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Abstract
Photobiomodulation (PBM) is a rapidly growing as an innovative therapeutic modality for various types of diseases in recent 
years. Neuronal degeneration is irreversible process and it is proven to be difficult to slow down or stop the progression. Phar-
macologic approaches to slow neuronal degeneration have been studied, but are limited due to concerns about the side effects. 
Therefore, it is necessary to develop a new therapeutic approach to stabilize neuronal degeneration and achieve neuronal 
protection against several neurodegenerative diseases. In this review, we have introduced several previous studies showing 
the positive effect of PBM over neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease and different 
types of epilepsy. Despite excellent outcomes of animal researches, not many clinical studies are conducted or showed posi-
tive outcome of PBM against neurodegenerative disease. To achieve clinical application of PBM against neurodegenerative 
disorder, determination of exact mechanism and establishment of effective clinical protocol seems to be necessary.
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1 Introduction

Photobiomodulation (PBM) is a therapy that utilizes light 
energy as a treatment for a variety of diseases. This tech-
nique uses low-power light from red to near-infrared wave-
lengths from a laser or light-emitting diode (LED) to modu-
late biological functions or induce therapeutic effects. The 
light source of PBM is usually obtained from a laser or LED. 
The laser source can produce consistent light energy at a 
single wavelength. Lasers has the high tissue penetration 
and a constant beam width. It also enables a large amount 
of rapid energy delivery with high efficiency. However, the 
area of tissues exposed with lasers can be insufficient for 
some kind of transcranial applications, and repeated single 
beam exposure may be required. LED typically has a band-
width of 20–40 nm at the full width at half maximum and 
it is not coherent and collimated beam. In addition, LED 
can be mounted on ergonomic arrays for efficient energy 
delivery, which has suitability for a large surface area organ 
such as the brain. Recently, PBM has attracted attention as 

a novel therapeutic application for various medical condi-
tions including retinal diseases, stroke, neuromuscular disor-
ders, and mood disorders. PBM can occur a wide variety of 
processes that can benefit various brain disorders [1]. PBM 
increases the oxygen consumption of intracellular mitochon-
dria and induces more ATP production. In addition, PBM 
produces more ROS that leads to gene transcription and then 
to cell recovery and healing. It is also known that to promote 
blood circulation through the release of nitric oxide (NO). 
Additionally, the use of PBM for the treatment of neurode-
generative diseases has increased over the last decade [1–4]. 
It has been suggested that PBM may be an alternative treat-
ment for the prevention or attenuation of neuronal degenera-
tion that does not induce biological side effects, which is a 
limitation of drugs that affect brain function.

Two of the most common neurodegenerative disorders 
are Alzheimer’s disease and Parkinson’s disease, which both 
result in progressive degeneration and death in a signifi-
cant number of neurons. Although many pharmacological 
treatments have been employed to treat these disorders, the 
progressive degeneration and death of neurons in patients 
remain severe and it is difficult to slow their progression. 
Current trends in clinical therapies alleviate the memory 
and cognitive deficits associated with Alzheimer’s disease 
and contribute to a lack of motor symptoms in patients with 
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Parkinson’s disease but do not slow the progression of neu-
ronal degeneration or exert neuroprotective effects. However, 
several recent studies using animal models of Alzheimer’s 
disease and Parkinson’s disease have shown that PBM has 
neuroprotective effects that slow neuronal cell death (Fig. 1).

The present review will investigate current trends in 
research on these diseases and the effects of PBM treatment 
with a focus on evidence of neuroprotection and its underly-
ing mechanisms. Additionally, the possible applications of 
PBM for other neurodegenerative diseases will be discussed.

2  Alzheimer’s disease and PBM

Among seniors, Alzheimer’s disease is a main cause of death 
due to progressive memory deficits and cognitive impair-
ments that result in mental disability and impaired executive 
functions [5, 6]. In general, individuals with Alzheimer’s 
disease suffer from neuronal damage in many areas of the 
brain, particularly the cortex and hippocampus [5, 7], as 
well as clinical consequences such as confusion, language 
disturbances, visual deficits, hallucinations, and behavioral 
disturbances. Alzheimer’s disease begins with dementia, 
which typically includes memory failures referred to as mild 
cognitive impairment (MCI), and is characterized by the 
over-phosphorylation of β-amyloid plaques and tau proteins 
and wide-ranging gliosis. β-amyloid plaques are produced 
from amyloid precursors, and the hyperphosphorylation of 
tau proteins results in intracellular neurofibrillary tangles 
[8–10]. The pathological effects of extracellular plaques 
during the early stages of Alzheimer’s disease include the 
accumulation of intracellular β-amyloid proteins, which 
leads to axonal defects, synaptic damage, and neuronal death 
[11]. Tau, which is a microtubule-associated protein, is more 
abundant in neurons than astrocytes or oligodendrocytes and 
plays a key role in stimulating tubulin in microtubules in 

the brain [12]. However, the abnormal hyperphosphoryla-
tion of tau proteins disassembles microtubules and results in 
the destabilization of tau and other microtubule-associated 
proteins. These abnormal structures alter cytoplasmic func-
tions and interfere with neuronal transportation, which may 
lead to cell death.

In general, both of these disease processes occur in the 
cerebrum but tend to exhibit different patterns of develop-
ment. β-amyloid plaques are initially observed in the cortex 
and subsequently in subcortical regions whereas hyper-
phosphorylated tau proteins are first found in subcortical 
regions and then in the cortex [13]. Although the underlying 
causes and mechanisms of these pathologies remain unclear, 
the most common hypothesis is that the accumulation of 
β-amyloid leads to the formation of neurofibrillary tangles 
and subsequent cell death [10]. This hypothesis also pos-
its that the aging process will induce damage to cerebral 
capillaries that results in microhemorrhages, β-amyloid 
accumulation, the formation of neurofibrillary tangles, neu-
ronal degeneration and, ultimately, cell death that will lead 
to downstream cerebral vascular damage and mitochondrial 
dysfunction in damaged neurons [14–22]. The current treat-
ment options for patients with Alzheimer’s disease are not 
very effective and have limitations. In fact, these drugs are 
ineffective for most patients and are associated with a variety 
of toxic side effects [6].

Alzheimer’s disease-induced neuronal death is likely to 
be accompanied by a significant decline in cellular energy 
production [23], which can be ameliorated by PBM [24–30]. 
PBM may protect against the neuronal death and mitochon-
drial dysfunction associated with Alzheimer’s disease, 
which is why this novel treatment has such broad poten-
tial (Table 1). In transgenic animal models associated with 
β-amyloid or tau, PBM reduces cognitive deficits, β-amyloid 
plaques, tau-associated neurofibrillary tangles, and oxida-
tive stress while increasing the production of adenosine 

Fig. 1  Benefits of Photobiomodulation (PBM) on neurons of neurodegenerative diseases
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triphosphate (ATP) and enhancing mitochondrial function 
[31–36]. Additionally, in vitro studies have shown that PBM 
decreases β-amyloid plaques while increasing cell survival 
and ATP production [37]. However, although PBM exerts 
neuroprotective effects in various experimental models of 
Alzheimer’s disease, there is little clinical evidence of its 
therapeutic efficacy.

3  Parkinson’s disease and PBM

Although Alzheimer’s disease and Parkinson’s disease 
both result in neurodegeneration, the causes, brain lesions, 
and clinical symptoms associated with each disorder dif-
fer. Unlike Alzheimer’s disease, Parkinson’s disease does 
not result in plaques or tangles, causes a limited number of 
neurodegenerative lesions in the early phase of the disease, 
and only produces cognitive deficits during its later stages 
[38]. Patients with Parkinson’s disease exhibit unique motor 
symptoms that include tremor, rigidity, akinesia, bradykin-
esia, and postural instability [39, 40]. These symptoms are 
commonly associated with a significant degree of neuronal 
death in the brain stem and, particularly, with the loss of 
dopaminergic cells in the substantia nigra pars compacta 
(SNc) of the midbrain [39, 41, 42]. This type of cell dam-
age decreases dopamine levels in the striatum and is the 
first symptom of Parkinson’s disease [39, 41]. Although the 
specific cause of Parkinson’s disease remains unknown, it 
has been reported that genetic mutations, neurotoxicity, and 
vascular dysfunction initiate neuronal death [43–49]. Addi-
tionally, mitochondrial dysfunction due to these factors has 
been suggested to play a key role in the pathogenesis of 
Parkinson’s disease [50, 51]. These types of dysfunction lead 
to neuronal damage and death and may occur concomitantly 
with apoptotic mechanisms similar to those associated with 

Alzheimer ‘s disease; each of these processes may contribute 
to the symptoms of Parkinson’s disease.

The primary clinical treatment for patients with Parkin-
son’s disease is the administration of a drug that enhances 
dopamine levels by supplying a precursor, L-dopa, 
which replaces dopamine that could not pass through the 
blood–brain barrier. Although this therapeutic method effec-
tively improves motor symptoms during the initial stages of 
the disease, its efficacy decreases with long-term use and can 
cause side effects such as dyskinesia [39, 40]. During this 
phase, high-frequency brain stimulation can be performed 
to correct abnormal function within the basal ganglia that is 
caused by the loss of dopamine [52]. However, few studies 
have investigated the neuroprotective effects of these phar-
macological therapies and/or surgical interventions [40, 
53–55].

In attempts to overcome the limitations of therapies used 
to treat Parkinson’s disease, PBM has been investigated as an 
alternative treatment modality using various animal models 
(Table 2). Initial in vitro studies that employed parkinso-
nian insults to induce Parkinson’s disease found that PBM 
reduces apoptosis and oxidative stress while increasing ATP 
production in neurons [28, 30, 56]. It has also been reported 
that the application of PBM to human cells improves mito-
chondrial dysfunction and movement while reducing oxi-
dative stress [57, 58]. The neuroprotective effects of PBM 
have also been observed in various animal models. In mice 
treated with methyl-4-phenyl-1,2,3,6-tetrahydropyridine 
(MPTP) to induce Parkinson’s disease, PBM protects a 
significant number of dopaminergic neurons and improves 
motor performance [59–66]. In K369I transgenic mice, 
which exhibit motor signs of Parkinson’s disease, PBM 
decreases oxidative stress and increases the survival of SNc 
dopaminergic neurons [67–69]. Furthermore, in a MPTP 
monkey model, subjects treated with PBM exhibit a greater 

Table 1  Photobiomodulation studies relevant to neuroprotection in Alzheimer’s disease

Source Parameters Models Effect References

Laser 1070 nm, 6 min for 10 days In vivo (mouse) Improved acquisition of working memory 
in middle-aged mice

Michalikova et al. [33]

Laser 808 nm, 0.5 W/cm2, 2.8 W/cm2 and 
5.6 W/cm2, 675 J/cm2, 336 J/cm2 and 
672 J/cm2 for 6 months

In vivo (mouse) Decreased escape latency in Morris 
water maze, Decreased brain b-amyloid 
aggregates and pro-inflammatory 
cytokines, Increased ATP concentration 
and oxygen consumption

De Taboada et al. [31]

Laser 670 nm, 33 mW, l × l04  Jm−2 In vitro (human) Increased cell survival and ATP produc-
tion, Decreased b-amyloid aggregates

Sommer et al. [37]

LED 1072 nm, 5 mW/cm2 for 6 min for two 
consecutive days, biweekly for 5 months

In vivo (mouse) Decreased b-amyloid plaques. Increased 
heat shock proteins (HSPs)

Grillo et al. [32]

LED 670 nm, 4 J/cm2 for 5 days per week In vivo (mouse) Decreased b-amyloid plaques. Oxidative 
stress and hyperphosphorylated tau

Purushothuman et al. [34, 35]

LED 627 nm, 7 J/cm2 (70 mW) for 21 days In vivo (rat) Decreased b-amyloid. Improved spatial 
memory and behavioral state

da Luz Eltchechem et al. [36]
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number of dopaminergic neurons than those not treated with 
PBM, and also show fewer clinical and behavioral symptoms 
[70]. These results suggest that PBM exerts neuroprotective 
effects in various models of Parkinson’s disease. However, 
further clinical evidence from systematic and large-scale 
clinical trials will be required to confirm its efficacy.

4  PBM for other types of neurodegeneration

Epilepsy is a serious neurological disorder that degrades 
one’s quality of life. Approximately 65 million people 
worldwide suffer from epilepsy and more than 100,000 new 
epileptic cases develop annually [71]. In epilepsy, chronic 
seizures are caused by abnormal paroxysmal electrical activ-
ity between neurons and eventually result in irreversible 
damage to brain cells and their surroundings. Temporal lobe 
epilepsy (TLE) is the most common partial epilepsy and is 
most often the result of head trauma, brain malformation, 

and infections [72]. Factors associated with TLE may initiate 
more seizures or status epilepticus (SE), which, in humans, 
is defined as a continuous seizure lasting for 30 min or more 
or at least two seizures that result in a lack of consciousness 
[73–75]. SE is considered to be a clinical emergency due 
to its severe morbidity and mortality [76]. Previous studies 
have shown that damage to inhibitory neurons in the hip-
pocampus during SE alters the balance of excitatory and 
inhibitory neurons and results in hyperexcitability [77, 78]. 
This hyperexcitability mediates gliosis and causes mitochon-
drial dysfunction in neurons in the hippocampus and dentate 
gyrus. Mitochondrial dysfunction frequently occurs during 
epileptogenesis after seizures and these changes are closely 
related to neurodegenerative diseases [79].

A variety of anticonvulsants with various underlying 
mechanisms, including the inactivation of ion channels or 
the regulation of γ-aminobutyric acid (GABA) activity, have 
been used to treat epilepsy [80]. Unfortunately, the current 
anticonvulsants are ineffective for approximately 30% of 

Table 2  Photobiomodulation studies relevant to neuroprotection in Parkinson’s disease

Source Parameters Models Effect References

LED 670 nm, 50 mW/cm2, 4 J/cm2 
twice a day for 2 days

In vitro (rat) Increased cell survival, 
cytochrome oxidase activity and 
ATP content Decreased ROS 
and NO production

Liang et al. [28] and Ying et al. 
[30]

LED 810 nm, 50 mW/cm2 for 40 s In vitro (human) Increased mitochondrial move-
ment

Trimmer et al. [58]

Laser 670 nm. 40 mW/cm2, 2 J/cm2 in 
four fractions

In vivo (mouse) Protected dopaminergic cell loss 
in substantia against MPTP 
toxicity

Shaw et al. [66]

LED 670 nm, 40 mW/cm2, 14.4 J/cm2 
over 30 h

In vitro (human) Improved mitochondrial function 
and Oxidative stress

Quirk et al. [57]

LED 670 nm, 5.5 mW/cm2, 2 J/cm2 in 
four fractions

In vivo (mouse) Improved locomotor activity, 
preserved tyrosine hydroxylase-
positive cells

Moro et al. [62]

LED 670 nm, 80 J/cm2 once a day, 
5 days a week over 4 weeks

In vivo (mouse) Reduced oxidative stress and 
overexpression of hyperphos-
phorylated tau, mitigated 
dopaminergic cell loss

Purushothuman et al. [69]

LED 808 nm, 25 rnW/cni2 during 
100 s, 2.5 J/cm2

In vivo (mouse) Improved Complex IV-dependent 
respiration and functional 
defects in mitochondria

Vos et al. [56]

Laser 670 nm, 0.634 J (0.16 mW for 
90 s twice a day), 0.634 J (333 
nW continuous) 304 J (0.16 
mW continuous)

In vivo (rat) Improved cell survival and behav-
ioral movement

Reinhart et al. [65]

Laser 670 nm, 25 J over, 5 days, 35 J 
over 7 days

In vivo (monkey) Increased cell survival and behav-
ioral activity

Darlot et al. [70]

LED 670 nm, 0.16 mW, 10 mW In vivo (mouse, rat, monkey) Protected dopaminergic cell loss 
and increased expression of 
GDNF

El Massri et al. [67]

LED 670 nm, 50 mW/cm2, 4.5 J/cm2, 
90 s once daily

In vivo (mouse) Attenuated dopaminergic cell 
loss, regulation of genes associ-
ated with cell signaling

Ganeshan et al. [68]
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epilepsy patients and can also induce deleterious side effects, 
such as systemic toxicity. The primary disadvantage of anti-
convulsant therapies is that the brain may be more vulner-
able to recurrent seizures due to drug withdrawal and the 
seizures may worsen over time [81, 82]. Thus, there is a need 
to overcome these limitations by developing novel therapies 
that can effectively prevent epileptogenesis.

PBM can be an effective treatment that overcomes the 
shortcomings associated with anticonvulsants. Several 
studies have investigated the effects of PBM using in vitro 
and in vivo models of epilepsy (Table 3). For example, in 
a rodent model of epilepsy, PBM can modulate the imbal-
ance between neurotransmitters by regulating glutamate 
and GABA release in the cortex and hippocampus [83, 84]. 
Additionally, an in vitro study that employed an SE-inducing 
drug demonstrated that PBM increases cell viability in neu-
rons and improves mitochondrial dysfunction, which sub-
sequently increases the production of ATP [85]. The neuro-
protective effects of PBM against Alzheimer’s disease and 
Parkinson’s disease appear to be similar in that this novel 
technique ameliorates imbalances in neurotransmitter levels 
via the alleviation of mitochondrial dysfunction in neurons. 
Although there is currently insufficient evidence from vari-
ous models of epilepsy to support the efficacy of PBM or 
to identify its underlying mechanisms, the present findings 
suggest that PBM may be a novel treatment for epilepsy in 
the future.

5  Conclusions

Although the potential of PBM as a novel treatment for 
neurodegenerative diseases remains uncertain, a variety 
of studies have demonstrated the efficacy of PDM for epi-
lepsy, Alzheimer’s disease, Parkinson’s disease and other 
neurodegenerative diseases. Thus, PBM may be an effec-
tive alternative therapy for these disorders in the future 
and, as a result, several points must be considered regard-
ing its application. First, PBM should be administered dur-
ing the early phases of disease development. Most studies 

assessing PBM for the treatment of neurodegenerative 
diseases have been conducted during the early phase of 
progression and shown that, like other therapies, PBM 
cannot rescue neurons already undergoing degeneration 
from apoptosis or return them to normal cell conditions. 
Taken together, these findings indicate that PBM should 
be used as a technique to inhibit neuronal degeneration 
and apoptosis. Second, one major advantage of PBM is 
the relative lack of side effects, which suggests that it may 
be used as an adjunctive therapy with current effective 
treatments. For example, pharmacological side effects can 
be reduced by lowering the concentration of the drug and 
the drug effects can be maximized by the application of 
PBM. Third, it is important to consider how to apply PBM 
to the appropriate brain lesion or region using a helmet 
with LED or by surgically implanting fiber optics. The 
current state of research and development for the clinical 
application of PBM therapy remains insufficient. However, 
the therapeutic possibilities and efficacy of PBM for the 
treatment of neurodegenerative diseases are evident and 
should warrant the attention of researchers.
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Table 3  Photobiomodulation studies relevant to neuroprotection in epilepsy

Source Parameters Models Effect References

Laser 808 nrn arid 830 nm, 5.5 W/cm2, 3.1 W/cm2 
and 2.8 W/cm2, 30 J/point, 11 J/point and 5 J/
point

In vivo (rat) Decreased aspartate, glutamate and taurine in 
cortex and decreased liippocampal GABA

Ahmed et al. [83]

Laser 830 nm, 90 mW, 2.87 W/cm2 daily In vivo (rat) Decreased glutamic acid, glutamine. glycine, 
taurine and ALT activity in cortex. Decreased 
aspartate, AST, ALT activity in hippocampus

Radwan et al. [84]

LED 810 nm, 25 mW/cm2, 3 J/cm2 In vitro (mouse) Increased cell survival, ATP production and 
MMP. decreased  Ca2+ release, ROS and NO 
production

Huang et al. [85]
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