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Abstract
In response to myocardial infarction (MI), neutrophils (PMNs) are early responders that initiate the inflammatory reaction. 
Because macrophages and fibroblasts show polarization states after MI, we hypothesized PMNs also undergo phenotypic 
changes over the MI time course. The objective of the current study was to map the continuum of polarization phenotypes 
in cardiac neutrophils over the first week of MI. C57BL/6J male mice (3–6 months old) underwent permanent coronary 
artery ligation to induce MI, and PMNs were isolated from the infarct region at days 1, 3, 5, and 7 after MI. Day 0 served 
as a no MI negative control. Aptamer proteomics was performed on biological replicates (n = 10–12) for each time point. 
Day (D)1 MI neutrophils had a high degranulation profile with increased matrix metalloproteinase (MMP) activity. D3 MI 
neutrophil profiles showed upregulation of apoptosis and induction of extracellular matrix (ECM) organization. D5 MI 
neutrophils further increased their ECM reorganization profile. D7 MI neutrophils had a reparative signature that included 
expression of fibronectin, galectin-3, and fibrinogen to contribute to scar formation by stimulating ECM reorganization. 
Of note, fibronectin was a key modulator of degranulation, as it amplified MMP-9 release in the presence of an inflamma-
tory stimulus. Our results indicate that neutrophils selectively degranulate over the MI time course, reflective of both their 
intrinsic protein profiles as well as the ECM environment in which they reside. MMPs, cathepsins, and ECM proteins were 
prominent neutrophil degranulation indicators.
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Introduction

Myocardial infarction (MI) initiates a cardiac wound-healing 
cascade that originates with myocyte necrosis to stimulate 
inflammation and leukocyte influx and culminates with scar 
formation. By 24 h after MI, the prominent leukocyte is 
the neutrophil [25]. While excess neutrophil influx is detri-
mental by promoting excessive tissue breakdown to enhance 
dilation of the left ventricle (LV), neutrophil depletion also 
amplifies inflammation and LV dilation to reduce cardiac 
performance in rodent models and humans [17, 18, 41]. 
Neutrophils, therefore, are essential for the wound-healing 
process.

Neutrophils undergo degranulation, releasing proteases to 
degrade the extracellular matrix (ECM) and facilitate leuko-
cyte infiltration [13, 42]. The Steffens laboratory reported 
that neutrophils also orchestrate MI healing by polarizing 
macrophages toward a reparative phenotype, assigning an 
indirect role for neutrophils in LV remodeling [18]. Our 
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laboratory observed that neutrophils themselves undergo 
polarization after MI, with > 95% of day 1 neutrophils 
expressing N1 markers (Ccl3, Ccl5, and Tnfα) and 20% of 
day 7 neutrophils expressing N2 markers (Tgfβ1, Il10, and 
Cd206) [26]. N1 neutrophils activated by damage-associated 
molecular patterns (DAMPs) link to an early increase in MI 
wall thinning. Neutrophils, therefore, have roles in both pro-
moting and turning off inflammation.

The current study extends past reports by mapping neu-
trophil transitions in response to MI. We analyzed proteomic 
changes at MI days 1, 3, 5, and 7 to reflect the early inflam-
matory, proliferative, and maturation phases compared to 
day 0 no MI neutrophils. We hypothesized that neutrophils 
would undergo phenotypic changes over the MI time course 
that range from pro-inflammatory to reparative polarization. 
We used an aptamer proteomics approach, because mature 
neutrophils are post-mitotic and have reduced transcrip-
tional capacity compared to dividing cells [15, 34, 43]. To 
our knowledge, this is the first study to report in detail the 
full proteome changes that occur in cardiac neutrophils that 
mediate post-MI wound healing and remodeling.

Methods

Animal use, coronary artery ligation, 
echocardiography, and necropsy

Detailed methods are provided in the Supplemental Methods 
[5, 21, 23]. Because neutrophils exhibit time of day varia-
tion, with MI surgery performed in the evening resulting in 
higher rupture rates due to higher neutrophil recruitment, 
all surgeries were performed between 8 am and noon [40].

Isolation of LV infarct neutrophils

LV neutrophils were isolated from the combined infarct and 
border region by immunomagnetic separation (Supplemen-
tal Methods) [10, 19, 31]. The neutrophils obtained by this 
method are highly (> 99%) pure [26].

Protein isolation

Neutrophil cell pellets were lysed in Reagent 4 (Sigma 
C0356; 50 μL per 1 × 106 cells) with 1× protease inhibitor 
cocktail (Roche), centrifuged at 14,000×g for 5 min, and the 
supernatant was collected. Total protein was quantified using 
the Bradford assay. Sample concentrations were adjusted 
to 200 μg/mL using phosphate-buffered saline (PBS) and 
100 μL of sample was sent to SomaLogic (Boulder, CO) for 
aptamer proteomic evaluation.

Aptamer proteomics

Aptamer proteomics uses short single-stranded DNA 
sequences that bind to proteins. The SOMAscan® multiplex 
aptamer-based proteomics platform on a custom Agilent 
hybridization chip was used to analyze 1305 proteins (assay 
version 3.2) [14, 20, 30, 33, 44]. Aptamers are chemically 
modified unique and single-stranded DNA segments that 
bind to specific proteins. Data normalization and calibration 
were performed according to the SOMAscan® Data Stand-
ardization technical note (SSM-071) [7].

In situ hybridization and immunohistochemistry 
multiplex imaging

In situ hybridization and immunoblotting histological 
evaluations were performed according to the guidelines for 
authors and reviewers on antibody use in physiology studies 
(Supplemental Methods) [6].

Isolation and stimulation of bone marrow‑derived 
neutrophils

Bone marrow-derived neutrophils were isolated from the 
tibias and femurs of control no MI mice under isoflurane 
anesthesia as previously described [26]. Ly6G + neutrophils 
were diluted to 2 × 106 cells/mL in RPMI 1640 media with 
1% antibiotic solution. Cells (1 × 106) were unstimulated or 
stimulated with the positive control phorbol 12-myristate 
13-acetate (PMA; 20 nM) or fibronectin (100 ng/mL) for 
15 min at 37 °C. The cells were centrifuged at 800×g for 
10 min, and the supernatant (200 μL) was analyzed using 
the Proteome Profiler Mouse XL Cytokine Array (R&D Sys-
tems, ARY028).

Statistics and bioinformatic analyses 
of the proteomics dataset

Statistical analyses were performed according to estab-
lished guidelines [22]. All experiments were performed 
and analyzed in a blinded design, and data are presented as 
mean ± SEM unless otherwise noted. For echocardiography, 
comparisons were made using one-way ANOVA followed 
by Newman–Keuls post hoc test. A value of p < 0.05 was 
considered statistically significant.

Aptamer proteomics results are given as relative fluo-
rescence units (RFUs). Prior to bioinformatics analysis, a 
quality control assessment was performed (Supplemental 
Methods) and the data log transformed for normalization. 
Analyses tools available in the online resource Metabo-
Analyst 3.0 (http://www.metab​oanal​yst.ca/) and GraphPad 

http://www.metaboanalyst.ca/
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Prism were used for statistical and bioinformatics analyses 
[47, 48]. One-way ANOVA with Tukey’s post hoc test was 
performed to determine differentially expressed proteins 
using a false discovery rate (FDR) adjusted p value cutoff 
of 0.05. For individual MI days, differential expression was 
characterized by a fold-change threshold of > 2.0 or < 0.5 
compared to day 0 no MI values and a p value of less than 
0.05 by two-tailed unpaired t test. Proteins were ranked first 
by p value and then by fold change.

Enrichment analysis for differentially expressed proteins 
was performed using Enrichr (http://amp.pharm​.msm.edu/
Enric​hr/) gene ontology (GO) biological processes and Inge-
nuity Pathway Analysis (Qiagen) canonical pathways. For GO 
terms, the combined score (calculated from Z score and p 
value) was reported. Proteomic data comparisons to galec-
tin-3 and fibronectin immunoblotting were made by one-phase 
association analysis to obtain goodness of fit R2 values.

Results

MI confirmation

All MI times showed robust infarct areas (range 40–60% 
of LV area; Fig.  1a). Infarct wall thickness (Fig.  1b), 

fractional shortening (Fig.  1c), and ejection fraction 
(Fig. 1d) decreased at D1 through 7 MI, and LV volumes 
(Fig. 1e, f) increased at D3 through D7 MI.

Neutrophils differentially polarize from MI days 1–7

Of the 123 proteins that passed quality control (Supple-
mental Table 1), 56 proteins were statistically different by 
ANOVA (Fig. 2a top and Supplemental Table 2). Partial 
least squares discriminant analysis (PLS-DA) revealed dis-
tinct neutrophil protein expression patterns across MI day, 
indicating a temporal change in polarization status (Fig. 2a 
bottom). Patterns of individual protein changes over MI time 
were visualized in a heat map (Fig. 2b). Important feature 
analysis (Fig. 2c) and correlation analysis (Fig. 2d) indicated 
that the ECM protein fibronectin continually increased with 
MI time. Of note, mannose macrophage receptor (MMR; 
Cd206) showed a linear increase with MI time, consistent 
with our past report [26].

MI D1 neutrophil polarization phenotype: 
pro‑inflammation, degranulation, and invasion

By GO biological process evaluation, exocytosis and path-
ways involved in secretion (degranulation) were the most 
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Fig. 1   Proof of myocardial infarction (MI) by coronary artery liga-
tion. Measurements were taken at day (D) 0, 1, 3, 5, and 7 after MI. 
a Infarct size (infarct weight as a percent of total LV weight). d Left 
ventricular infarct wall thickness (mm). c Fractional shortening (per-
cent). d Ejection fraction (percent). e End systolic volume (µL). f End 

diastolic volume (µL). *p ≤ 0.05 vs. day 0, †p < 0.05 vs. day 1, and 
‡p < 0.05 vs. day 3 by one-way ANOVA followed by Newman–Keuls 
post hoc test, sample sizes are n = 10 day 0, n = 10 day 1, n = 11 day 
3, n = 10 day 5, and n = 12 day 7
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enriched (Fig. 3a). Calgranulin B (S100A9), activin A, his-
tone H1.2, and fibrinogen were the highest ranked changes, 
by p value and fold change compared to D0 (Fig. 3b). The 
decrease in troponin I and T as well as CD36 within the 
neutrophil fraction may represent baseline D0 phagocytosis 
of myocyte components that reflect a previously unknown 
surveillance role for the resident cardiac neutrophil. We have 
previously reported that about 5% of resident cardiac cells 
are neutrophils [26].

In a separate Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analysis, the top three 
enriched pathways in MI D1 neutrophils were complement 
and coagulation cascades (combined score 20.56), platelet 
activation (combined score 18.84), and cytokine–cytokine 
receptor interaction (combined score 14.04; all p < 0.001). 
This indicates that MI D1 neutrophils are predominantly 
pro-inflammatory. In acute inflammation, neutrophils 

and platelets are simultaneously activated to regulate the 
inflammatory response. Heteromers of proteins contrib-
uted from both cells form to promote monocyte recruit-
ment [1], and our results indicate that this happens begin-
ning at day 1. Neutrophils interact with platelets by both 
binding to form neutrophil–platelet complexes and by 
phagocytosing activated platelets [27]. While we cannot 
totally rule out the possibility of contamination of neutro-
phils by platelet–neutrophil complexes in the LV infarct, 
platelets were excluded during the cell isolation procedure.

Increased recruitment into the infarct region was dem-
onstrated by a peak in calgranulin B at MI D1 (Fig. 3c) [9, 
38, 39]. Further evidence of degranulation was the increased 
release of matrix metalloproteinase (MMP)-8 and -9 into the 
infarct region (Fig. 3d, e). MMP-8 and MMP-9 are released 
into the ECM from neutrophil gelatinase granules to degrade 
ECM and propagate inflammatory signaling [26]. Overall, the 
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analysis also showed fibronectin as the strongest protein correlating 
with MI day
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MI D1 neutrophils responded by turning on leukocyte recruit-
ment and stimulating inflammatory signaling through degranu-
lation. Neutrophils at this time reflected the well-characterized 
response to injury [2].

MI D3 neutrophil polarization phenotype: similar 
to D1 cell, along with increased apoptotic signaling, 
ECM reorganization, and cathepsin activity

Of the GO biological processes, extrinsic apoptotic signaling 
and fibrinolysis as well as induction of ECM reorganiza-
tion were upregulated in MI D3 neutrophils (Fig. 4a). Vol-
cano plot analysis and ranking indicated the most prominent 
increases were in cathepsin D, calgranulin b, erythropoietin 
receptor (EPO-R), α-synuclein, fibronectin, and fibrinogen 
to induce intracellular and ECM reorganization (Fig. 4b). 

Cathepsin D and EPO-R were highest at day 3 (Fig. 4c), 
concomitant with the initiation of inflammation resolution 
signaling. Cathepsins are released during degranulation, spe-
cifically from ficolin-1 rich granules. Cathepsins are a family 
of proteases that, like MMPs, can degrade ECM components 
[37]. They have also been linked to autophagy and have been 
shown to mitigate the damage of cardiac remodeling [46]. 
Cathepsin D has been shown to mediate cytochrome C and 
caspase activity in neutrophil apoptosis, suggesting an intra-
cellular and extracellular role of cathepsins [8].

Because fibronectin increased 22-fold in MI D3 neu-
trophils compared to D0 cardiac neutrophils, we evalu-
ated whether the neutrophil was the source or recipient of 
fibronectin protein. By in situ hybridization, fibronectin-
positive cells contributed 32% of the total cells within the 
MI D3 left ventricle infarct region (Fig. 4d). As expected, 
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Fig. 3   Neutrophil expression profile at day 1 post-MI. a Gene ontol-
ogy (GO) biological processes enriched in day 1 MI neutrophils. b 
Volcano plot analysis, with downregulated proteins on the left and 
upregulated proteins on the right. Proteins with p values < 0.05 are 
shown in green. c Calgranulin b and IL-16 were upregulated at MI 
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and §p < 0.05 vs. D5; and sample sizes are n = 10 day 0, n = 10 day 1, 
n = 11 day 3, n = 10 day 5, and n = 12 day 7. d MMP-8 and MMP-9 
immunoblotting showed strong upregulation at MI day 1 (total mem-
brane protein stain at the bottom). e Quantification of MMP-8 immu-
noblotting. *p < 0.05, sample sizes are n = 9 for day 0 and 8 for MI 
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fibroblasts were positive for fibronectin [32]. The total per-
centage of neutrophils was 5% of the infarct region. Within 
the neutrophil pool, 2% of the total infarct area (or 40% 
of neutrophils) was also positive for fibronectin. Overall, 
the MI D3 neutrophil showed increased cathepsin activity 
and apoptotic signaling along with the initiation of ECM 
production.

MI D5 neutrophil polarization phenotype: 
increased ECM reorganization, reduced neutrophil 
recruitment, and resolution of inflammation

Of the GO biological processes, there was a pronounced 
increase in intracellular and ECM reorganization at MI D5 

(Fig. 5a). In the volcano plot and by ranking, the most prom-
inent increases were in cathepsins D and B, calgranulin b, 
α-synuclein, fibrinogen, and fibronectin (Fig. 5b, c). Addi-
tional ECM components upregulated at MI D5 were vitron-
ectin, MMP-2, tissue inhibitor of metalloproteinase (TIMP)-
2, and thrombospondin-2 (Fig. 5d). Vitronectin modulates 
neutrophil adhesion and chemotaxis to promote pro-inflam-
matory responses, as well as delays neutrophil apoptosis 
[3]. Neutrophil adhesion to vitronectin is enhanced in the 
presence of chemotactic agonists to accumulate neutrophils 
at inflammatory sites [24]. While only recently has MMP-2 
been attributed to neutrophils, neutrophil expression of 
TIMP-2 or thrombospondin-2 has not been reported [29].
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MI D7 neutrophil polarization phenotype: ECM 
synthesis and organization

The top GO biological process at MI D7 was ECM organi-
zation (Fig. 6a). Cathepsin B, fibrinogen, and fibronectin 
continued to be high, and galectin-3 and S100A4 were also 
highly expressed (Fig. 6b). Cathepsin B and galectin-3 
peaked at MI D7 (Fig. 6c). Validation of the aptamer pro-
teomics results by immunoblotting showed that galectin-3 
and fibronectin results were consistent between techniques 
(Fig. 6d, e). While the numbers of neutrophils are low at day 
7, they contribute to the new ECM landscape by promoting 
ECM reorganization [26].

Fibronectin stimulates selective neutrophil 
degranulation

To understand the feedback between neutrophils, fibronectin, 
and MMP-9, we stimulated bone marrow-derived neutrophils 
with fibronectin and measured degranulation of proteins into 

the supernatant (Fig. 7a). We focused on MMP-9 because 
it is a degranulation product, and fibronectin is a known 
MMP-9 substrate [49]. Stimulation with PMA as a posi-
tive control resulted in the release of 69 out of 112 proteins 
measured compared to the unstimulated control (Fig. 7b). 
Stimulation with fibronectin alone induced only MMP-9 and 
neutrophil gelatinase-associated lipocalin (NGAL), provid-
ing a mechanism to break down fibronectin and serve as a 
negative feedback signal. Fibronectin tempered the effects of 
PMA, resulting in upregulation of 53 (instead of 69) proteins 
compared to control. PMA or fibronectin alone stimulated 
the release of MMP-9. In combination, there was an additive 
effect and MMP-9 levels were amplified compared to either 
single stimulus (Fig. 7c). Because PMA signals through 
protein kinase C, the difference in signaling pattern with 
fibronectin indicates that it does not work through protein 
kinase C signaling [11].

By immunoblotting examination, PMA stimulation 
increased the release of fibronectin by neutrophils and 
reduced fibronectin fragmentation to increase fibronectin 
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availability (Fig. 7d). Thus, MMP-9 was not as effective 
in breaking down fibronectin when in the presence of a 
pro-inflammatory stimulus. By Enrichr evaluation of pro-
tein–protein interactions, the primary transcription factors 
induced by PMA were Gata3, Foxp3, Tbx21, and Sirt1. 
Fibronectin shifted the transcription factor profile to Irf4, 
Ikbkb, Ets2, and JunD (Fig. 7e). These results indicate that 
fibronectin selectively degranulates neutrophils and in the 
presence of a pro-inflammatory stimulus amplified the 
release of MMP-9 available to degrade fibronectin to its 120 
kD fragment (Fig. 7f).

Discussion

The goal of this study was to map the continuum of polari-
zation phenotypes in cardiac neutrophils over the first week 
of MI. The key finding was that cardiac neutrophils undergo 

continual and distinct proteomic evolution over the first week 
of MI, comprising differential shifts in protein composition. 
Day (D)1 MI neutrophils had a high degranulation profile 
with increased MMP activity. D3 MI neutrophil profiles 
showed upregulation of apoptosis and induction of ECM 
organization. D5 MI neutrophils further ramped up their ECM 
reorganization profile. D7 MI neutrophils had a reparative 
signature that included expression of fibronectin, galectin-3, 
and fibrinogen to contribute to scar formation by stimulating 
ECM reorganization. Figure 8 illustrates the MI neutrophil 
continuum. Overall, our results indicate that neutrophils selec-
tively degranulate over the MI time course, dependent on their 
protein profiles as well as the ECM environment in which 
they reside. MMPs, cathepsins, and ECM proteins (fibronec-
tin, fibrinogen, galectin-3, thrombospondin-2, and vitronectin) 
were prominent neutrophil degranulation indicators. Of note, 
fibronectin is a key modulator of degranulation, as it amplified 
MMP-9 release in the presence of an inflammatory stimulus.
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Neutrophils are first responders in the inflammatory 
process [25]. Early after MI, neutrophils infiltrate infarcted 
tissue and interact with surrounding endogenous car-
diac cells to propagate inflammation by interacting with 
DAMPs such as high mobility group box 1 protein and heat 
shock protein 60 produced by injured host tissue [35, 45]. 
Neutrophils are professional phagocytes as well, engulfing 
debris and degraded materials. Removal of necrotic tissue 
is a necessary process for healthy scar formation [12]. Our 
results indicate that there is a larger pool of D0 resident 
cardiac neutrophils than previously appreciated. The high 
engulfment of cardiomyocyte proteins (troponins I and T) 
indicates that the resident cardiac neutrophils may be per-
forming a surveillance function.

At D3 MI, neutrophils begin to undergo apoptosis. In 
addition to apoptosis, neutrophils undergo NETosis and 
can undergo polarization to a phenotype expressing anti-
inflammatory factors [26, 36]. The ECM proteins iden-
tified may actually help to form the NETosis structure. 

Interactions between macrophages and apoptotic neutro-
phils induce an M2 anti-inflammatory phenotype in mac-
rophages to initiate the wound-healing phase of cardiac 
remodeling [18]. While we know neutrophils and mac-
rophages interact, this study provides novel insight into 
the neutrophil as an active contributor of ECM production 
and organization.

The initiation of ECM reorganization occurred concomi-
tantly at D3 MI along with increased production of ECM 
proteins, fibrinogen and fibronectin. Fibrinogen activates 
fibroblasts during wound healing and thus may play an 
important role in remodeling and fibrosis in the heart post-
MI [16]. Fibronectin has not been reported to be expressed 
by neutrophils; our results confirmed that 40% of D3 MI 
neutrophils expressed fibronectin mRNA. Our study revealed 
a novel feedback loop between fibronectin and MMP-9, both 
contributed by the neutrophil that would provide a fine layer 
of regulation of wound healing within the infarct zone local-
ized to the site of neutrophil entry.
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Neutrophils were evolutionarily derived as an immediate 
means to protect against infection, releasing a large vari-
ety of antibacterial agents and destructive enzymes through 
a multi-granule delivery system [13]. Secondary granules 
contain neutrophil gelatinase-associated lipocalin, and ter-
tiary (gelatinase) granules contain matrix metalloproteinase 
(MMP)-8 and MMP-9 [25]. The Borregaard laboratory has 
recently performed proteome profiling of human neutrophils 
to catalog granule subsets and identified a new granule type, 
the ficolin-1 rich granule that contains high levels of cath-
epsins B, D, H, S, and Z [37]. Our results indicate that this 
granule is highly released at D3–7 MI. Neutrophil numbers 
are highest at MI days 1 and 3, with numbers returning 
toward baseline by day 7 due to macrophage phagocytosis 
of apoptotic neutrophils to remove them from the LV infarct 
[28].

Whether the change in protein expression reflects a 
change in neutrophil subset composition over time (dif-
ferent infiltrating phenotypes) or the day 1 N1 neutrophils 
develop into pro-resolving day 7 neutrophils remains to be 

determined. Sorting and analyzing Ly6G+ CD206+ and 
Ly6G+ CD206− neutrophils separately will be informative, 
as would single cell and labeling for half-life determination 
experiments. While neutrophils in circulation mirror some 
components of tissue neutrophil phenotypes [4, 9], we have 
shown that circulating neutrophils at day 0 or MI days 1, 3, 
and 5 were all CD206− [26]. This indicates that CD206+ 
N2 neutrophils are locally activated in the LV infarct. Our 
study adds to our current knowledge by revealing distinct 
neutrophil profiles across the first week of MI.

We are the first to report that neutrophils contribute ECM 
components. Contribution of ECM components was more 
prominent in D5–7 MI, correlating with the temporal polari-
zation of neutrophils from N1 to an N2 phenotype. While 
there are fewer total neutrophils at later times, ECM pro-
duction is prominent. How neutrophils coordinate with the 
fibroblasts remains to be revealed; it may be that neutrophils 
at later time points serve a fine-tuning role to keep the scar 
localized to the region of the infarct. Fibronectin and fibrino-
gen are ECM proteins with both structural and signaling 
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properties. Stimulation of neutrophils with fibronectin 
induced degranulation, and multiplex imaging confirmed 
neutrophils contain fibronectin mRNA. These results reveal 
that neutrophils can act in an autocrine manner to induce 
their own selective degranulation and release the MMPs that 
shut off further signaling.

In conclusion, neutrophils showed distinct proteomic 
profiles over the MI time course. Our findings provide 
novel insights into mechanisms that both regulate and are 
regulated by neutrophils during MI. Our work indicates that 
therapeutic strategies for MI remodeling should include con-
sideration for effects on neutrophil subtypes.
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