Vlachos et al. Genome Biology (2019) 20:169
https://doi.org/10.1186/5s13059-019-1770-8

Benchmarking software tools for
detecting and quantifying selection in

Genome Biology

®

Check for
updates

evolve and resequencing studies

Christos Vlachos'*", Claire Burny'?T, Marta Pelizzola'", Rui Borges', Andreas Futschik®#, Robert Kofler'”

and Christian Schlotterer!”

Abstract

Background: The combination of experimental evolution with whole-genome resequencing of pooled individuals,
also called evolve and resequence (E&R) is a powerful approach to study the selection processes and to infer the
architecture of adaptive variation. Given the large potential of this method, a range of software tools were developed
to identify selected SNPs and to measure their selection coefficients.

Results: In this benchmarking study, we compare 15 test statistics implemented in 10 software tools using three
different scenarios. We demonstrate that the power of the methods differs among the scenarios, but some
consistently outperform others. LRT-1, CLEAR, and the CMH test perform best despite LRT-1 and the CMH test not
requiring time series data. CLEAR provides the most accurate estimates of selection coefficients.

Conclusion: This benchmark study will not only facilitate the analysis of already existing data, but also affect the

design of future data collections.

Introduction

Experimental evolution is an extremely powerful
approach to study adaptation in evolving populations
[1, 2]. Apart from a well-controlled environment and
a known demography, experimental evolution obtains
much of its power from the use of replicated populations,
which are evolving in parallel. The application of next-
generation sequencing, called Evolve and Resequence
(E&R) [3-5], allowed for genomic analyses of experimen-
tal evolution studies. Sequencing pools of individuals
(Pool-Seq, [6]) has become the routine method to mea-
sure allele frequencies of entire populations across the
whole genome. While the initial focus was on the compar-
ison of allele frequencies between two groups, either two
selection regimes or ancestral and evolved populations,
the field is now recognizing the power of time series data
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to characterize the underlying evolutionary processes at
unprecedented detail [7-10].

The great potential of E&R studies in combination with
the continuously growing data sets of powerful exper-
iments has driven the development of a diverse set of
methods to detect selected SNPs, which change in allele
frequency more than expected under neutrality [11-19].
Some of the published methods use this information to
estimate the underlying selection coefficient and domi-
nance [11, 14, 19, 20]. While publications reporting new
software tools typically include some comparisons to pre-
viously published ones, a systematic comparison of the
currently available tools with standardized data sets is still
missing.

A major shortcoming of all comparisons of software
tools for the detection of selection in E&R studies is
that they are only targeted to evaluate the performance
under the selective sweep regime [3, 21]. The underly-
ing assumption of the selective sweep paradigm is that all
loci are selected without any implicit or explicit connec-
tion to the phenotype. As a consequence, all loci that are
not lost by genetic drift become ultimately fixed. Despite
its central role in the molecular evolution literature, it
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is becoming increasingly clear that E&R studies need to
consider phenotypes to understand the selection signa-
tures. Many E&R studies use truncating selection where
a defined phenotype is used to determine which indi-
viduals are contributing to the next generation [22-25].
The genomic signature of truncating selection is clearly
distinct from selective sweeps [26]. Laboratory natural
selection (LNS) is another widely used approach in E&R
studies [2]. Rather than selecting for well-defined phe-
notypes, a polymorphic population is exposed to a novel
environment and replicate populations evolve towards a
new trait optimum. A characteristic property of this poly-
genic adaptation is genetic redundancy [7]. This implies
different loci can contribute to the same phenotype in dif-
ferent replicates. As a consequence, not all loci show par-
allel selection signatures in all populations [27]. Because
concordant behavior is an important feature for many
software tools, it is not clear how well they perform with
LNS and polygenic adaptation.

Here, we report the first benchmarking study, which
evaluates the performance of software tools for the
detection of selection in E&R studies for all three rel-
evant scenarios: selective sweeps, truncating selection,
and polygenic adaptation with a new trait optimum. Our
benchmarking study includes software tools that use time
series data, replicates, or only two time points. We show
that the tools do not only differ dramatically in their
computational time and inference accuracy, but we also
demonstrate that depending on the underlying selection
regime, the relative performance of the tools changes.

Results and discussion

We evaluated the suitability of 10 different software tools
with various underlying test statistics designed to iden-
tify the targets of selection in E&R studies. In total, the
performance of 15 tests was evaluated for 3 different sce-
narios. Ten tests support multiple replicates whereas 5 are
designed for a single replicate only. With the exception
of the FIT2, CMH, LRT-1/2, and x2 tests, all methods
require time series data (for an overview of the evalu-
ated tests, see Table 1; for a description of the tests, see
the “Material and methods” section). Seven additional
tools could not be evaluated due to technical difficulties
(Additional file 1: Table S1).

We simulated E&R studies under 3 different scenar-
ios: selective sweeps, truncating selection, and stabilizing
selection. Ten replicates of diploid populations each with
1000 individuals evolved for 60 generations, matching a
powerful E&R design [21]. The founder population con-
sisted of 1000 haploid chromosomes that capture the
polymorphisms found on chromosome 2L of a natural
Drosophila melanogaster population (Additional file 1:
Figure S1; [28]). We used the D. melanogaster recombina-
tion maps [29], and regions with low recombination were
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excluded [21] (Additional file 1: Figure S1). Thirty targets
of selection were randomly selected from all segregating
sites with a frequency between 5 and 95% (Additional
file 1: Figure S2). While we assumed a single selection
coefficient of s = 0.05 (Fig. 1, left panels) for the sweep
model, for truncating selection, the effect size of the QT Ns
was drawn from a gamma distribution (shape = 0.42
and scale = 1) with a heritability of K2 = 1.0, and 20%
of the individuals with the least pronounced phenotypes
were culled (Fig. 1, middle panels). The effect size of the
QTNs and the heritability for stabilizing selection were
identical to truncating selection (shape = 0.42, scale = 1,
h? = 1.0), but additionally, a fitness function was specified
such that the trait optimum was reached around genera-
tion 30—40. After the trait optimum is reached, stabilizing
selection reduces phenotypic variation within a popula-
tion (Fig. 1, right panels; Additional file 1: Figure S3).
The three different scenarios typically result in different
trajectories of selected alleles. The sweep architecture is
characterized by selected loci that slowly rise in frequency
and rarely get fixed until generation 50. For a quantitative
trait architecture, truncating selection results in a rapid
frequency increase of contributing alleles, often becom-
ing fixed during the experiment. Different phases can be
distinguished for stabilizing selection [27]. Initially, alle-
les rise in frequency, but when the populations approach
the trait optimum, the contributing alleles experience
a heterogeneous behavior in different replicates (Fig. 1;
Additional file 1: Figures S4, S5, S6). Because these differ-
ent trajectories could have important implications on the
performance of the different software tools, we studied all
three scenarios.

We evaluated the performance of each test with receiver
operating characteristic (ROC) curves [30], which relate
true-positive rate (TPR) to false-positive rate (FPR). A
ROC curve having a TPR of 1.0 with a FPR of 0.0 indi-
cates the best possible performance. Since the focus of
E&R studies is the identification and characterization of
selected alleles, we do not report the full ROC but used a
small FPR threshold of 0.01 and computed the area under

the partial ROC curve (pAUC = foom fROCdf> to assess

the performance of a tool. With tools supporting the time
series data, the allele counts at every tenth generation
were used whereas the start and the end of the experi-
ment were considered for tools not supporting the time
series data. For tools not supporting multiple replicates,
we restrict our analysis to the first of the 10 replicates. For
each scenario, the performance was assessed by 100 differ-
ent sets of randomly drawn targets of selection (random
position and effect size) (Additional file 1: Figure S2) and
the averaged ROC curves are displayed.

Whole-genome analyses evaluating the frequency
changes of millions of SNPs can be computationally
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Table 1 Overview of the evaluated tools

Tool t RAM ts. rep. m/w  Description Input Output lang. Reference

x2 6s 221 M No  No +/+ Pearson x? test for homogeneity freq,cov,Ne p R 4]
(vectorized implementation)

E&R-x? 8s 306 M Yes No  +/+ x? test adapted to account for drift ~ freq, cov,Ne p R [12]

CLEAR 3000 s 17T00M  Yes Yes  +/+ Discrete HMM of allele trajectories sync,Ne s,Ne, h,LL  Python [11]
under a WF model

cmh 2165 145 M No Yes +/+ Test for homogeneity (similar to sync p Perl/R [13]
x2) accounting for stratified data

E&R-cmh 8 560 M Yes Yes  +/+ CMH test adapted to account for freq,cov,Ne p R [12]
drift

LLS 1091s5(83h) 340M Yes Yes  +/+ Linear model with least square freq,cov,Ne p,s,h R [14]
regression of logit-transformed
allele frequencies

LRT-1 31s 127 M No Yes —/—  LRTof parallel selection freq, cov,Ne  LRT, ) Python  [15]

LRT-2 31s 127 M No Yes —/— LRTof heterogeneous selection freq, cov, Ne  LRT, dx, Python  [15]

GLM 2205 300 M Yes Yes +/+ Quasibinomial GLM with replicates  freq p R [16]
and time as predictors

LM 157 s 300 M Yes Yes  +/+ LM with replicates and time as freq p R [1e]
predictors

BBGP 37h 15M Yes Yes  +/+ A Bayesian model of allele sync BF R 7
trajectories following a Gaussian
process

FIT 165 220 M Yes  No —/—  Attest with allele trajectories freq p R [18]
modeled as a Brownian process

FIT2 68 s 220M No Yes —/— Attestwithallele frequencies freq p R [18]
differences between two time
points

WFABC 42 h 8 MB Yes No +/+ ABC of WF dynamics with selection  freg, Ne (h) BF,s C++ [20]

slattice 41 h 250 M Yes No  +/+ HMM of allele trajectories under a freq, Ne (h) s, LL R [19]

WF model using an EM algorithm

For each tool, we show the time required to analyze a small data set (¢, either in seconds (s) or hours (h)), the memory requirements (RAM), if time series data may be used
(ts.), if replicates are accepted (rep), if a manual and a walk-through is available (m/w), a short description, the required input, the generated output, the programming
language (lang.), and the reference for LLS the time required to estimate the selection coefficient and the p-value (in brackets) is provided. sync file, freq allele frequency, cov

coverage, Ne effective population size, h heterozygous effect, p value, s selection coefficient, LRT likelihood ratio test, BF Bayes factor, LL log-likelihood, 8 shared allele

frequency change, dx, change in allele frequency in a single replicate r

challenging, and the choice of software tools is also
affected by CPU and memory requirements. We eval-
uated the speed and the memory requirements of the
different approaches with a small data set (2 MB; sweep
architecture; Additional file 1: Figure S1) on a powerful
desktop computer (32 GB RAM; 2 x 2.66 GHz 6-Core
Intel Xeon). For all tools, memory was not a limiting
factor. The required RAM ranged from 8 to 1100 MB,
which is readily met by standard desktop computers.
Even more pronounced differences were observed for
the time required to analyze 80,000 SNPs. The fastest
tool, x2 test, only required 6 s while the slowest tool,
LLS, required 83 h (Table 1). Analyzing an E&R study
of D. melanogaster with such a slow tool may require
up to 192 days [assuming 4.5 million SNPs [7]]. We
anticipate that the high computational demand of some
tests may impose a severe burden for many users, even
when species with a moderate genome size are being

analyzed. Also for our benchmarking study, extensive
computational demands posed a problem as each tool
is evaluated with 300 data sets (3 scenarios and 100 sets
of selected SNPs). To enable benchmarking all tools,
we evaluated the performance of the slow tools (BBGP,
LLS, and WFABC; Table 1) with a subset of the data
(Additional file 1: Figure S1).

For all scenarios, the software tools have a significantly
different performance (Kruskal-Wallis test on pAUC val-
ues; with replicates psweep < 2.2 X 10_16,;7trurlc <22 x
10716, Pstab < 2.2 X 10~16; without replicates Psweep <
2.2x1071, prunc < 2.2x10710 pgay < 2.2x 107165 Fig, 2).
Consistent with previous results [14], we found that tools
using all 10 replicates generally outperform tools using
only a single data set (Wilcoxon rank sum test with pAUC;
best tool with 10 replicates vs. best tool without repli-
cates; Psweep < 2.2 X 10716, Ptrunc = 6.4 % 10714, Pstab <
2.2 x 10719),
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Fig. 1 Overview of the simulated scenarios. a Response to selection with either fitness (sweep, stabilizing selection) or the phenotypic value
(truncating selection) being displayed for three time points. For truncating selection, the fraction of culled individuals is indicated in color. With
stabilizing selection, once the trait optimum is reached, selection acts to reduce the fitness variance within a population. b Schematic
representation of the trajectories of the targets of selection expected for the three different scenarios

Selective sweeps

For selective sweeps, LRT-1 performed best among the
tools supporting replicates (Wilcoxon rank sum test with
pAUC; LRT-1vs. CLEAR; p = 4.7 x 10~1%; Fig. 2) whereas
the x? test had the best performance of tools not sup-
porting replicates (Wilcoxon rank sum test with pAUC;
X2 Vs. E&R-XZ; p <22x 10716); the low performance of
LRT-2 was expected as this test was designed to identify
replicate-specific response to selection [15]. Analyzing
the subset of the data for all tools (not just the slower
ones) does not affect the relative performance of the tools
(Additional file 1: Figure S7). Interestingly, out of the three
tools with the best performance, two tools do not require
time series data (LRT-1, CMH test; Fig. 2).

Truncating selection

The BBGP test was the best tool supporting replicates
when truncating selection is used (Wilcoxon rank sum test
with pAUC; BBGP vs. CLEAR; p = 0.05; BBGP vs. LRT-1;
p = 0.03; (Fig. 2b). However, when the subset of the data
was analyzed for all tools, the performance of BBGP was
slightly worse than the performance of LRT-1 and CLEAR.
We reason that this performance difference is the result of
a similar performance of the best tools combined with a
higher sampling variance when only a subset of the data is
analyzed.

The performance of BBGP was better for truncating
selection than for selective sweeps (Additional file 1:
Figure S7). With truncating selection, selected loci quickly
rise in frequency and the trajectories have the highest
parallelism among the three scenarios, prerequisites for
a good performance of BBGP (Carolin Kosiol, personal

communication). This makes truncating selection the best
scenario for the BBGP test. Interestingly, the perfor-
mance of FIT1 and FIT2 was much worse with truncating
selection than for selective sweeps. The rapid fixation of
selected alleles before the end of the E&R experiment
may be a problem for some tests. In agreement with this,
we noticed that adding a small Gaussian random number
to allele frequency estimates dramatically improved the
performance of FIT2 (Additional file 1: Figure S8).

Of the tools not supporting replicates, the x? test and
the E&R-x? test had the best performance (Wilcoxon
rank sum test with pAUC; E&R-x? test vs. x2 test; p =
0.194; E&R-x2 test vs. FIT1; p < 22 x 10719 Fig.2).
Although these methods cannot be directly applied to
multiple replicates, the p values obtained from single
replicates could be combined using, for example, Fisher’s
combination test [31] or the harmonic mean method [32].

Stabilizing selection

Stabilizing selection is the most challenging scenario for
all tools (Fig. 2). This is expected since selected alleles
show a less pronounced allele frequency change with sta-
bilizing selection and a more heterogeneous response in
the different replicates (Fig. 1; Additional file 1: Figures
S6, S9). Among the tests supporting multiple replicates,
CLEAR, LRT-1, CMH, and E&R-CMH were the most
powerful ones (first significant difference LRT-1 vs. GLM;
Wilcoxon rank sum test with pAUC p = 0.0001). The
x? and E&R-x? again had the best performance of tools
not supporting replicates (first significant difference x?
vs. FIT1 (Wilcoxon rank sum test with pAUC p <
2.2 x 10710). Surprisingly, LRT-2, which was designed to
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identify replicate-specific allele frequency changes, still
showed a weak performance although we found the most
heterogeneous response to selection under this architec-
ture (Additional file 1: Figure S9). This may either be due
to the inherent difficulty of identifying a replicate-specific
response to selection (replication provides important cues
for distinguishing between genetic drift and selection) or
that the heterogeneity among replicates is not pronounced
enough (Additional file 1: Figure S9).

Accuracy of estimated selection coefficients

Four of the software tools estimate selection coefficients
for the targets of selection (Table 1). We were interested
in which of these methods estimates the selection coeffi-
cients most accurately. To address this question, we relied
on the data from the selective sweep scenario for which
the true selection coefficient of selected (s = 0.05) and
neutral (s = 0.0) loci is known. We assessed the accuracy
of the estimated selection coefficients by a sample-based
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estimate of the mean square error (E[ (true — estimated)?].
Tools that support multiple replicates estimate selection
coefficients more accurately than tools not supporting
replicates (Wilcoxon rank sum test CLEAR vs. slattice;
Psel. < 2.2 x 1071, p oo < 2.2 x 1071%; Fig. 3). CLEAR
provided the most accurate estimates of the selection
coefficients for both selected and neutral loci (Wilcoxon
rank sum test with MSE; CLEAR vs. LLS; ps. = 0.0016,
Pnsel. < 2.2 X 1016 Fig. 3). LLS provides fairly accurate
estimates for selected loci but has a high error for neutral
loci. LLS should therefore only be used on candidate loci
for which sufficient statistical evidence for being selection
targets has been established. slattice performs well with
selected and neutral loci.

Performance with experimental data

Finally, we evaluated the performance of the tools with
data from real E&R studies. We aimed to cover a wide
range of organisms with different gene densities, recom-
bination rates, and polymorphism pattern: (i) Barghi et al.
[7] studied the adaptation of Drosophila simulans popu-
lations to hot conditions, (ii) Papkou et al. [33] investi-
gated the co-adaptation of Caenorhabditis elegans to the
pathogen Bacillus thuringiensis, and (iii) Burke et al. [9]
studied the genomic response of Saccharomyces cerevisiae
populations to laboratory conditions. Unlike computer
simulations, the true targets of selection are not known for
real data, which requires an alternative strategy to evalu-
ate the performance of different tools. Here, we evaluate
the tools by comparing the similarity of their performance
for real data and compare this to the similarity for simu-
lated data. We computed the pairwise correlation of the
test statistics for all three real data sets (Additional file 1:
Figure S10) and performed a Mantel test [34], which esti-
mates the correlation among the distance matrices using
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permutations. Our results show that the tools have a sim-
ilar performance with different real data sets (Mantel test,
10.000 permutations; multiple replicates ppgim—cCele =
9 x 1074, PDsim—Scer = 5.5 X 1073, PCele—Scer = 9.9 X
1075; single replicate ppgim—cCele = 0.083, pPDsim—Scer =
0.082, pcele—scer = 0.080). A principal component analysis
(PCA) based on the normalized test statistics also sup-
ports the similar performance of the tools with real data
sets (Fig. 4). Finally, we found that the performance of the
tools with real data is very similar to the performance with
simulated data (Mantel test with average distance matrix;
10.000 permutations; multiple replicates preal—sim = 5.2 X
1073, single replicate preal—sim = 0.085). We conclude that
the evaluated tools show a very consistent behavior among
a wide range of different real and simulated data.

Conclusions

Across all evaluated scenarios, LRT-1, CLEAR, CMH, and
E&R-CMH tests provided the most reliable identification
of targets of selection in E&R studies. The best tool, LRT-
1, is reasonably fast and can be readily used with genome-
wide data. CLEAR, on the other hand, is computationally
more demanding but additionally provides highly accu-
rate estimates of selection coefficients, which also makes
it a very promising tool. Whereas the classical CMH test
requires simulations to obtain proper p value cutoffs for
rejection; the E&R-CMH test provides adjusted p values
that take drift and (if needed) also pooled sequencing into
account.

Interestingly, out of the top performing tools, the LRT-1
and the CMH test do not require time series data. There-
fore, with the evaluated test statistics, time series data
are thus currently not required to maximize the power to
identify the targets of selection. This is important, given
that generating time series data comes at considerable
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costs, in our example about 3.5x as high as for two time
points. Time series data will however be important if
accurate estimates of selection coefficients are required.

The parameters of the scenario of a polygenic trait
evolving to a new optimum, which is reached after 30—
40 generations, resulted in relatively parallel selection
responses across replicates. Fewer selection targets,
smaller population sizes, and more generations are
expected to increase the heterogeneity among replicates.
Further simulations are needed to evaluate how the
different software tools are performing in cases of higher
heterogeneity among replicates. Some evidence that this
could affect the relative performance of the tools comes
from BBGP, which performs much better with strong
selection and highly parallel responses.

Finally, we made all files (simulation results, input for
ROC curves, scripts, parameters) available on Source-
Forge https://sourceforge.net/p/erbenchmark, which
allows researchers to compare the performance of novel
test to the ones evaluated in this work.

This benchmarking study demonstrates that for differ-
ent E&R scenarios, powerful software tools are available
to detect selection targets. We anticipate that the commu-
nity will greatly benefit from this first power evaluation
across all three different scenarios, in particular as we
have identified tools that perform uniformly very well
across the three different scenarios. Our analyses also
demonstrate that the comparison of two time points is

very powerful and provides a cost-effective experimental
design in combination with analyses that are also compu-
tationally cheap.

Material and methods

Evaluated tools

x? test. Pearson’s x2 test for homogeneity relies on a
2x2 contingency table to compare for each SNP the allele
counts from two different time points.

E&R yx? test. A modification of the Pearson’s x? test
which takes E&R-specific components of variance, in par-
ticular drift and pooled sequencing, into account [12].

Cochran-Mantel-Haenszel (CMH) test. The Cochran-
Mantel-Haenszel (CMH) test [35] is a modified x? test
(see above) that considers 2x2xR contingency tables,
where R is the number of replicates. Similar to the x 2 test,
the null hypothesis of the CMH test is that allele counts
among samples are equal.

E&R-CMH test. A modified version of the CMH test
[12] which takes E&R-specific components of variance,
i.e., drift and pooled sequencing, into account. Pooled
sequencing is modeled as binomial sampling.

Linear least squares (LLS). LSS implements a linear
model on the logit-transformed allele frequency trajecto-
ries [14]. Population parameters such as s (and /) are esti-
mated by least squares utilizing the consensus trajectories
over multiple replicates. Deviations from neutrality are
identified by comparison to neutral simulations.
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Likelihood ratio test (LRT)-1. The LRT-1 test has been
constructed to identify a parallel response to selection
across multiple replicates, accounting for sampling noise
[36]. Allele frequency differences between two time points
are arcsine transformed [37] and assumed to be normally
distributed with zero (neutral model) or non-zero (paral-
lel model) mean. The test statistic is the likelihood ratio
between the parallel and the neutral model.

Likelihood ratio test (LRT)-2. Following the approach
taken with LRT-1, the LRT-2 test does not consider a
shared response but uses an alternative hypothesis that
permits for a replicate specific response to selection (het-
erogeneous model) [15]. The test statistics is the likeli-
hood ratio between the heterogeneous and the neutral
model.

LRT-1 and LRT-2 can be used at either window or SNP
level; for the sake of consistency with other software tools,
we only evaluated them SNP-based.

Generalized linear model (GLM). Allele frequencies
are modeled using a generalized linear model [38] with
a quasi-binomial error distribution, where p values are
obtained from a Wald test to assess the time effect [16].

Linear model (LM). Allele frequencies are modeled as
a linear model with a Gaussian error, and p values are
obtained via ¢ test. Time points and replicates are predic-
tor variables [16].

Beta-binomial Gaussian process (BBGP). BBGP
employs a beta-binomial Gaussian process to detect
significant allele frequency changes over time [17]. The
beta-binomial model corrects for the uncertainty arising
from finite sequencing depth. This is a Bayesian method
that does not provide p values but estimates Bayes factors
(BFs) as a measure of evidence against neutrality.

Frequency increment test (FIT1). FIT1 uses a ¢ test
to test whether the expected allele frequency differences
between two time points are significantly different from
0 [18].

Frequency increment test (FIT2). FIT2 works similarly
to FIT1 but can use allele frequency data from several
replicate populations [18].

Wright-Fisher approximate Bayesian computation
(WFABC). WFABC estimates the effective popula-
tion size, selection coefficients, and dominance ratio
[20] using Wright-Fisher simulations and approximate
Bayesian computation (ABC).

slattice. slattice provides a maximum likelihood esti-
mator of s based on a hidden Markov model of allele
frequency changes using the expectation-maximization
algorithm [19, 39]. Furthermore, joint estimates of migra-
tion rate and spatially varying selection coefficients may
be obtained at the single replicate level.

Composition of likelihoods for evolve and resequence
experiments (CLEAR). To detect selected loci, CLEAR
uses a hidden Markov model consisting of an underlying
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Wright-Fisher process and observed allele frequency
counts from pool-sequenced organisms [11]. Besides esti-
mating the selection coefficients, CLEAR also provides
estimates for N, and 4.

Simulations

We evaluated the performance of the software tools with
individual-based forward simulations with MimicrEE2
[40]. The simulation parameters were chosen to match D.
melanogaster, the most frequently used organism in E&R
studies of an obligatory sexual organism (Table 2). The
founder population consists of 1000 diploid individuals
with haplotypes matching the polymorphism patterns of
a natural D. melanogaster population [28]. For computa-
tional efficiency, we restricted our simulations to chromo-
some arm 2L (Additional file 1: Figure S1). We used the
recombination estimates from Comeron et al. [29], and
low recombining regions were excluded from the analy-
sis as they inflate the noise [21]. In total, three different
scenarios were simulated: a classic selective sweep model
(selective sweeps), and two quantitative models, where
the population evolved either under truncating or stabi-
lizing selection (Fig. 1). For the classic sweep model, all
selected loci had the same selection coefficient of s = 0.05.
For the quantitative models, the effect sizes of the QT Ns
were drawn from a gamma distribution with shape =
0.42 and scale = 1. The frequency of the selection tar-
gets ranged from 5 to 95%. For truncating selection, we
selected the 80% of the individuals with the largest phe-
notypic values. This regime has a high power to identify
the targets of selection [26, 41]. For stabilizing selection,
we first estimated the mean and standard deviation of the
phenotypes in the base population and then used a trait
optimum that was shifted two standard deviations to the
right of the population mean. With this selection regime,
the trait optimum was usually reached around genera-
tion 40. This simulation setup allows for heterogeneity
among replicates, since we expect that different SNPs will
increase in frequency in the last 20 generations. We expect

Table 2 Overview of the default parameters used for the
simulations

Parameter Default value
Chromosome 2L
Population size (N) 1000
Number of causative loci 30

Number of generations 60
Replicates 10
Heritability 1.0

Recombination map Comeron et al. [29]

Repetitions 100 (using different sets of selected SNPs)
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that this simulation setup will reduce the power to detect
selected SNPs. Our aim was to show how the power of
each test is affected by a given scenario and whether some
tests perform equally well, independent of the simulated
scenario.

Details on benchmarking

We evaluated the performance of 15 different tests. Most
tests were downloaded from the dedicated webpage, 2
were provided by the author and 2 were adapted to our
data (Additional file 1: Table S2). If not mentioned other-
wise, we used default parameters for each tool. For each
site, we rescaled the allele counts to a uniform coverage of
100. To avoid numerical problems encountered by some
methods with SNPs reaching an absorbing state (i.e., fixa-
tion or loss), we subtracted (added) a pseudocount of 1 to
fixed (lost) SNPs.

For all tools requiring information about the effective
population size, we provided the same estimate obtained
separately for each simulation run. We provided the fre-
quencies of random subsets of 1000 SNPs to estimate
N, with the poolSeq::estimateNe function [version 0.3.2;
method="P.planl’; truncAF=0.05, Ncensus = 1000; all
other arguments set to default [14]]. We used the median
of 100 trials with different random sets of SNPs. An
independent estimate of N, was obtained for each repli-
cate. For tools requiring estimates of the dominance, we
provided & = 0.5. For CLEAR, we used a sync file as input.

Some tools provide estimates of p values or selection
coefficients that are not compatible with downstream
analysis (e.g., ROCR [42]). To nevertheless enable bench-
marking these tools, we converted missing (NA) estimates
of p values to 1.0, “infinite” estimates for negative log-
transformed p values to 1,000,000, and “NA” estimates
for selection coefficients to 0. The performance of each
tool was assessed with receiver operating characteristic
(ROC) curves [30], which relate the true-positive (TPR)
to the false-positive rates (FPR). The TPR can be calcu-
lated as TP/(TP + FN) where TP stands for true positives
and FN for false negatives. The FPR can be calculated
as FP/(TN + FP), where FP refers to false positives and
TN to true negatives. ROC curves and estimates of the
area under the curve (AUC) were generated with ROCR
[version 1.0-7; [42]]. Each ROC curve is the average over
100 replicates using different sets of selected SNPs. The
ROC curve of WFABC under truncating selection is based
solely on 29 different sets of selected SNPs as WFABC is
extremely slow under this scenario. All files used in this
work are available on SourceForge https://sourceforge.
net/p/erbenchmark.

Benchmarking with real data
We also evaluated the performance of the tools with data
from three real E&R studies. Barghi et al. [7] allowed 10
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D. simulans populations to adapt to hot conditions for 60
generations. The populations were sequenced each tenth
generation. We used the 265,961 SNPs found in chromo-
some arm 2L. Papkou et al. [33] studied the co-adaptation
of 6 replicated populations of Caenorhabditis elegans to
the pathogen Bacillus thuringiensis. The populations were
sequenced at generations 1, 12, and 22. We analyzed all
251,270 SNPs from the 5 autosomes. Burke et al. [9]
studied the laboratory domestication in replicated Sac-
charomyces cerevisiae populations. The populations were
sequenced at generations 0, 180, 360, and 540. We ana-
lyzed all 75,410 SNPs from the 12 chromosomes. As
suggested by Iranmehr et al. [11], we solely investigated
the replicates with consistent site frequency spectra over
time (3,7, 8,9, 10, 11, 12).

We compared the performance of the tools with these
data sets by computing the pairwise correlation (Spear-
man’s p) among the test statistics. We focused on the top
5% of the loci (union among all tools) as several tools
yield identical test statistics for all non-significant loci.
This could lead to low correlations among tools, mostly
due to the non-significant SNPs. We converted the corre-
lation matrices into a distance matrix (v/2(1 — p)) [43])
and compared these matrices using the Mantel test [34]
implemented in the ade4 R package [44]. PCA was per-
formed with the scaled test statistics using the prcomp R
function. PCA plots derived from the different data sets
were superimposed using the Procrustes rotation [45, 46].
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