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Abstract
Purpose of Review This review presents a selection of regulatory molecules of tumor microenvironmental properties and
metastasis. Signaling pathways controlling mesenchymal biology in bone and soft-tissue sarcomas found in children and
adolescents are prioritized.
Recent Findings The tumor microenvironment of pediatric tumors is still relatively unexplored. Highlighted findings are mainly
on deregulated genes associated with cell adhesion, migration, and tumor cell dissemination. How these processes are involved in
a mesenchymal phenotype and metastasis is further discussed in relation to the epithelial to mesenchymal transition (EMT) in
epithelial tumors. Cell plasticity is emerging as a concept with impact on tumor behavior.
Summary Sarcomas belong to a heterogeneous group of tumors where local recurrence and tumor spread pose major challenges
despite intense multimodal treatments. Molecular pathways involved in the metastatic process are currently being characterized,
and tumor-regulatory properties of structural components, and infiltrating, non-malignant cell types should be further
investigated.

Keywords Pediatric sarcoma . Osteosarcoma . Rhabdomyosarcoma . Ewing sarcoma . Tumor microenvironment . Metastasis .

EMT .MET . Extracellular matrix . Stroma . TGFβ . PDGF . CXCR4

Introduction

Pediatric tumors typically present with an overall low muta-
tional burden but often with recurrent chromosomal aberra-
tions [1••]. Detection of identified pathognomonic fusion
genes is for relevant sarcoma subtypes already used in the
diagnostic routine, and there is a link between fusion gene
status and worse outcome among non-metastatic patients [2].
Clearly, genetic and epigenetic changes in tumor cells are of

importance for tumor progression and these changes also con-
tribute to modifications of the tumor microenvironment.

Numerous studies have by now elegantly illustrated how
activated non-malignant stromal cells control matrix stiffness;
become contractile and pro-invasive [3, 4]; and importantly,
how these activities affect drug efficacy and metastasis [5].
However, the majority of studies on the tumor microenviron-
ment have been carried out in epithelial entities of adulthood,
such as breast carcinomas. Mesenchymal tumors in children
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are fundamentally different, and the function of non-
malignant cells in these tumors is less characterized. In un-
treated tumors, activated stromal cells are less likely to form
distinct compartments as they often do in epithelial tumors.
Instead, they intermix with tumor cells, immune cells, and
other cell types in a tumor-surrounding pseudocapsule, or
possibly support endothelial tube formation during angiogen-
esis. Whether their structural support is required during sarco-
ma progression has not been systematically investigated, and
the absence of specific markers for non-malignant stromal
cells in mesenchymal tumors makes such studies more
challenging.

How metastatic spread of pediatric tumors is controlled by
the tumor microenvironment is still an early field of research.
Common sarcoma subtypes of childhood include osteosarco-
ma, Ewing sarcoma, and rhabdomyosarcoma. The prognosis
of these tumors is relatively favorable compared to many sar-
comas in adults, but metastatic spread is still problematic.
Osteosarcoma principally originates from bone and is likely
the subtype where the tumor microenvironment has beenmost
characterized. Ewing sarcoma arises in either bone or soft
tissue, whereas rhabdomyosarcoma is a soft-tissue sarcoma
displaying signs of a myogenic program with skeletal muscle
features. Recent findings from mainly these three pediatric
sarcomas provide the basis for this review on the tumor mi-
croenvironment and mesenchymal mechanisms regulating
cell migration and metastasis.

Clinical Features and Treatment Principles

Symptoms

Bone sarcomas are generally characterized by pain, whereas a
painless mass is more common in soft-tissue sarcomas. A
palpable mass may or may not be present in bone tumors.
Constitutional symptoms such as malaise, wasting, or gener-
alized signs of inflammation with fever are only occasionally
observed if the tumors are large and necrotic [6, 7]. In some
cases, the disease is spread at diagnosis with obvious
metastases.

Pre-Treatment Staging

Rhabdomyosarcomas and Ewing sarcomas are high-grade
tumors, whereas osteosarcomas can be of high grade or
low grade. Staging is based on the TNM or the musculo-
skeletal tumor society system, and the clinical group sys-
tem is applicable in rhabdomyosarcoma [8, 9]. About 75–
90% of pediatric sarcomas initiate as localized disease, but
micrometastases are assumed to be present in practically
all cases. This is demonstrated in historical survival data of
patients who did not receive chemotherapy, where radical

surgery was associated with good local control of the dis-
ease, but low overall survival [7, 10].

The three major types of pediatric sarcomas have a similar
pattern of metastasis, with hematogenous spread as the classic
route of dissemination. Lungs are the most prominent meta-
static site, thereafter bone and bone marrow. Less common
sites are lymph nodes (especially for rhabdomyosarcomas),
viscera, and soft tissues [8, 11]. The fact that micrometastatic
disease is a rule rather than an exception in high-grade pedi-
atric sarcomas suggests that the underlying mechanisms of
tumor cell dissemination are active in early stages of the
disease.

Treatment

Modern treatment regimens include early systemic chemo-
therapy to eradicate micrometastatic disease. This is combined
with local excision of the primary tumor and macrometastases
when feasible. Most patients are given neoadjuvant chemo-
therapy for local disease control and continue with additional
cycles of chemotherapy after surgery [9, 12, 13].
Radiotherapy is given particularly when surgical margins are
poor, and for local control of radiosensitive tumors, such as
Ewing sarcomas and rhabdomyosarcomas, when the primary
tumor is inoperable.

Genetics, Molecular Diagnostics,
and Prognostic Factors

Fusion Gene Status

Detection of tumor-specific translocations is often diagnosti-
cally useful in pediatric sarcomas [14]. EWS-ETS gene fusion
variants are found in Ewing sarcomas, and similarly, the most
common fusion genes associatedwith alveolar rhabdomyosar-
coma are PAX3-FOXO1 and PAX7-FOXO1. Accordingly, the
two major subtypes of rhabdomyosarcoma, with the alveolar
subtype being more aggressive, are with some exceptions dis-
tinguishable with modern techniques. However, even though
embryonal rhabdomyosarcomas typically develop earlier
along the developmental program compared to the alveolar
subtype, they remain clinically and molecularly indistinguish-
able from fusion gene-negative alveolar rhabdomyosarcomas
[15••, 16].

Clinicopathological Factors Associated with Prognosis

The prognosis of pediatric sarcoma is dependent on a series of
factors, including size and site of the primary tumor and age of
the patient [9, 17, 18]. In this context, the initial disease burden
is crucial, where children presenting with localized disease
have a much better prognosis than children with evident tumor
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spread. The single most important treatment-associated factor
for patient outcome is response to chemotherapy. In bone sar-
comas, this is routinely measured as the degree of necrosis
after neoadjuvant chemotherapy [18, 19]. Several histopatho-
logical protocols exist [20–23]. Poor responders have inferior
oncologic outcome and are defined, according to the most
widely accepted criteria, as those with less than 90%
chemotherapy-induced tumor necrosis. Another treatment-
associated factor of importance is the quality of surgical mar-
gins [24].

Cell Migration and Metastatic Dissemination

When tumor cells initiate the multistep process of me-
tastasis, they have begun a journey where adaptation to
foreign tissue microenvironments is essential for surviv-
al. There are still many unknowns about selection pro-
cesses during disease progression, where only some sar-
coma cells reach anatomically distant organs and suc-
cessfully metastasize. The discussion below is focused
on mesenchymal cell plasticity and cell adhesion mole-
cules involved in cell migration and metastasis. Notably,
mesenchymal properties in sarcoma are regulated by
multiple developmental signaling pathways, and some
of these were recently reviewed elsewhere [25].

Migration and Cell Adhesion

Cell migration can be broadly categorized as collective cell
migration (epithelial cancers) or individual cell migration (sar-
coma). The mesenchymal cell migration of sarcomas can in-
volve both single cells or cells in chains and is typically reg-
ulated by the extracellular matrix (ECM), various integrins,
and proteases. Cadherins, which form adherens junctions, are
broadly implicated in direct cell-cell contacts in multicellular
organisms. Mesenchymal adherens junctions are expected to
be more transient compared to the epithelial counterpart, and
the stability is partly controlled by endocytosis and regulation
of the cytoskeleton.

It is well known that downregulation of E-cadherin is
essential during the cellular program of epithelial to
mesenchymal transition (EMT), and its upregulation is
conversely linked to the mesenchymal to epithelial tran-
sition (MET) during establishment of distant metastasis.
A mesenchymal to amoeboid transition (MAT) has also
been described in osteosarcoma during transendothelial
migration [26•]. Recently, when mesenchymal traits
were reviewed in epithelial cancers, a partial EMT was
concluded to be beneficial for the tumor-initiating abil-
ity, whereas drug resistance plateaued, and was main-
tained, with further activation of the EMT program
[27]. Invasiveness was most effective when strong

activation of EMT led to single cell migration instead
of the classic multicellular carcinoma cell migration.

The process of EMT in sarcoma is by definition less
obvious, but E-cadherin expression is also here known
to reduce anchorage-independent growth and spheroid
formation [28•]. The tight junction protein claudin-1 is
another example of an epithelial differentiation marker
found in sarcoma [29]. Evidently, epithelial markers in
sarcomas have been shown to correlate with improved
patient outcome [30, 31, 32•]. What may sound contra-
intui t ive, though, is that forced expression of
mesenchymal-associated adhesion molecules has been
shown to inhibit cell migration and metastasis in osteo-
sarcoma while being associated with bone metastasis in
carcinomas and Ewing sarcoma [33, 34]. However, both
cadherin-11 and N-cadherin are highly expressed in nor-
mal osteoblasts, where they regulate cell function and
differentiation. Therefore, a subtype-specific tumor mi-
croenvironment may explain why reduced levels are
suggested to be of importance during disease progres-
sion and metastasis in osteosarcoma [35].

Cadherin switching and induced expression of the
EMT marker N-cadherin is associated with morphologi-
cal changes toward a mesenchymal phenotype with mi-
gratory and invasive properties in malignant cells of
epithelial origin. Similar mechanisms have also been
reported in mesenchymal malignancies. For example, in-
duction of N-cadherin and alpha9-integrin increases cel-
lular invasion in a Notch-dependent manner in rhabdo-
myosarcoma [36]. Notch signaling is a developmental
pathway generally known to participate in sarcoma pro-
gression at multiple levels with regulatory functions on
cell migration, stemness, and angiogenesis. In osteosar-
coma, endothelial cells and pericytes have been sug-
ges ted as sources fo r Notch ac t iva t ion [37] .
Importantly, deregulated developmental processes are
believed to play a major role in pediatric sarcomas.

By now, there are numerous publications on disease-
regulatory roles of epithelial and mesenchymal markers
involved in cell movements in pediatric sarcoma.
Preussner et al. recently explored the importance of
epithelial/mesenchymal states in the context of tumor
cell plasticity in a genetic mouse model of rhabdomyo-
sarcoma [38••]. In a genome-unstable, tumor-prone mi-
croenvironment of regenerating muscle, muscle stem
cells initiated successful tumorigenesis by a MET-like
process via zygotic Dux transcription factors. In the
experimental setting, overexpression of Duxbl in wild-
type muscle stem cells resulted in cadherin expression,
immortalization, and an ability to form tumors. The au-
thors further linked Dux transcription factors to stem
cell expression profiles in tumors of germ cell or epi-
thelial origin. Hereby, this study provides additional
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evidence for tumor heterogeneity and detection of stem
cell traits in rhabdomyosarcoma as indicated in earlier
literature [39, 40].

Models of Dissemination

Invasive properties of primary tumors may not always
imply a capacity to establish distant metastases followed
by decreased overall survival. A recent EpSSG study
demonstrated that small pulmonary nodules at diagnosis
could be present in over 20% of otherwise localized
rhabdomyosarcoma, but these nodules were not found
to impact survival [41]. Clearly, what determines meta-
static outgrowth before, during, or after local or system-
ic therapy is essential to understand at multiple levels.

The traditional linear progression model of metastasis
is based on the assumption that genetic mutations accu-
mulate in the tumor over time, and eventually, subclonal
populations acquire metastatic features. Compelling evi-
dence instead favors an early dissemination process,
with more effective colonization, and pathways of par-
allel progression [42]. This latter model is well in line
with that the mutational landscape at metastatic sites can
be fundamentally different from the primary tumor.

Regardless of whether dissemination occurs early or
late during tumor progression, it also involves different
anatomic locations for metastatic outgrowth in a tumor
type-specific manner. The organotropic model of metas-
tasis describes how organ tropism or pre-metastatic
niches facilitate successful metastasis according to a
modified notion of the classic seed and soil hypothesis,
where certain tumor cells (seed) have an affinity for the
milieu (soil) of certain organs [43]. In contrast, the
anatomical/mechanical model considers a filter and flow
principle of metastatic clones, where anatomical barriers
control the seeding [44]. The relative contribution of
each model in various tumor types can be debated, but
it is now clear that circulating tumor cells is a frequent
phenomenon and metastasis is generally considered to
be an inefficient process [44].

Regulators of Metastasis in the Mesenchymal
Tumor Microenvironment

The sarcoma tumor microenvironment can vary extensively
with subtype, anatomic location, age, gender, genomic com-
plexity, and prior treatment. Molecules of relevance from a
mesenchymal stroma perspective are reviewed below with a
particular focus on those regulating cellular transition states
and migration in pediatric sarcoma (schematic summary in
Fig. 1). The importance of vascular cells, immune cells, and

immunotherapy in sarcoma has recently been reviewed else-
where [45–47].

Key Players in the Sarcoma Tumor Microenvironment

The tumor microenvironment is broadly composed of
malignant cells and non-malignant stromal cells, vascu-
lar cells, and immune cells. Structural ECM proteins
(such as collagens) and matricellular proteins (such as
osteopontin) provide support and signaling cues of im-
portance for cell movements. Several ECM-associated
proteins are regulated by transforming growth factor be-
ta (TGFβ) and act as potential biomarkers [48]. A
unique feature of sarcomas is that the distinction be-
tween malignant cells and stromal cells is particularly
vague due to the mesenchymal origin of the tumor cells.
Cellular transdifferentiation of bone marrow-derived
mesenchymal stem cells can also occur, which is partic-
ularly characterized as important in osteosarcoma pro-
gression [26•].

A hypoxic tumor microenvironment generally contrib-
utes to tumor progress ion, and the impact of
intratumoral oxygen gradients has been studied in sar-
coma cell invasion [49]. Hypoxia-induced HIF1α acti-
vates the SDF1-CXCR4 signaling axis and the observed
elevated levels of the chemokine receptor CXCR4 per-
sist when cells return to normoxic conditions [50•]. In
sarcoma, there is evidence for that the SDF-1 ligand
induces chemotaxis across membranes, adhesion to en-
dothelial cells, and matrix metalloproteinase 2 (MMP-2)
expression [51]. Both MMP-2 and MMP-9 have been
suggested as prognostic markers and associate with me-
tastasis in osteosarcoma [52, 53].

CXCR4 expression is detected in 67% of osteosarco-
mas and correlates with vascular endothelial growth fac-
tor (VEGF) expression and decreased patient survival
[54, 55]. A correlation with decreased patient survival
is also reported in rhabdomyosarcoma [56]. By now,
there are numerous tumor settings where CXCR4-
positive malignant cells are mechanistically likely to
metastasize to SDF1 (CXCL12)-expressing organs, such
as the bone marrow [51]. The unique bone marrow mi-
croenvironment, with resident stem cells and progenitor
cells, in turn has a propensity to attract and support
disseminating tumor cells of different origin. Studies
further demonstrate that local interaction with, or re-
cruitment of, bone marrow-derived mesenchymal stem
cells promotes primary tumor growth and invasion
[57]. One proposed mechanism of action of mesenchy-
mal stem cells in the tumor microenvironment is to
contribute to stemness and chemoresistance via the
NFκB pathway and IL6 secretion [58].

90 Page 4 of 11 Curr Oncol Rep (2019) 21: 90



Extracellular Matrix and Associated Proteins

Convincing work from Weaver and others have with time
contributed to an increased basic understanding about how
matrix stiffness and physical environments around cancerous
cells matter for tumor progression [59]. In sarcomas, molecu-
lar findings demonstrate that the mechanical and chemical
properties of the tumor microenvironment act together in a
feedback loop to accelerate sarcoma motility and metastasis
[60]. However, ECM proteins often have pleiotropic effects in
the tumor microenvironment and must be considered in a
context-specific manner when it comes to organ and tissue
type.

This can be exemplified by lysyl oxidases (LOX), which
are considered to be powerful regulators of structural modifi-
cations in normal connective tissue, fibrotic disease, and can-
cer. The LOX family consists of catalyzing enzymes involved
in cross-linking of collagen and elastin in the tumor microen-
vironment. By now, numerous studies have demonstrated an
active role of LOX family members in tumor progression and
metastasis in tumor types of different origin. There are also

reports on tumor-suppressive activities, for example in osteo-
sarcoma [61]. In Ewing sarcoma, the EWS-FLI oncoprotein
downregulates LOX and the reported tumor-suppressive ac-
tivities have been linked to a propeptide domain [62]. Both
LOX and LOXL1 contain prodomains and are processed ex-
tracellularly in contrast to the rest of the family members
LOXL2, LOXL3 and LOXL4. For the mature protein to be-
come active, proteolytic removal of its N-terminal LOX-
propeptide, LOX-PP, is required.

Thrombospondin-1 (TSP1) represents a classic example of
a glycoprotein in the tumor microenvironment and is com-
monly recognized for its anti-angiogenic functions and impact
on tumor cell invasion via multiple cell surface molecules and
matrix metalloproteinase interactions [63, 64]. Its pro-
adhesive activities in osteosarcoma have been linked to the
α4β1 integrin [65]. Since trabectedin was approved for treat-
ment of advanced or metastatic soft-tissue sarcoma, several
drug mechanisms of actions have been proposed, among
others, anti-angiogenic activities on endothelial cells and up-
regulation of TSP1 [66]. The same study illustrated impaired
ECM remod e l i n g d u e t o a n i n c r e a s e d t umo r

Osteosarcoma Ewing sarcoma

Non-malignant

Tumor Cells

Metastatic Site

TGF
PDGF

CXCR4

Hematogenous spread

CXCL12

Primary Tumor Site

LOX

MMP

mesenchymal
cells

IL-6

VEGF
CTGF

Rhabdomyosarcoma, 
embryonal

Rhabdomyosarcoma, 
alveolar

Fig. 1 Schematic summary and representative microphotographs of the
histomorphological presentation of childhood sarcomas. In front: key
molecular pathways discussed in the text. Top left: embryonal
rhabdomyosarcomas (ERMS) generally present as primitive small blue
round mesenchymal cells with varying degrees of myogenic
differentiation (commonly identified with routine immunohistochemical
markers). Tumors associated with an epithelial mucosa are commonly
referred to as botryoid ERMS and have a generally better prognosis.
RMS may also present as anaplastic/pleomorphic (TP53 mutation
associated) or sclerotic/spindle cell (MYOD1 mutation associated)
variants with poorer prognosis. Top right: alveolar rhabdomyosarcomas
(ARMS) are small blue round cell tumors, with nests or sheets of tumor
cells growing in alveolar spaces. Solid cases lack alveolar patterns and

only present with fibrovascular septa. Bottom left: osteosarcomas (OS)
are diagnosed based on clinical, radiological, and histopathological
features. The tumor cells produce pink osteoid matrix (immature
neoplastic bone) and permeate adjacent cortical bone or soft tissue. In
the classic high-grade intramedullary OS, the tumor cells are pleomorphic
and hyperchromatic and may be dominated by osteoblastic (represented
in the figure), chondroblastic, or fibroblastic features. Bottom right:
Ewing sarcomas (ES) are small blue undifferentiated round cell tumors
that usually have cytoplasmic glycogen vacuoles and rarely a stromal
component. The figure depicts a neoadjuvant-treated tumor with partial
necrosis (defined as a poor responder according to the study protocol
criteria)
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microenvironmental synthesis of tissue inhibitor of metallo-
proteinases 1 and 2. To what extent TSP1 can act as a regulator
of angiogenesis-dependent dormancy remains to be seen.

Mesenchymal Growth Factors

Cell proliferation and differentiation are often tightly linked
processes and regulated by growth factors such as TGFβ,
platelet-derived growth factor (PDGF), and fibroblast growth
factor (FGF) in mesenchymal stem cells [67]. TGFβ is partic-
ularly known as a key regulator of the EMT phenomenon and
the associated tumor progression in multiple tumor types. In
osteosarcoma, high levels of TGFβ correlate with grade,
chemoresistance, and presence of metastases [68, 69].
Similarly, overexpression of the downstream EMT transcrip-
tion factors, such as Snails, ZEBs, or Twist, promotes tumor
cell spread [70], while overexpression of the inhibitory tran-
scription factor Smad7, or pharmacological inhibition, pre-
vents disease progression [71–74]. However, genetic manip-
ulations and in vivo analyses also demonstrate potential
tumor-suppressive roles of TGFβ signaling in sarcoma [75].

Members of the TGFβ family act on different cell types in
the tumor microenvironment. The TGFβ co-receptor endoglin
is for example considered to be a vessel marker in tumor
biology but is also expressed by malignant cells and has been
linked to tumor cell plasticity and worse patient survival in
Ewing sarcoma [76]. Other TGFβ-regulated factors in angio-
genesis include VEGF and connective tissue growth factor
(CTGF) [77]. VEGF expression has been associated with ves-
sel density and decreased disease-free survival of osteosarco-
ma patients [78, 79]. CTGF was recently shown to promote
angiogenesis, increase MMP-2/3 expression and cell migra-
tion in osteosarcoma, whereas knockdown of CTGF reduced
lung metastasis in an experimental mouse model [80–82].
Other studies have shown that CTGF can increase drug resis-
tance in osteosarcoma as well as regulate VEGF production
from fibroblasts [83, 84].

The TGFβ pathway also participates in the selective sup-
pression of the immune system [85, 86]. Osteosarcoma cells
are able to control the recruitment and differentiation of infil-
trating immune cells and establish a local immune tolerant
microenvironment, allowing tumor progression [87].
Experiments have further shown that the immune response
in osteosarcoma can be restored by combining an anti-TGFβ
antibody with dendritic cells [88]. A novel mechanism by
which tumors escape surveillance by the innate immune sys-
tem was recently described by Gao et al. using a model system
of methylcholanthrene (MCA)-induced fibrosarcoma. The
study suggested that TGFβ-driven tumor immunoevasion in-
cluded conversion of anti-tumoral NK cells into type 1 innate
lymphoid cells with lost ability to control local tumor growth
and metastasis [89].

Another developmental signaling pathway that is potential-
ly activated during sarcomagenesis is the PDGF pathway.
Recently, PDGF signaling was shown to play a role in main-
taining cancer stem cell phenotypes such as self-renewal, in-
vasion, and chemotherapy resistance in sarcoma [40, 90•].
Higher levels of phosphorylated PDGFRα/β and EMT pro-
teins were detected in spheroid cultures (enriched for cancer
stem cells), while the PDGFRα/β-targeting tyrosine kinase
inhibitor imatinib reduced migration and invasion up to 80%
and reduced expression of EMT proteins. These findings are
in line with some of the previously reported oncogenic mech-
anisms of action of PDGF signaling, including autocrine stim-
ulation of tumor cells, paracrine stimulation of stromal cells,
promotion of angiogenesis, and regulation of the tumor inter-
stitial fluid pressure (IFP), which controls the influx and eflux
of agents [91–93].

In general, members of the PDGF family can be linked to
primary tumor growth, metastasis, drug resistance, and poor
clinical outcome in malignances of different cellular origin,
but the role of PDGF activity in different sarcoma subtypes
remains unclear [94]. Genetic aberrations of PDGF receptors
are only detected in about 2% of pediatric cancers [1••]. Still,
PDGF ligands and/or receptors are frequently expressed in
rhabdomyosarcoma, osteosarcoma, and Ewing sarcoma and
correlate with clinical outcome [40, 95–99]. Interestingly,
PAX3-FOXO1 (alveolar rhabdomyosarcoma), and EWS-ETS
(Ewing sarcoma) are both examples of fusion genes with ca-
pacity to experimentally induce expression of PDGF family
members [95, 100].

Notably, identified resistance mechanisms to therapeutic
agents in sarcoma have included deregulated PDGF signaling.
A recent example of this is the reported feedback interaction
between CXCR4 and PDGF signaling in Ewing sarcoma,
where high expression of CXCR4 correlates with metastasis
and poor patient survival [101, 102•]. When tumor cells were
treated with a CXCR4-targeting agent, compensatory activa-
tion of PDGFRβ led to increased proliferation that was
counteracted by multi-kinase inhibitor treatment with
dasatinib. Another report, from rhabdomyosarcoma, has iden-
tified amplified, overexpressed, and constitutively activated
PDGFRα as an acquired resistance mechanism to an agent
targeting insulin-like growth factor I receptor (IGF-IR)
[103]. Altogether, these reports highlight the need for investi-
gating mechanisms of action of anti-cancer agents to identify
suitable combination treatments.

Challenges and Future Directions

Oncologic treatment of pediatric sarcomas has classically re-
lied on chemotherapy. Various agents have been used, and
these have in common the preferential cytotoxicity against
the malignant cells of the primary tumor and any metastatic
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site. We are now entering a new era in oncology, mainly char-
acterized by the introduction of combination treatments and
targeted therapy directed against malignant cells and/or cells
of the tumor microenvironment. Such examples include ima-
tinib for dermatofibrosarcoma protuberans and gastrointesti-
nal stromal tumors and pazopanib for metastatic non-
adipocytic soft-tissue sarcoma [94].

Other novel sarcoma treatments include trabectedin, which
has been approved by the European Medicines Agency
(EMA) for treatment of soft-tissue sarcomas in adults. Apart
from direct activity on malignant cells, trabectedin modulates
the phenotype of tumor-associated macrophages. Another
EMA-approved treatment regimen targeting macrophages is
muramyl tripeptide (mifamurtide), which is used for treatment
of osteosarcoma. Immunotherapy has recently emerged as a
promising strategy tomodulate immune cell activity in subsets
of patients but is still under early investigation in sarcoma.
Therapeutic modification of the immune response in the pedi-
atric sarcoma microenvironment is also explored using tumor
vaccines. How effective such treatments would be remains to
be determined.

Conclusion

An increased understanding about tumor microenvironmental
activities in pediatric sarcoma progression is essential for im-
proving patient outcome and quality of life. Studies in com-
mon cancers of epithelial origin have been useful in the iden-
tification of candidate molecular pathways involved in metas-
tasis and therapeutic resistance in sarcoma. However, the mes-
enchymal origin of sarcomas makes them unique and cellular
processes like EMTandMETcannot be discussed in the same
manner as in epithelial tumors. The heterogeneity between,
and within, sarcoma subtypes is also particularly challenging.
Consequently, how findings from other settings can be trans-
lated to pediatric sarcoma remains to be further explored.
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