–high expo-
sure to exercise (40 weeks) incorporated 2 distinct nonaerobic
modalities, tai chi and social interaction, and made compari-
sons to light aerobic exercise and a no-exercise control group
[55]. Interestingly, only tai chi and social interaction were
associated with increased whole-brain volume and improved
processing speed and short-term memory. Contrary to previ-
ous findings in the literature, there were no differences be-
tween the light aerobic exercise and the control. We believe
that this is possibly due to the fact that unlike the other studies
that used light exercise interventions [15, 52], there was not a
preferred intensity or a target zone, allowing the participants to
walk at their self-selected pace. Although walking interven-
tions are common in the literature, support for a potential floor
effect in the aerobic exercise group comes from a subanalysis
which revealed that faster walkers exhibited greater process-
ing speed and short-term memory and lower brain tissue loss
than slower walkers. Although there was no target intensity
for the tai chi, this intervention requires a higher level of in-
tellectual involvement and sustained attention compared to
walking, which may have contributed to the results. Taken
together, it is possible that aerobic exercise needs to be dosed
at a minimum intensity and session time to achieve a threshold
for structural gains, whereas other interventions such as tai

chi, gymnastics, or social interaction may enlist distinct mech-
anisms due to the fact that they are more cognitively
challenging.

The remainder of human studies examined high exercise
exposure in yearlong interventions. Liu-Ambrose [56]
assessed the effects of resistance training, either delivered
1×/week or 2×/week, and made comparisons with a balance
and toning group delivered 2×/week. Interestingly, the authors
found decreasedwhole-brain volume and increased executive
function in the resistance groups when compared with the
balance and toning group. The decreased whole-brain volume
was unexpected but consistent with a mean of about 0.5%
decreased annual whole-brain volume reported in healthy ag-
ing [57, 58]. A latter follow-up study performed 1 year after
intervention demonstrated that neither group showed changes
in whole-brain gray matter or hippocampal volume, but the
2×/week did show reduced cortical white matter atrophy [59].
Additionally, both resistance training frequencies (1×/week
and 2×/week) maintained their increased processing speed
and attention, but the 2×/week group additionally demonstrat-
ed improved short-term memory [59]. Thus, further research
is needed to examine the relationship between structural brain
changes and resistance training, especially given the improve-
ments in certain cognitive abilities noted.

Both light to moderate aerobic exercise and a flexibility/
toning/balance interventions were found to be associated with
similar levels of white matter integrity in the frontal and tem-
poral lobes, executive control, and short-termmemory [60]. A
subanalysis revealed that individuals who made greater im-
provements in cardiovascular fitness made greater improve-
ments in white matter integrity and short-term memory. An
average increase in cardiovascular fitness of 8% following a
moderate aerobic exercise intervention was associated with an
average 2% increase in hippocampal volume, when compared
with a yearlong stretching intervention [14]. Similar increases
in hippocampal volume have been reported with a coordina-
tion intervention [61]. Interestingly however, aerobic exercise
increased volume in the left hippocampus and the coordina-
tion group increased the volume of the right hippocampus.
The authors attributed the differential effects to distinct
demands posed by the 2 interventions; the right hippocam-
pus is more highly engaged in spatial memory processes
and, thus, theoretically more active during coordination
exercises, whereas the left hippocampus is more engaged
in verbal memory and highly associated with the increase
in fitness level [62].

In the study proposing the highest exposure to exercise
(2 years), a multimodal intervention consisting of moderate-
intensity physical activity (walking, lower extremity resis-
tance training, balance, stretching, and behavioral counseling)
was associated with improved bilateral hippocampal and left
cornu ammonis volumes, when compared with a control
group consisting of healthy education and stretching. In

586 D. F. Cabral et al.



addition, the authors reported that greater self-reported adher-
ence to the intervention was associated with greater hippo-
campal volume [63].

Connectivity

In addition to structural changes, age-related cognitive decline
is associated with impaired functional activation of neural
networks. For example, older individuals with age-related
cognitive decline have exhibited impaired neural interhemi-
spheric communication between the frontal and posterior cor-
tices [64] and disrupted frontotemporal activation during
memory-related tasks [65–67]. The studies described herein
measure the degree of connectivity (i.e., degree of simulta-
neous cortical activation) between spatially distant cortical
areas either during resting state (when the individual is not
engaged in a specific thought or task) or during the perfor-
mance of a specific task.

Table 3 summarizes the results of studies that investigated
changes in brain connectivity after exercise intervention.
Short-term exposure (12 weeks) to moderate-intensity exer-
cise has been associated with a reduction in the number of
cortical areas active during the performance of a memory se-
mantic task, which was attributed to a potential increase in the
efficiency of neural networks [68]. In addition, the same in-
tervention delivered at a slightly higher dose (16 weeks) was
associated with connectivity of the hippocampi and increased
interconnectivity between the hippocampi and ACC, when
compared with education and light stretching [36]. The inter-
connections with the ACC are relevant as this structure has
reciprocal connections with the prefrontal cortex and is active
during tasks that require executive control [69].

Medium-term exposure (6 months) to light to moderate
aerobic interventions (6 months) was also associated with im-
proved connectivity. The authors found decreased activation
of the ACC, which was associated with improved executive
control. The authors attributed the improved executive control
to a task-related increase in various areas in the attentional
circuitry network (middle frontal gyrus, superior frontal gyrus,
and superior parietal lobules) which in theory decreased the
demand of the ACC during the task [70]. The authors attrib-
uted these findings to an increase in cardiovascular fitness, not
exhibited by the stretching/toning group. Taken together, these
results suggest that a global increase in connectivity and in-
creased focal connectivity in areas pertinent to executive con-
trol and memory are possible with approximately 3 to
6 months of moderate aerobic exercise.

Similar to these previously reported findings, long-term
exposure to exercise was also shown to improve connectivity
and executive control, but with differing patterns according to
exercise mode [71]. Specifically, 1 year of light to moderate
aerobic exercise was associated with an improvement in the
connectivity between areas within the default mode network

and within the frontal executive network. On the other hand,
the stretching/toning/balance intervention was associated with
increased connectivity within areas of the DMN at 6 months
and within the frontoparietal network. However, neither group
showed differences in task-switching ability or spatial work-
ing memory [71]. The default mode network, frontal execu-
tive network, and frontoparietal network are highly engaged
during the performance of executive control and spatial mem-
ory tasks, and connectivity between these areas is impaired in
age-related cognitive decline [72, 73].

Voelker-Rehage et al. [74] also found improved perceptual
speed and executive functioning with different exercisemodes
and differential patterns of improved connectivity. The authors
found that both moderate to high aerobic exercise and coordi-
nation: 1) improved neural efficiency during the performance
of an executive control task and 2) improvements in executive
attentional control and perceptual speed, albeit with differen-
tial patterns of connectivity. The aerobic group showed a de-
creased activation of left superior and middle frontal, bilateral
medial frontal gyrus, the left ACC, the left parahippocampal
gyrus, and the right superior and middle temporal gyrus. The
coordination group showed increased activation of inferior
frontal gyrus, superior parietal cortex, and thalamus and cau-
date. In addition to the differential connectivity patterns be-
tween the 2 intervention groups, the authors also found that
the improved perceptual speed and executive functioning in
the aerobic exercise was driven by an improvement in cardio-
vascular fitness. Taken together, these studies suggest that
long-term exposure to different modes of exercise may be
associated with certain cognitive benefits via distinct patterns
of functional connectivity.

Neurogenesis and Synaptogenesis

Animal models enable the study of the microscopic changes in
brain structure that support exercise-mediated cognitive ben-
efits, such as the formation of new neurons (neurogenesis) and
synapses (synaptogenesis) in the hippocampus. One of the
strongest and earliest links between exercise and cognition
was found on neurogenesis [75–77], which was 1 of the first
hypotheses used to explain the neurobiological underpinnings
of exercise-mediated cognitive performance benefits.
However, when considering the generalizability of these mi-
croscopic findings to translational research in aging humans, it
is pertinent to also consider how age might impact processes
such as neurogenesis and synaptogenesis. For instance, older
rodents (9months) show hippocampal neurogenesis at half the
rate of young adult rodents (6 weeks), and that by 24 months,
the rate of neurogenesis is further decreased to 17% [78].

Despite the age-related decrease in hippocampal
neurogenesis, it is encouraging that neurogenesis can be en-
hanced with exercise in aged rodents. For example, 1 month
and half of voluntary wheel-running (VWR) was shown to
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revert the decline in neurogenesis in 19-month-old rodents by
50% and increase gliogenesis by 20%, an improvement that
was paralleled with improved spatial learning, when com-
pared with sedentary control rodents [79]. Interestingly, the
authors found no difference in the number of new cells or in
fine morphology between older exercised and young mice,
suggesting that exercise may have enhanced the capacity for
conversion of precursor cells into neurons. The aged exercised
mice showed increased rate of conversion by 3-fold when
compared with the sedentary agedmice (25.6 vs 9.5%, respec-
tively). Regarding the exercise dose necessary to induce such
benefits, there is evidence to support that 10 to 28 days of
VWR was sufficient to induce increases in precursor cell di-
visions associated with hippocampal neurogenesis [78, 80,
81]. However, 1 study found that 14 days of VWR in 22-
month-old mice was associated with lower neurogenesis [82].

Neural stem cells (NSC), considered to support the regen-
erative function of the brain, are decreased to about 70% in 18-
month-old mice and 90% in 24-month-old mice [83].
Interestingly, 21 days of VWR exercise attenuated the age-
dependent decrease in NSC proliferation in endogenous
extrahippocampal areas by 67% in 18-month-old mice but
failed to do so in 24-month-old mice [83]. One study did find
increased proliferation of hippocampal NSC in 24-month
aged mice after 3 days of VWR [84]. Taken together, it is
possible that aerobic exercise may have differential effects in
different types of NSC.

Other studies have shown that exercise may influence
neurogenesis through different pathways. For instance, evi-
dence suggests that exercise rescues the levels of enzymes
TET1 and TET2 (Ten-eleven translocation 1 and 2), shown
to be decreased in aging animals and act to regulate hippo-
campal neurogenesis [85]. In addition, exercise has been
shown to revert the toxic effect of lipopolysaccharide, a bac-
terial endotoxin shown to reduce hippocampal neurogenesis
levels when expressed in 21-month-old mice [86].
Furthermore, exercise decreased new microglia, immune cells
linked to low-grade neuroinflammation that may contribute to
decreased plasticity and increased new neuron survival [87].

Similarly, to neurogenesis, synaptogenesis is also de-
creased in aged rodents. For example, the number of presyn-
aptic receptors in the hippocampus is decreased [88].
Unfortunately, we could not find evidence of the impact of
exercise in aged rodents, but studies suggest improvements in
synaptogenesis in young exercised rodents. For instance,
VWR is associated with increased synaptophysin, a marker
of synaptogenesis in young rodents [89]. In addition,
nonaerobic exercise (walking through an obstacle course)
was also associated with new synapses in other areas of the
brain, mostly related with the control of motor activity [90].

As mentioned previously, animal studies show that the ca-
pacity for neurogenesis can be positively influenced by exer-
cise. However, the generalizability of decreased neurogenesis

found in aged mice needs to be carefully interpreted when
applied to older adults. A recent cross-sectional study in post-
mortem healthy individuals from 14 to 79 years found that
adult hippocampal neurogenesis may persist throughout the
life span, including the 8th decade of life, despite the common
clinical finding of age-related cognitive decline [91].
Neurogenesis (measured by levels of intermediate neural pro-
genitors, immature neurons, glia, and mature granule in the
dentate gyrus) was found to be at similar levels in individuals
from 14 to 80 years of age. The authors attributed the aspects
of preserved cognitive performance in older adults to the
maintenance of those levels of neurogenesis. However, in
the comparison between young adults and older adults, the
authors did find decreased angiogenesis, neuroplasticity
markers of PSA-NCAM+ (polysialylated neural cell adhesion
molecule) cells of different morphologies, and capacity for
neurogenesis (assessed by the number of quiescent NSC),
potentially implicated in the aspects of cognition that show
decreases in the aging brain [91].

Trophic Factors

Several trophic factors have been identified to support cogni-
tion in aging adults. The most commonly discussed factors
that are supportive of cognition include brain-derived neuro-
trophic factor (BDNF), vascular endothelial growth factor
(VEGF), and insulin-like growth factor-1 (IGF-1). These tro-
phic factors work in concerted fashion to modulate exercise-
induced cognitive improvements [23]. IGF-1 is important for
vascular maintenance and remodeling. Both IGF-1 and VEGF
are thought to mediate neurogenesis and angiogenesis and
influence the induction of hippocampal BDNF.

BDNF supports neuronal development and has been dem-
onstrated to be crucial for exercise-related improvements in
cognitive function. Blocking BDNF annuls the cognitive im-
provements induced by exercise [92], demonstrating its sig-
nificance for cognitive change. Additionally, running in-
creases IGF-1 and VEGF in the hippocampus [93, 94], both
of which are crucial to exercise-induced plasticity and cogni-
tive improvements. IGF-1 is increased in the hippocampus
following exercise, and blocking IGF-1 receptors reduces
exercise-induced BDNF and inhibits exercise-related cogni-
tive improvements [93]. Similarly, blocking VEGF reverses
running-induced hippocampal neurogenesis [95].

In aged animals (24 months), treadmill running has been
shown to increase BDNF and IGF-1 after 4 weeks of inter-
vention, and these changes were associated with improved
spatial learning and memory [96]. However, another study
in aged animals showed that there was a transient increase in
BDNF levels after 1 week of a wheel running that returned to
baseline levels in subsequent weeks (2-4 weeks). In this study,
it was found that aged animals did not increase their running
distance each week whereas the other study utilized a
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treadmill which standardized the exercise exposure, which
may account for the transient increase found in voluntary
wheel-running. Furthermore, improvements in memory and
increases in BDNF have been shown after 8 weeks of aerobic
and strength training, showing possible benefits beyond aero-
bic exercise [97]. Table 4 summarizes the results of studies
investigating the effects of exercise on trophic factors in
humans.

BDNF

Three studies that utilized short-term exercise interventions
(between 4 and 10 weeks) proposed moderate-load resistance
training, either in isolation [98, 99] or combined with aerobic
exercise [100]. Moderate-load resistance training increased
BDNF levels when comparedwith baseline [99], but not when
compared with a control [98]. The combined intervention also
did not improve BDNF levels [100]. These studies suggest
that short-term exposure to resistance training may not be
associated with increases in BDNF.

Many studies assessed the effects of various isolatedmodes
of short-duration (12 or 16 weeks) exercise. None of the fol-
lowing moderate-intensity aerobic activities modulated
BDNF levels: walking or running [19] and cycling [51] and
light and moderate-load resistance training [101–103]. Four
studies employed combined exercise programs that contained
resistance training: high-intensity aerobic cycling followed by
moderate level coordination/strength [104], high-intensity aer-
obic cycling followed bymoderate level coordination/strength
[105], moderate-load resistance training followed by
moderate- to high-intensity aerobic training [106], and com-
bined aerobic/strength/coordination [107]. Of these, only the
moderate-load resistance training followed by moderate- to
high-intensity aerobic training and the combined aerobic/
strength/coordination reported increased BDNF levels, and
both reported improvements in short-term memory and pro-
cessing speed [106, 107]. Taken together, these studies sug-
gest that medium exposure to aerobic or resistance training
delivered in isolation might not be sufficient to influence
BDNF levels. In addition, the only 2 studies that demonstrated
BDNF increases employed a combined intervention of ap-
proximately 2000 total intervention minutes (i.e., 32 h), and
therefore, the additional load posed by a second intervention
and the greater exposure to exercise could have contributed to
the results.

Three studies investigated medium-duration exercise
(6 months), employing various modes of exercise: high-
intensity aerobic, moderate-intensity aerobic, and a dance-
based intervention [15, 54, 108]. The studies that utilized
moderate- or high-intensity aerobic exercise in isolation found
no changes in BDNF levels [15, 108]. Rehfeld et al. [54]
found that a dance-based intervention was associated with
increased BDNF levels, when compared to an endurance/

strength/flexibility group. The dance intervention required
subjects to memorize routines, perform complex choreogra-
phy, and was regularly changed throughout the study, whereas
the comparison group utilized an unchanging exercise regi-
men, which may have been related to the increases in BDNF
found in the intervention group. However, despite the discrep-
ancies in BDNF findings, all studies demonstrated improve-
ments in a range of cognitive abilities (processing speed, vi-
suospatial memory, and episodic memory).

Three studies evaluated the effects of long-duration exer-
cise in a 12-month moderate aerobic walking intervention
compared to a stretching and toning group. It appears that
these studies are from 1 larger sample, with each study
reporting on a subset of the total sample: 92 subjects [21],
120 subjects [14], and 65 subjects [109]. There were no
changes in BDNF levels from before to after in the interven-
tion groups in any of the cohorts. A secondary analysis per-
formed by Leckie et al. [21] showed that when dividing the
sample by age, younger and older than 65 years of age, the
intervention group had an increase in BDNF levels, whereas
the control group had a decrease in BDNF levels in individ-
uals older than 65 years old. Both Erickson et al. [14] and
Leckie et al. [21] assessed and reported improvements in spa-
tial memory function and task-switching after the interven-
tion. These findings are consistent with the previous results
that suggest that only aerobic activity may not be sufficient to
modulate BDNF levels. However, it is possible that in indi-
viduals over 65 who are susceptible to decreases in BDNF
[110], that the prolonged effects of a year-long aerobic inter-
vention may have a positive influence on BDNF levels where-
as shorter duration interventions are potentially unable to have
the same effect.

IGF and VEGF

Six studies utilized short-duration exercise (10-12 weeks) of
various modes: moderate aerobic exercise [19, 111, 112],
combined moderate- and high-intensity aerobic and resistance
training [111, 113], and low or moderate resistance training
[112, 114, 115]. The moderate-intensity aerobic exercise in-
terventions had no effect on IGF-1 levels [19, 111, 112] or
VEGF levels [19]. In 2 studies utilizing combined aerobic and
resistance training, 1 found within-group increases in IGF-1,
regardless of intervention order [113], whereas the other found
no changes when compared to a control group. In the studies
utilizing resistance training, only 1 study utilizing moderate-
intensity exercise found increases in IGF-1 [112], whereas the
other 2 found no changes. Both studies that found increased
IGF-1 after the intervention (combined or resistance) were in
participants in their late 60s, whereas the studies that found no
changes were in people 80 years old [114, 115] or 50 years old
[111]. These findings may suggest that short exposure to both
a combined approach and moderate-intensity resistance
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training may increase IGF-1 levels, but there may be an opti-
mal window with regard to age range (at approximately
60 years of age).

Three studies utilized medium-duration exercise
(24 weeks) including moderate- to high-intensity aerobic
[108] and moderate to high resistance training [116, 117].
The aerobic exercise showed no changes in IGF-1 [108], but
the cognitive assessment revealed improvements in executive
function (task-switching and visuospatial processing speed).
Only 1 of 2 studies found moderate- and high-intensity resis-
tance training to increase IGF-1 levels [116]. A possible rea-
son for the difference in findings is that Cassilhas et al. [116]
achieved 72 h of total intervention compared to 48 h [117].
Additionally, Cassilhas et al. [116] showed that the interven-
tion group had improvements in visual processing and short-
term memory. As such, in the medium term, resistance train-
ing, but not aerobic, associated with memory and attention
improvements, possibly due to longer intervention duration,
may lead to increases in IGF-1.

Three studies used long-duration exercise (52 weeks),
employing moderate to vigorous aerobic [109, 118] and
high-load resistance training [119]. Neither aerobic exer-
cise intervention demonstrated a change in IGF-1 when
compared to a control or comparison group. Voss et al.
[109] also looked at the effects of aerobic intervention on
VEGF, finding no changes [109]. High-load resistance
training compared to a control group was found to in-
crease IGF-1 and improve processing speed [119].
Overall, these studies provide evidence that short, medi-
um, and long exposure to moderate- to high-intensity
resistance training may increase IGF-1 levels in aging
adults; however, no consistent effects from aerobic exer-
cise have been evidenced.

The Takeaway: Dose Effects of Exercise in Aging
Adults

In this review, we have summarized the evidence on the ef-
fects of different intervals of exposure to exercise (short-
[1 day-16 weeks], medium- [24-40 weeks], and long-term
exercise [52 weeks and beyond]) on the most well-accepted
mechanisms used to explain the link between the practice of
regular exercise and the improvement in cognitive perfor-
mance. Due to the heterogeneity in studies, it was not possible
to report on domain-specific mechanistic changes. However,
evidence from a large-scale systematic review and regression
indicates that the most stable and consistent improvements in
cognition following exercise occur in executive functions and
processing speed [12]. Therefore, we discussed changes in
cerebral perfusion, synaptic neuroplasticity, brain structure
(volume and connectivity), neurogenesis and synaptogenesis,
and trophic factors (BDNF, IGF-1, and VEGF) following par-
ticipation of exercise in older adults or aged rodents (if no

human data was available), that would underlie these im-
provements in cognitive abilities. We refer to Fig. 1 for a
time-guided discussion of the exercise-mediated improve-
ments in mechanisms related to brain health in humans.

Short Term (1 Day to 16 Weeks)

Even with very short aerobic exercise interventions (i.e.,
just a few minutes as part of an incremental cycling test),
there were increases in resting regional CBF and MCA
velocity. Short-duration aerobic was the only exercise
mode found to be effective at changing connectivity, pri-
marily increasing neural efficiency in frontal and temporal
areas, relevant to the processing of cognitive information.
The finding of increased connectivity allied to increased
brain perfusion is consistent with animal studies that have
found that increased connectivity is among the first of
exercise-mediated improvements at the brain level, which
in turn promotes an increase in angiogenesis to support
increased metabolism, ultimately leading to neurogenesis
[76, 79]. The only other structural improvement also asso-
ciated with aerobic exercise was increased hippocampal
volume, which was associated with increased cerebral
blood flow to the hippocampus. Despite all of the afore-
mentioned beneficial structural brain changes, aerobic ex-
ercise did not seem to change neurobiological factors, as
increases in BDNF and IGF-1 were only found with resis-
tance training or combined aerobic and resistance training.
Therefore, for the most global benefits from exercise, a
combined approach utilizing both aerobic and resistance
exercises with at least moderate intensity will contribute
best to improved brain structure, cerebral blood flow, as
well as improvements in neurobiological factors such as
BDNF and IGF-1, in the short-term.

Medium Term (24 to 40 Weeks)

As the intervention time increased to medium exposure, there
continued to be findings of increased connectivity with aero-
bic exercise. In addition, there were more consistent and di-
verse structural changes found in terms of increased white and
gray matter and volumetric increases mainly in the in frontal
and temporal areas (such as the hippocampus, cingulate, and
frontal cortices). BDNF was only increased when individuals
engaged in an aerobic dance intervention and IGF-1 was only
increased when individuals engaged in moderate to high re-
sistance training. We also found some patterns in the studies
and identified 3 isolated characteristics that seemed to be as-
sociated with the greater likelihood of finding a benefit: in-
cluding a progressive intervention that increased the exercise
intensity from moderate to high, an exercise intervention with
at least 150 weekly minutes, and constant novelty (a choreog-
raphy or the combination of exercise modes).
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Although the present review synthesizes results from
healthy aging individuals, it is pertinent to also consider the
role of commonly seen cardiovascular risk factors on the base-
line level of risk for cognitive decline. Cardiovascular risk
factors are also risk factors for cognitive impairment [120].
Hypertension (present in 65% of adults older than 60) [121],
diabetes mellitus (present in 25% of adults older than 65)
[122], obesity (present in 40% of adults older than 60),
smoking (present in 8% of adults 65 and over), and insuffi-
cient activity (present in 60% of adults older than 65) are all
associated with poor cognitive health [123]. Notably, age-
related cognitive changes associated with vascular risk factors
are likely mediated through small vessel disease, including
white matter pathology. For example, in a sample of 113 aging
adults, 67% of individuals who had white matter lesions also
had cardiovascular diseases, which in turn was linked to great-
er impaired visual functions, mental flexibility, and attention
[120]. Favorably however, maintaining a regular exercise reg-
imen for approximately 3 to 6 months can improve maximal
aerobic capacity (the gold standard for cardiorespiratory
fitness) in older adults [124]. The increased cardiovascular
fitness can have a role in modifying these risk factors, thus
contributing to potential improvements in cognitive brain
health and, additionally, enlisting neurohumoral processes
controlling the cardiovascular and endothelial systems
[123, 125].

Long Term (52 Weeks and Beyond)

Studies in long-term exercise included exercise modes
beyond aerobic interventions. Aerobic, coordination, and
combined exercise interventions were linked to increases
in white matter integrity and increased hippocampal vol-
ume, which seemed to be driven by an improvement in
cardiovascular fitness through moderate to high exercise
intensities. In addition, these interventions were associat-
ed with increased neural efficiency. Resistance training
was shown to be effective at increasing IGF-1. These
studies have also provided evidence that different exer-
cise modes exert benefits via distinct mechanisms, which
further supports the suggestion that engaging in physical
exercise of different modes will lead to the greatest ben-
efits on brain health.
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Fig. 1 The significant changes in cerebral perfusion, brain structure, and
connectivity and trophic factors with short-, medium-, and long-term
exercise. The findings are characterized by the type of exercise
performed: aerobic, resistance, combined, or other (i.e., tai chi). MCA =
middle cerebral artery; CBF= cerebral blood flow; BDNF = brain-derived
neurotrophic factor; IGF-1 = insulin-like growth factor-1; VEGF =

vascular endothelial growth factor; ACC= anterior cingulate cortex;
PFC = prefrontal cortex; rtSTG = right superior temporal gyrus; rtMFG
= right medial frontal gyrus; AWM = anterior white matter; MFG =
medial frontal gyrus; SFG = superior frontal gyrus; SPL = superior
parietal lobules; CA = cornus ammonis
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