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Abstract

In the last decades, huge efforts have been made in the bioinformatics community to

develop machine learning-based methods for the prediction of structural features of proteins

in the hope of answering fundamental questions about the way proteins function and their

involvement in several illnesses. The recent advent of Deep Learning has renewed the inter-

est in neural networks, with dozens of methods being developed taking advantage of these

new architectures. However, most methods are still heavily based pre-processing of the

input data, as well as extraction and integration of multiple hand-picked, and manually

designed features. Multiple Sequence Alignments (MSA) are the most common source of

information in de novo prediction methods. Deep Networks that automatically refine the

MSA and extract useful features from it would be immensely powerful. In this work, we pro-

pose a new paradigm for the prediction of protein structural features called rawMSA. The

core idea behind rawMSA is borrowed from the field of natural language processing to map

amino acid sequences into an adaptively learned continuous space. This allows the whole

MSA to be input into a Deep Network, thus rendering pre-calculated features such as

sequence profiles and other features calculated from MSA obsolete. We showcased the

rawMSA methodology on three different prediction problems: secondary structure, relative

solvent accessibility and inter-residue contact maps. We have rigorously trained and bench-

marked rawMSA on a large set of proteins and have determined that it outperforms classical

methods based on position-specific scoring matrices (PSSM) when predicting secondary

structure and solvent accessibility, while performing on par with methods using more pre-

calculated features in the inter-residue contact map prediction category in CASP12 and

CASP13. Clearly demonstrating that rawMSA represents a promising development that can

pave the way for improved methods using rawMSA instead of sequence profiles to represent

evolutionary information in the coming years. Availability: datasets, dataset generation

code, evaluation code and models are available at: https://bitbucket.org/clami66/rawmsa.

1 Introduction

Predicting the 3D-structure of a protein from its amino acid sequence has been one of the

main objectives of structural bioinformatics for decades now [1], yet a definite solution has not
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been found yet. The most reliable approaches currently involve homology modeling, which

allows a known protein structure to be assigned an unknown protein provided that there is a

detectable sequence similarity between the two. When homology modeling is not viable, de
novo techniques are needed, either based on physical-based potentials [2] or knowledge-based

potentials [3–6]. In the first case, an energy function is used to estimate the free energy of a

given protein conformation along with a search function that tries different conformations in

order to minimize the energy function [7]. Unfortunately, even small relatively small proteins

have many degrees of freedom making it prohibitively expensive to fold them even on custom-

ized computer hardware [8]. Knowledge-based potentials, on the other hand, can be learned

using statistics [3] or machine learning [9] to infer useful information from known examples

of protein structures. This information can be used to constrain the problem, thus greatly

reducing the conformational search space and enable prediction of larger proteins and

complexes.

In the last couple of decades, a variety of machine learning methods have been developed to

predict a number of structural properties of proteins: secondary structure (SS) [10–15], relative

solvent accessibility (RSA) [15–18], backbone dihedrals [19], disorder [15, 20, 21], disorder-

to-order transition [22, 23], contact maps [24–27], and model quality [9, 28–30].

The most important information used by most (if not all) methods above is a multiple

sequence alignment (MSA) of sequences homologous to the target protein. The MSA consists

of aligned sequences and to allow for comparisons and analysis of MSAs, they are often com-

pressed into position-specific scoring matrices (PSSM), also called sequence profiles, using

the fraction of occurrences of different amino acids in the alignment for each position in the

sequence. The sequence profile describes the available evolutionary information of the target

protein and is better than a single sequence representation, often providing a significant

increase in prediction accuracy [31, 32]. An obvious limitation of compressing an MSA into

a PSSM is the loss of information that could be useful to obtain better predictions. Another

potential issue is that whenever the MSA contains few sequences, the statistics encoded in the

PSSM will not be as reliable and the prediction system may not be able to distinguish between

a reliable and an unreliable PSSM.

SS, RSA and similar structural properties are sometimes used as intermediate features to

constrain and guide the prediction of more complex properties in a number of methods [33–

35]. An example of this comes from the methods used for the prediction of inter-residue con-

tact maps, where evolutionary profiles are integrated with predicted SS and RSA to improve

performance [36–38].

More recently, contact map prediction methods have been at the center of renewed interest

after the development of a number of techniques to analyze MSAs in search of direct evolu-

tionary couplings. These methods have led to a big leap in the state of the art [39–41]. How-

ever, their impressive performance is correlated with the number of sequences in the MSA,

and is not as reliable when few sequences are related to the target. This means that evolution-

ary coupling methods have not completely replaced older machine learning-based systems,

but have been integrated, usually in the form of extra inputs, along with the previously men-

tioned sequence profiles, SS and RSA, into even more complex machine learning systems. At

the same time, the Deep Learning has proved to be a useful tool for better integrating the grow-

ing number and complexity of input features [42–45].

However, one might argue that this kind of integrative approach, combining individually

derived features, ignores a key aspect of deep learning, i.e. that features should be automatically

extracted by the network rather than being provided to the network as inputs [46]. If we

wanted to take full advantage of deep learning by using it in the same way it is employed for

tasks such as image classification, one idea could be to provide a raw MSA input. Since the
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MSA is the most basic, lowest level input that methods use, it would make sense not to com-

press it into profiles, but instead let the deep network extract features as part of the training.

However, a MSA is not an image or an audio track, and there is no native way of feeding such

a large block of strings as input to a deep network.

In this work we try to overcome this hurdle and introduce a new system for the de novo pre-

diction of structural properties of proteins called rawMSA. The core idea behind rawMSA bor-

rowed from the field of natural language processing a technique called embedding [47], which

we use to convert each residue character in the MSA into a floating-point vector of variable

size. This way of representing residues is adaptively learned by the network based on context,
i.e. the structural property that we are trying to predict. To showcase the idea, we designed and

tested several deep neural networks based on this concept to predict SS, RSA, and Residue-

Residue Contact Maps (CMAP).

2 Methods

2.1 Inputs

Unlike the classical machine learning methods for the prediction of protein features, rawMSA

does not compress the Multiple Sequence Alignment into a profile but, rather, uses the raw

aligned sequences as input and devolves the task of extracting useful features to the deep net-

work. The input to the deep network is a flat FASTA alignment. Before it is passed to the input

layer of the neural network, each letter in the input is mapped to an integer ranging from 1 to

25 (20 standard residues plus the non-standard residues B, U, Z, X and − for gaps). If the align-

ment of a protein of length L contains N sequences, including the target, or “master” sequence,

it is translates to an array of L × N integers. The master sequence occupies the first row of the

array, while the following rows contain all the aligned sequences, in the order of output deter-

mined by the alignment software. Since MSAs for large protein families can contain up to tens

of thousands of sequences, a threshold is set so that no more than Y sequences are used. For

details on the alignment depth threshold, see the “Architecture” section.

When training on or predicting SS or RSA, a sliding window of width 31 is applied to the

MSA so that L separate windows of size 31 × Y, one for each residue in the master sequence,

are passed to the network. The central column in the window is occupied by the residue in the

master sequence for which a prediction is being made and the corresponding aligned residues

from the other sequences. Zero-padding is applied at the N- and C- terminals of the master

sequence or if the master sequence is shorter than the window size, and at the bottom if the

number of aligned sequences is smaller than the maximum alignment depth Y. Note that resi-

dues are mapped to integers larger than zero and do not interfere with zero-padding.

2.2 Architecture

We developed two different architectures for three different applications SS-RSA for the SS

and RSA prediction and CMAP for the contact map prediction. In Fig 1 we show an example

of the network architecture. The networks trained in this work might use different numbers of

convolutional, fully connected or BRNN layers, as well as slightly different parameters, but

they all share this same basic overall structure.

Since with rawMSA we abandoned the use of sequence profiles, which are also useful to

represent the amino acid information in a computer-friendly format, i.e. a matrix of floating

points, we needed to come up with a way of representing the input. In this case, where the

inputs can be very large (up to hundreds of thousands of amino acids), categorical data cannot

be translated with sparse, memory inefficient techniques such as one-hot encoding.

rawMSA: End-to-end Deep Learning
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Fig 1. Network architecture for two rawMSA networks. On the left, the SS-RSA network predicts the secondary structure and relative

solvent accessibility of each amino acid; on the right the CMAP network predicts the full contact map of the protein. The first layers are in

common between the SS-RSA and CMAP architectures, although with slightly different settings, and provide the basis for the rawMSA

approach.

https://doi.org/10.1371/journal.pone.0220182.g001
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To resolve this issue, the first layer of rawMSA is a trained, shallow two-layer neural net-

work called an embedding layer. Embeddings are a compact way of representing a discrete set

of inputs into a continuous space [47]. This technique is widely used in natural language pro-

cessing where the inputs are made of a sequence of words taken from a dictionary and mapped

to an n-dimensional space in a vector of floats of size n. When dealing with word embeddings

in natural language, words that represent similar concepts, at least in a certain context, will be

in close proximity in the output space. A similar idea might also be very useful when dealing

with the discrete set of amino acids [48], since they also share context-dependent similarities.

For example, when it comes to the context of secondary structure, if we look at the Chou-

Fasman amino acid propensities table [49], glutamic acid and methionine are both strongly

associated with alpha-helices, so it might be useful that such amino acids are represented by

similar vectors when predicting secondary structure.

The embedding layers in rawMSA output a vector of size E ranging from from 10 to 30,

depending on the model, for each input residue in the alignment. In general, we have found

that larger embedding vectors tend to give better results. The embedding layer is used both in

the SS-RSA and the CMAP networks.

2.2.1 SS-RSA. In the case of SS-RSA, a 2D convolutional layer is stacked on top of the

embedding layer, followed by a max pooling layer. The convolutional layer has a number of

filters equal to the dimensionality of the embedding space. The convolution filters have the

shape of column vectors, rather than square matrices as is usually the case, thus the size of the

convolution windows varies between 1 × 10 to 1 × 30 depending on the model. This means

that convolution is performed along each column in the MSA and the information does not

spread across columns (i.e. across adjacent residues in the input sequence). Pooling is per-

formed selecting the maximum value in a window of the same size. In this way, if the dimen-

sion of the input is 31 residues by 500 alignments before embedding and 31 × 500 × 10 after

embedding, this is reduced to a vector of size 31 × 50 × 10 following the convolution and pool-

ing layers, if the convolution and pooling windows are of size 1 × 10. The convolutional and

pooling layers are followed by a stack of two Long Short-Term Memory (LSTM) bidirectional

recurrent layers, where each LSTM module contains 350 hidden units. The final three layers

are fully connected, with softmax layers to output the classification prediction for SS (3 classes:

Helix, Strand, Coil) or RSA (4 or 2 classes), depending on the model. Dropout is applied after

each recurrent or dense layer to avoid overfitting, with variable fractions of neurons being

dropped depending on the model (0.4 to 0.5). All the convolutional layers have ReLU activa-

tions and the outputs are zero-padded to match the two first dimensions of the inputs.

2.2.2 CMAP. For CMAP, the network predicts a whole contact map of size L × L for a

protein of length L. The input, in this case, is not split in windows, but we use the whole width

MSA at once, while the depth is cut at the Y top alignments. The network for the first part of

CMAP is similar to SS-RSA, with an embedding layer followed by up to six (rather than only

one) 2D convolution/max pooling layers along each MSA column. In this case though, the out-

put of the network is a contact map with shape L × L, so the preceding layers should represent

the interaction between pairs of residues. This change of dimensionality is performed with a

custom layer that performs the outer product from the output of the first stack of convolu-

tional layers (H):

OP ¼ Ĥ �H ð1Þ

Where H has dimensionality (L × F × S), Ĥ and �H are obtained by adding singleton dimen-

sions to H ((L × 1 × F × S) and (1 × L × F × S) respectively).

rawMSA: End-to-end Deep Learning
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This operation generates a four-dimensional hidden tensor OP of shape L × L × F × S,

where F and S are the last two dimensions of the hidden tensor before the outer product. This

output is then reshaped to a three-dimensional tensor of shape L × L × (F � S) and passed to a

new stack of six to 20 (depending on the model) 2D convolutional layers with squared convo-

lutions of varied size (3x3, 5x5, 10x10) and number of filters (10 to 50). The last convolutional

layer has shape L × L × 2 and is followed by a softmax activation layer that output the contact

prediction with a probability from 0 to 1. All the convolutional layers have ReLU activations

and the outputs are zero-padded to match the two first dimensions of the inputs. Batch nor-

malization is performed in the outputs of the convolutional layers in the CMAP network.

2.3 Training

rawMSA was implemented in Python using the Keras library [50] with TensorFlow backend

[51]. Training and testing were performed on computers equipped with NVIDIA GeForce

1080Ti, Tesla K80, and Quadro P6000 GPUs.

The training procedure was run including one protein in each batch block, regardless of the

size, and using an RMSprop optimizer with sparse categorical cross-entropy as loss function.

The SS-RSA network was trained for five epochs, while the CMAP network was trained for up

to 200 epochs. During training, a random 10% of the training samples were reserved for vali-

dation, while the rest were used for training. After training, the model with the highest accu-

racy on the validation data was used for testing.

2.4 Data sets

The data set is composed of protein chains extracted from a 70% redundancy-reduced version

of PDB compiled by PISCES [52] in April 2017 with minimum resolution of 3.0 Å and R-fac-

tor 1.0. This set contains 29,653 protein chains.

2.4.1 Avoiding homolog contamination. When training our networks, we want to make

sure that the testing and training sets are rigorously separated so that no protein in the test set

is too similar to any protein that the network has already “seen” during the training phase.

While most secondary structure and solvent accessibility prediction methods have been

using 25-30% sequence identity as the threshold to separate testing and training sets [53–56],

this practice has been discouraged as it has been shown that it is not sufficient to avoid infor-

mation leakage [57]. This is apparently also valid for raw MSA inputs and ur tests separating

sets at 25% sequence identity yields higher accuracies compared to our final results (data not

shown).

To correctly split training and testing sets, we used two databases based on a structural clas-

sification of the proteins: ECOD [58] and SCOPe [59] databases to assign one or more super-

families to each of the protein chains in the initial set. Then, we removed any chains that were

related to more than one superfamily. The set generated from ECOD contains 16,675 proteins

(ECOD set), while the one generated from SCOPe contains 9885 proteins (SCOPe set). The

SCOPe set contains fewer proteins than the ECOD set since SCOPe has a lower coverage of

the PDB. We split each set into five subsets by making sure that no two proteins from the same

superfamily were placed in two separate subsets. This ensured that the respective MSA inputs

would not be too similar to each other and is the recommended practice when training neural

networks using sequence profiles, which are extracted from MSAs [57].

We used the SCOPe subsets to perform five-fold cross-validation on SS-RSA. We also used

one of the ECOD subsets to train and validate CMAP, where the validation set was used to

determine when to stop training to avoid overfitting, and to select the models that would be

ensembled and tested, i.e. the models with the lowest validation error.

rawMSA: End-to-end Deep Learning
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2.4.2 Multiple Sequence Alignments. The MSAs for both SS-RSA and CMAP were

obtained with HHblits [60] by searching with the master sequence against the HMM database

clustered at 20% sequence identity from February, 2016 for three iterations, with 50% mini-

mum coverage, 99% sequence similarity threshold, and 0.001 maximum E-value. We also

obtained a second set of MSAs by running JackHMMER [61], for three iterations and 1e − 3

maximum E-value on the UniRef100 database from February 2016. The HHblits alignments

were used to train and test the SS-RSA networks. The HHblits alignments were also used to

train the CMAP network, while both the HHblits and the JackHMMER alignments were used

as inputs when ensembling CMAP networks (see Ensembling section), as it improved the pre-

diction accuracy. This approach was also tried for the SS-RSA network, but no improvement

was observed.

2.4.3 Test sets. We labeled the CMAP data sets by assigning a native contact map to each

protein. A contact was assigned to a pair of residues in a protein if the Euclidean distance

between their Cβ atoms (Cα for Gly) in the crystal structure from the PDB was lower than 8 Å.

Otherwise, the two residues were assigned the non-contact label.

We tested CMAP on the CASP12 RR (Residue-Residue) benchmark [62], which is com-

posed of 37 protein chains/domains of the Free Modeling class (FM), i.e. protein targets for

which no obvious protein homologs could be found at the time of the experiment (May-

August 2016). To ensure a fair comparison with the predictors which participated in CASP12,

we performed the benchmark in the same conditions to which all the other predictors where

subjected at the time of the CASP experiment. We made sure that all protein structures (from

Apr, 2016) in the training set (Apr, 2016) and sequences (from Feb, 2016) in the HHblist

HMM and UniRef100 databases were released before CASP12 started.

To test SS-RSA, we calculated the secondary structure (SS) and the Relative accessible Sur-

face Area (RSA) with DSSP 2.0.4 [63]. We reduced the eight SS classes (G, H, I, E, B, S, T, C) to

the more common three classes: Coil, Helix, Extended (C, H, E). We used the theoretical Maxi-

mum Accessibility Surface Area (Max ASA) defined in [64] to calculate the RSA from the

absolute surface areas (ASA) in the DSSP output and we used [0, 0.04], (0.04, 0.25], (0.25, 0.5],

(0.5, 1] as thresholds for the four-class RSA predictions (Buried, Partially Buried, Partially

Accessible, Accessible), and [0, 0.25], (0.25, 1] as thresholds for the two-class RSA predictions

(Buried, Accessible). We discarded the proteins for which DSSP could not produce an output,

as well as those that had irregularities in their PDB formats. The final set contained 9,680 pro-

tein chains.

2.4.4 Quality measures. The measure of the performance of the trained ensemble of

SS-RSA networks is the three-class accuracy (Q3) for SS and the four-class and two-class accu-

racy for RSA, which are calculated by dividing the number of correctly classified residues by

the total number of residues in the dataset.

CMAP predictions for the CASP12 RR benchmark set were evaluated in accordance with

the CASP criteria by calculating the accuracy of the top L/5 predicted long-range contacts,

where L is the length of the protein, and the long-range contacts are contacts between residues

with sequence separation distance over 23.

2.4.5 Ensembling. Ensembling models usually yield a consensus model that performs bet-

ter than any of the networks included in the ensemble [65]. Several networks both for CMAP

and SS-RSA have been trained with different parameters (see “Results” section). Even though

some models have worse performances on average, they are still saved. All the saved models

that have been trained on the same set are used at testing time. The outputs from each model

are ensembled to determine the final output. This is done by averaging all outputs from the

softmax units and selecting the final class by picking the class with the highest average

probability.

rawMSA: End-to-end Deep Learning
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In the CMAP case, each model in the ensemble is used to make two predictions for each

target using either HHblits or JackHMMER alignment. Although the CMAP network is

trained only on HHblits alignments, using the JackHMMER alignments in the ensemble

improved the overall accuracy of the predictor.

3 Results and discussion

3.1 Embeddings

Tensorboard in Tensorflow can be used to visualize the output of the embeddings layer to see

how each residue type is mapped on the output space. In Fig 2 we show the embeddings out-

puts for an early version of the SS-RSA network where each amino acid type is mapped on a

4D space. The 4D vectors are projected onto a 2D space by principal component analysis on

Tensorboard. In the figure, the amino acids that are the closest (lowest cosine between the 4D

vectors) to lysine (Fig 2a) and tryptophan (Fig 2b) are highlighted. The amino acids closest to

lysine (K) are histidine (H) and arginine (R), which makes sense, since they can all be posi-

tively charged. Similarly, the residues closest to the hydrophobic tryptophan (W) are also

hydrophobic, indicating that the embeddings can discriminate between different kinds of

amino acids and map them onto a space that makes sense from a chemical point of view.

3.2 SS and RSA predictions

We have used the five-fold cross-validation results to determine the testing accuracy for

SS-RSA. To compare the rawMSA approach against a classic profile-based method, we trained

a separate network by removing the bottom layers from the SS-RSA network (embedding and

first 2D convolution/Pooling layer) and we trained it by using the PSSMs calculated from the

HHblits alignments as inputs (PSSM network). In order to assess the usefulness of amino acid

embeddings, we also train a rawMSA neural network without embedding layer, where the

input alignments are transformed using a simple one-hot encoding of each amino acid (One-

hot100 network). In this case, because of limits imposed by the amount of memory available

Fig 2. 2D PCA of the space of the embedded vectors representing the single residues. In this example, we show the

embedding outputs of a simpler network where the original space has a dimensionality of four. The residues that are

closest (lower cosine between the 4D vectors) to (a) lysine and (b) tryptophan are colored (the closer the residue, the

darker the hue).

https://doi.org/10.1371/journal.pone.0220182.g002
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on our testing machine, we had to limit the one-hot network to 100 alignments only. We tested

and trained the PSSM and one-hot network in the same way we trained the other networks,

both for SS and RSA. In Fig 3 we compare the performance of the PSSM and one-hot network

against several rawMSA networks trained on different numbers of input sequences (100 to

1000 MSA sequences). The boxplot shows how the rawMSA networks with more input

sequences perform generally better, with the rawMSA500 and rawMSA1000 networks per-

forming slightly better than the classic PSSM network in predicting secondary structure, and

all the rawMSA networks outperforming the PSSM network in predicting solvent accessibility.

We also show that the rawMSA100 network outperforms the One-hot100 network both in the

SS and RSA experiments.

The final SS-RSA network is an ensemble of six networks trained in five-fold cross-valida-

tion on 100 to 3000 input MSA sequences per target.

The results are shown in Table 1.

It is difficult to make a direct comparison of rawMSA against other predictors in literature

because of inevitable differences in the datasets. One example of this comes from secondary

structure prediction systems, which have recently been reported to predict at accuracies (Q3)

of up to 84% [66], yet we have not been able to find a recent study where the reported accuracy

is supported by a proper splitting of the training and testing sets (see “Avoiding homolog con-

tamination” paragraph). Running local versions of existing software does not solve that prob-

lem since it is not clear exactly which sequences were used for training. Also, in many cases a

final network is trained using all available sequence, which means that any test is bound to be

contaminated by homologous information. However, given the very large size of our test set,

the rigorousness of our experimental setup, and the fact that rawMSA outperforms our own

PSSM-based method, we believe that rawMSA compares favorably against the state of the art.

The convolutional layers of rawMSA depends on the order of the input sequences, since

that will change the block of aligned positions from which features are extracted. To estimate

the degree if this dependence we trained rawMSA with sequences sorted by sequence similarity

using the BLOSUM62 similarity matrix (rawMSA1000 SS BLOSUM62 sort) and with ran-

domly shuffled sequences (rawMSA1000 SS shuffle), see Table 1). Even though the perfor-

mance decrease is small, neither of these two approaches worked as well as using the MSA as

Fig 3. Per target secondary structure (a) and four-class solvent accessibility (b) accuracy for predictions using one

hot encoding, a number of rawMSA networks, and a classical PSSM network trained and tested on the same

dataset. One hot100 skips the rawMSA embedding step and encodes the alignments using one hot encoding, limited

to the top100 alignments for memory reasons. Four different rawMSA networks are tested at variable MSA depths,

using top 100, 200, 500 or 1000 alignments from the MSAs as input to the SS-RSA network. The average accuracies are

shown as red squares.

https://doi.org/10.1371/journal.pone.0220182.g003
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outputted by HHblits, most likely because it is easier to learn from blocks of similar positions

with smoother mutational transitions.

3.3 CMAP predictions

The final CMAP network is an ensemble of 10 networks trained on 10 to 1000 input sequences

and varying numbers of layers (10 to 24 convolutional layers). The CMAP predictions for each

target have been sorted by the contact probability measure output by the ensemble, then the

top L/5 long-range contacts have been evaluated against the native contact map. The final

accuracy has been calculated as the average of the accuracies for all targets. In order to make a

fair comparison against the other predictors, we have downloaded all of the predictions made

in CASP12 and evaluated them with the same system. In Table 2 we compare the top L/5 long-

range accuracy of rawMSA CMAP against the top 5 CASP12 predictors.

rawMSA outperforms the top predictors in CASP12 under the same testing conditions.

This is unexpected, since it is the only top predictor not to use any kind of explicit coevolu-

tion-based features, or any other inputs than the MSA. On the other hand, CASP12 was held

in 2016 and the field has made rapid progress since then. For example, the group behind Rap-

torX-Contact has reported an improvement of roughly 12 percentage points on this same

Table 1. Results for the SS-RSA networks trained to predict secondary structure and solvent accessibility.

Predictor Accuracy

rawMSA SS ensemble 83.4

One-hot100 SS 80.5

rawMSA100 SS 80.7

rawMSA1000 SS 81.8

rawMSA1000 SS BLOSUM62 sort 80.3

rawMSA1000 SS shuffle 79.8

PSSM SS 81.7

rawMSA RSA ensemble (4-class) 57.7

One-hot100 RSA (4-class) 53.7

rawMSA100 RSA (4-class) 55.0

rawMSA1000 RSA (4-class) 56.1

PSSM RSA (4-class) 54.1

rawMSA RSA ensemble (2-class) 81.2

The number in the predictor name refers to the number of sequences from the MSA that were used; BLOSUM62 sort
and shuffle refers to different sorting of the sequences in the MSA (see text for details).

https://doi.org/10.1371/journal.pone.0220182.t001

Table 2. Comparison of rawMSA against the top 5 contact prediction methods in CASP12.

Predictor Domain Count L/5 LR Accuracy

rawMSA CMAP 37 43.8

RaptorX-Contact 37 43.0

iFold_1 36 42.3

Deepfold-Contact 37 38.6

MetaPSICOV 37 38.4

MULTICOM-CLUSTER 37 37.9

All predictions from CASP12 have been re-evaluated to ensure a fair comparison. The accuracy is calculated on the top L/5 long-range contacts.

https://doi.org/10.1371/journal.pone.0220182.t002
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CASP12 test set only months after the experiment was closed with a new deeper version of

their neural network [44].

Moreover, we expect rawMSA to be better than coevolution-based methods only whenever a

relatively small number of sequences can be found in an MSA for a given target sequence, since

only up to 1000 input MSA sequences could be used in training and testing because of limits in

the amount of GPU RAM available (<25GB). Coevolution-based methods are more accurate as

the number of sequences in the MSA increases and better metagenomic datasets [67] will pro-

duce larger MSAs for more target sequences. In the latest CASP13 experiment [68], where we

participated with a prototype of rawMSA trained on a smaller ensemble of simpler models (up

to 400 sequences per MSA) using a smaller sequence databases (Uniclust30), rawMSA was not

among the best predictors in the contact prediction category. Nevertheless, the rawMSA proto-

type still outperformed a number of other coevolution-based methods, in particular the METAP-

SICOV_baseline method for MSAs with< 400 sequences, see Fig 4. For sequences with> 400

sequences in the MSA METAPSICOV_baseline method is still better. However, since we observe

a clear correlation in testing accuracy and the number of sequences used as input, it is reasonable

to expect that rawMSA will benefit from training on GPUs with larger memory allowing more

sequences and deeper architectures to be used. In addition, rawMSA CMAP could also be

improved by predicting distances, which seem to be direction in which the field is heading.

4 Conclusion

We have presented a new paradigm for the prediction of structural features of proteins called

rawMSA, which involves using raw multiple sequence alignments (MSA) of proteins as input

Fig 4. Impact of the number of sequences in the MSA on performance for rawMSA and METAPSICOV_baseline in the CASP13 FM

targets.

https://doi.org/10.1371/journal.pone.0220182.g004
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instead of compressing them into protein sequence profiles, as is common practice today.

Furthermore, rawMSA does not need any other manually designed or otherwise hand-picked

extra feature as input, but instead exploits the capability that deep networks have of automati-

cally extracting any relevant feature from the raw data.

To convert MSAs, which could be described as categorical data, to a more machine-friendly

format, rawMSA adopts embeddings, a technique from the field of Natural Language Process-

ing to adaptively map discrete inputs from a dictionary of symbols into vectors in a continuous

space.

To showcase our novel representation of the MSA, we developed a few different flavors of

rawMSA to predict secondary structure, relative solvent accessibility and inter-residue contact

maps. All these networks use the same and only kind of input, i.e. the MSA. After rigorous test-

ing, we show how rawMSA SS-RSA sets a new state of the art for these kinds of predictions,

and rawMSA CMAP performs on par with methods using more pre-calculated features in the

inter-residue contact map prediction category in CASP12 and CASP13. Clearly demonstrating

that rawMSA represents a promising development that can pave the way for improved meth-

ods using rawMSA instead of sequence profiles to represent evolutionary information in the

coming years.
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23. Basu Sankar, Söderquist Fredrik, Wallner Björn. Proteus: a random forest classifier to predict disorder-

to-order transitioning binding regions in intrinsically disordered proteins. Journal of computer-aided

molecular design. 2017; 31(5):453–466. https://doi.org/10.1007/s10822-017-0020-y PMID: 28365882

24. Fariselli P, Casadio R. A neural network based predictor of residue contacts in proteins. Protein engi-

neering. 1999; 12(1):15–21. https://doi.org/10.1093/protein/12.1.15 PMID: 10065706

25. Punta M, Rost B. PROFcon: novel prediction of long-range contacts. Bioinformatics. 2005; 21

(13):2960–2968. https://doi.org/10.1093/bioinformatics/bti454 PMID: 15890748

rawMSA: End-to-end Deep Learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0220182 August 15, 2019 13 / 15

https://doi.org/10.1016/s0022-2836(05)80269-4
http://www.ncbi.nlm.nih.gov/pubmed/2359125
https://doi.org/10.1038/358086a0
http://www.ncbi.nlm.nih.gov/pubmed/1614539
https://doi.org/10.1016/0959-440X(95)80081-6
http://www.ncbi.nlm.nih.gov/pubmed/7648326
https://doi.org/10.1016/S0959-440X(00)00063-4
http://www.ncbi.nlm.nih.gov/pubmed/10753811
https://doi.org/10.1006/jmbi.1997.0959
http://www.ncbi.nlm.nih.gov/pubmed/9149153
https://doi.org/10.1126/science.1187409
https://doi.org/10.1110/ps.0236803
http://www.ncbi.nlm.nih.gov/pubmed/12717029
https://doi.org/10.1006/jmbi.1999.3091
http://www.ncbi.nlm.nih.gov/pubmed/10493868
https://doi.org/10.1093/bioinformatics/14.10.892
http://www.ncbi.nlm.nih.gov/pubmed/9927721
https://doi.org/10.1002/prot.10082
https://doi.org/10.1093/bioinformatics/bti203
http://www.ncbi.nlm.nih.gov/pubmed/15585524
https://doi.org/10.1093/nar/gkv332
http://www.ncbi.nlm.nih.gov/pubmed/25883141
https://doi.org/10.1093/nar/gkw306
http://www.ncbi.nlm.nih.gov/pubmed/27112573
https://doi.org/10.1002/prot.340200303
https://doi.org/10.1002/prot.10069
https://doi.org/10.1002/prot.20176
https://doi.org/10.1002/prot.20176
https://doi.org/10.1186/s12859-018-2065-x
http://www.ncbi.nlm.nih.gov/pubmed/29745828
https://doi.org/10.1016/j.str.2003.10.002
http://www.ncbi.nlm.nih.gov/pubmed/14604535
https://doi.org/10.1093/bioinformatics/bth195
http://www.ncbi.nlm.nih.gov/pubmed/15044227
https://doi.org/10.1093/bioinformatics/btu744
http://www.ncbi.nlm.nih.gov/pubmed/25391399
https://doi.org/10.1007/s10822-017-0020-y
http://www.ncbi.nlm.nih.gov/pubmed/28365882
https://doi.org/10.1093/protein/12.1.15
http://www.ncbi.nlm.nih.gov/pubmed/10065706
https://doi.org/10.1093/bioinformatics/bti454
http://www.ncbi.nlm.nih.gov/pubmed/15890748
https://doi.org/10.1371/journal.pone.0220182


26. Kukic P, Mirabello C, Tradigo G, Walsh I, Veltri P, Pollastri G. Toward an accurate prediction of inter-

residue distances in proteins using 2D recursive neural networks. BMC Bioinformatics. 2014; 15:6.

https://doi.org/10.1186/1471-2105-15-6 PMID: 24410833

27. Wang S, Sun S, Li Z, Zhang R, Xu J. Accurate De Novo Prediction of Protein Contact Map by Ultra-

Deep Learning Model. PLoS Computational Biology. 2017; 13(1):e1005324. https://doi.org/10.1371/

journal.pcbi.1005324 PMID: 28056090

28. Ray A, Lindahl E, Wallner B. Improved model quality assessment using ProQ2. BMC Bioinformatics.

2012; 13(1):224. https://doi.org/10.1186/1471-2105-13-224 PMID: 22963006

29. Uziela Karolis, Menendez Hurtado David, Shu Nanjiang, Wallner Björn, Elofsson Arne. ProQ3D:

improved model quality assessments using deep learning. Bioinformatics. 2017; 33(10):1578–1580.

https://doi.org/10.1093/bioinformatics/btw819 PMID: 28052925

30. Cao R, Adhikari B, Bhattacharya D, Sun M, Hou J, Cheng J. QAcon: single model quality assessment

using protein structural and contact information with machine learning techniques. Bioinformatics.

2017; 33(4):586–588. https://doi.org/10.1093/bioinformatics/btw694 PMID: 28035027

31. Rost B, Sander C. Prediction of protein secondary structure at better than 70% accuracy. Journal of

Molecular Biology. 1993; 232(2):584–599. https://doi.org/10.1006/jmbi.1993.1413 PMID: 8345525

32. Cuff JA, Barton GJ. Application of multiple sequence alignment profiles to improve protein secondary

structure prediction. Proteins: Structure, Function, and Bioinformatics. 2000; 40(3):502–511. https://doi.

org/10.1002/1097-0134(20000815)40:3%3C502::AID-PROT170%3E3.0.CO;2-Q

33. Rohl CA, Strauss CE, Misura KM, Baker D. Protein structure prediction using Rosetta. In: Methods in

Enzymology. vol. 383. Elsevier; 2004. p. 66–93.

34. McGuffin LJ, Bryson K, Jones DT. The PSIPRED protein structure prediction server. Bioinformatics.

2000; 16(4):404–405. https://doi.org/10.1093/bioinformatics/16.4.404 PMID: 10869041

35. Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated protein structure and

function prediction. Nature Protocols. 2010; 5(4):725. https://doi.org/10.1038/nprot.2010.5 PMID:

20360767
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