NANO EXPRESS Open Access

Effect of Ultraviolet-Ozone Treatment on MoS₂ Monolayers: Comparison of Chemical-Vapor-Deposited Polycrystalline Thin Films and Mechanically Exfoliated Single Crystal Flakes

Changki Jung, Hae In Yang and Woong Choi*

Abstract

We report the different oxidation behavior between polycrystalline chemical-vapor-deposited and mechanically exfoliated single crystal MoS_2 monolayers by ultraviolet-ozone treatment. As ultraviolet-ozone treatment time increased from 0 to 5 min, photoluminescence emission and Raman modes of both MoS_2 disappeared, suggesting structural degradation by oxidation. Analysis with optical absorbance and X-ray photoelectron spectroscopy suggested the formation of MoO_3 in both MoS_2 after ultraviolet-ozone treatment. In addition, ultraviolet-ozone treatment possibly led to the formation of oxygen vacancies, molybdenum oxysulfide, or molybdenum sulfates in chemical-vapor-deposited MoS_2 . The measurement of electrical resistance after ultraviolet-ozone treatment suggested the transformation of chemical-vapor-deposited MoS_2 into doped MoO_3 and of mechanically exfoliated MoS_2 into negligibly doped MoO_3 . These results demonstrate that the crystallinity of monolayer MoS_2 can strongly influence the effect of ultraviolet-ozone treatment, providing important implications on the device integration of MoS_2 and other two-dimensional semiconductors.

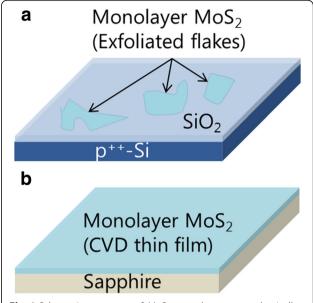
Keywords: MoS₂, Monolayer, Single crystal, Polycrystalline, UV-O₃ treatment

Introduction

There is a great interest in transition metal dichalcogenides (TMDs), such as MoS₂, since they offer an attractive possibility for various device applications including transistors, optoelectronic devices, heterojunction structures, sensors, and electrocatalysis [1, 2]. The existence of direct bandgaps in monolayer TMDs makes these two-dimensional semiconductors especially promising for optoelectronic devices [3, 4]. However, critical challenges to fabricate TMD-based optoelectronic devices such as phototransistors include the deposition of high-*k* dielectrics on TMDs and the doping of TMDs. Because of the absence of dangling bonds on the surface of TMDs, it is challenging to deposit high-*k* dielectrics on TMDs [5]. Moreover, the doping of TMDs is also

To overcome these difficulties, surface functionalization of TMDs by O_2 plasma [7, 8] or ultraviolet-ozone (UV- O_3) [9–11] has been suggested. While these methods can functionalize the surface of MoS_2 by surface oxidation, they can simultaneously influence the structure and properties of monolayer MoS_2 [12–16]. For example, oxidation by O_2 plasma or $UV-O_3$ treatment altered the Raman vibration modes and photoluminescence (PL) emission of monolayer MoS_2 [12, 16]. However, as most studies were based on micrometer-scale monolayer MoS_2 flakes obtained by mechanical exfoliation from bulk single crystals, little has been known on their interaction with large-area monolayer MoS_2 thin films, which are typically polycrystalline. Grain boundaries in polycrystalline monolayer

^{*} Correspondence: woongchoi@kookmin.ac.kr School of Materials Science & Engineering, Kookmin University, Seoul 02707, South Korea


challenging as the substitutional doping used for bulk semiconductors such as silicon modifies the two-dimensional structure and properties of monolayer TMDs [6].

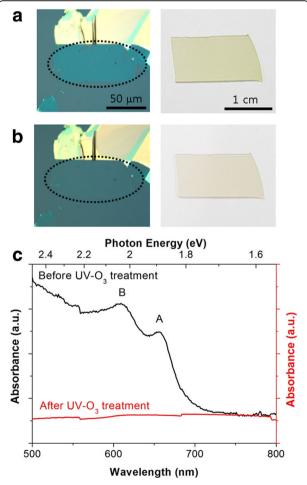
 ${\rm MoS_2}$ may allow higher reactivity with UV-O₃ than that of single crystal, resulting in different oxidation behavior. Therefore, in this study, we explore the effect of UV-O₃ treatment on ${\rm MoS_2}$ monolayers by directly comparing the oxidation behavior of polycrystalline chemical vapor deposition (CVD) thin films and mechanically exfoliated single crystal flakes. We systematically investigate the PL and Raman spectra of both ${\rm MoS_2}$ monolayers for different duration of UV-O₃ exposure. We also investigate the oxidation behavior of both ${\rm MoS_2}$ monolayers during UV-O₃ treatment with X-ray photoelectron spectroscopy (XPS). We further measure electrical resistance of pristine and UV-O₃-treated ${\rm MoS_2}$ monolayers to understand the effect of UV-O₃ treatment on ${\rm MoS_2}$ monolayers.

Methods

Monolayer MoS₂ thin films were deposited on (0001)oriented sapphire substrates ($\sim 1.5 \times 1 \text{ cm}^2$) by CVD in a two-zone tube furnace. MoO₃ (99.98%, Sigma-Aldrich) and S (99.98%, Sigma-Aldrich) powders in two separate Al₂O₃ boats were used as precursors. MoO₃ powder (14 mg) was placed upstream at zone 1 (750 °C) and S powder (1.4 g) was placed at the upstream entry of the furnace. Substrates were placed downstream at zone 2 (700 °C). MoO₃ powder was heated at a rate of 15 °C min⁻¹ and substrates were heated at 38 °C min⁻¹. After 30-min deposition, the furnace was slowly cooled down to room temperature. Ar flow of 100 sccm and a pressure of ~0.5 Torr were maintained during deposition. Monolayer MoS₂ flakes were obtained by the gold-mediated exfoliation method [17] from bulk MoS₂ crystals (2D Semiconductors) and transferred on highlydoped Si substrates with thermally grown SiO₂ (300 nm). Figure 1 shows schematic structures of both MoS₂ monolayers on substrates. The thickness of monolayer MoS₂ was measured using atomic force microscopy (AFM, Park Systems XE-100). The crystallinity of bulk MoS2 crystals and CVD MoS2 thin films was investigated by X-ray diffraction (XRD, Bruker D8 Discover with Cu-Kα radiation) and transmission electron microscopy (TEM, FEI Titan 80-300 300 kV), respectively.

MoS $_2$ monolayers were exposed to UV-O $_3$ (SEN LIGHTS PL16–110, 185 nm and 254 nm) for 0–5 min at the irradiance of 58 mW cm $^{-2}$. Optical absorbance was measured by UV-visible spectroscopy (PerkinElmer Lambda 35). Raman/PL spectroscopy (Horiba Jobin-Yvon LabRam Aramis) were measured on pristine and UV-O $_3$ -treated MoS $_2$ monolayers with a 532-nm laser and a beam power of 0.5 mW. XPS (Thermo Scientific K-Alpha) was carried out using a monochromatic Al K $_\alpha$ x-ray source ($h\nu$ = 1486.7 eV) with a take-off angle of 45°, a pass energy of 40 eV, and a spot size of 400 μ m in

Fig. 1 Schematic structures of MoS_2 monolayers: **a** mechanically exfoliated flakes on SiO_2/Si substrates and **b** CVD thin films on sapphire substrates


diameter. For all samples, C 1s and O 1s were observed presumably because they are exposed to atmosphere before loaded to ultrahigh vacuum chamber for XPS analysis. Adventitious carbon (C 1s at 284.8 eV) was used as a charge correction reference for XPS spectra. The energy resolution is 0.7 eV measured using the full width at half-maximum intensity of the Ag $3d_{5/2}$ peak. MoS $_2$ samples were exposed to atmosphere while they were brought to XPS equipment. Although in situ XPS analysis could provide more accurate information, it was unavailable in this work. For peak deconvolution and background subtraction, Thermo Scientific Avantage Data System software was used. Gaussian functions were used to fit XPS spectra.

To measure the electrical resistance of MoS_2 monolayers, Au contacts $(100 \times 100~\mu\text{m}^2,~70~\text{nm}$ thick) were deposited on top of MoS_2 by electronbeam evaporation. Spin-coated photoresist on top of Au layer was then patterned by conventional photolithography to form opening areas for subsequent etching. After Au in opening areas was removed by wet etching in aqua regia, remaining photoresist was removed in acetone. Then, the devices were annealed at 200 °C for 2 h in a tube furnace (100 sccm Ar and 10 sccm H_2) to remove photoresist residue and to decrease contact resistance. Electrical resistance was calculated with current-voltage (I-V) measurement (Keithley 4200-SCS) in atmospheric environments.

Results and Discussion

Beside AFM measurement, PL and Raman spectra are measured to confirm the formation of MoS_2 monolayers. Because of its direct bandgap, MoS_2 monolayers allow PL emission at ~ 1.88 eV [3, 4]. In addition, the frequency difference between the two characteristic Raman A_{1g} and E^1_{2g} modes of MoS_2 monolayers is less than 20 cm⁻¹ [18]. In Fig. 3, the PL emission of pristine MoS_2 at ~ 1.88 eV indicates that both MoS_2 are monolayers. In Fig. 4, pristine MoS_2 exhibits the frequency difference between 19.6 and 19.9 cm⁻¹ implying monolayer MoS_2 . XRD and TEM analysis indicated the single crystal nature of bulk MoS_2 crystals and polycrystalline nature of our monolayer MoS_2 thin films (Additional file 1: Figure S1). The grain size of monolayer MoS_2 thin films is ~ 10 nm [19].

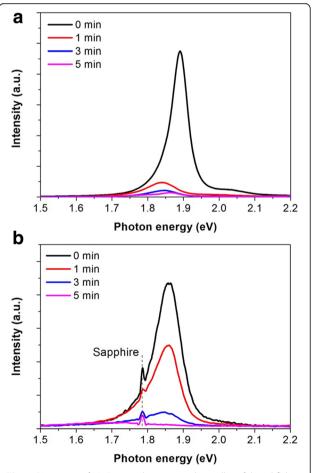

After UV-O₃ treatment, MoS₂ monolayers change their color and become transparent. In Fig. 2a, b, both exfoliated flakes and CVD thin films become transparent

Fig. 2 Mechanically exfoliated flakes and CVD thin films of MoS_2 monolayers **a** before and **b** after 5-min UV-O₃ treatment (dotted region indicates monolayer), **c** optical absorbance of CVD thin films before and after 5-min UV-O₃ treatment

after 5-min UV-O₃ treatment. The absorbance spectrum of MoS₂ thin films in Fig. 2c clearly shows the difference after UV-O₃ treatment. (The absorbance of exfoliated MoS₂ flakes could not be measured with UV-visible spectroscopy as the size of flakes was too small.) While pristine MoS₂ thin films show absorbance peaks due to excitonic transitions (A and B) [3, 4], 5-min UV-O₃treated MoS₂ thin films do not exhibit any absorbance peaks at all for the same range of wavelength. Because lightly yellow-green MoS2 thin films become transparent to visible light after 5-min UV-O₃ treatment, we expect the energy bandgap of pristine monolayer MoS₂ (~ 1.88 eV) to become wider after UV-O₃ treatment (> ~ 3 eV). As this is in good agreement with the wide bandgap of MoO₃ (> 2.7 eV) [20], the transparent UV-O₃-treated MoS₂ suggests the formation of MoO₃ after 5-min UV-O₃ treatment.

We then investigate the effect of $UV-O_3$ treatment on the PL emission of MoS_2 monolayers. Figure 3 shows the PL spectra of CVD MoS_2 thin films and exfoliated MoS_2 single crystal flakes after $UV-O_3$ exposure for 0, 1,

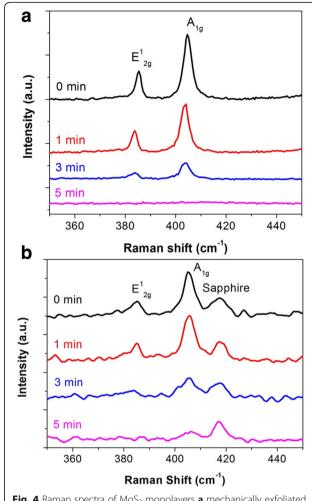
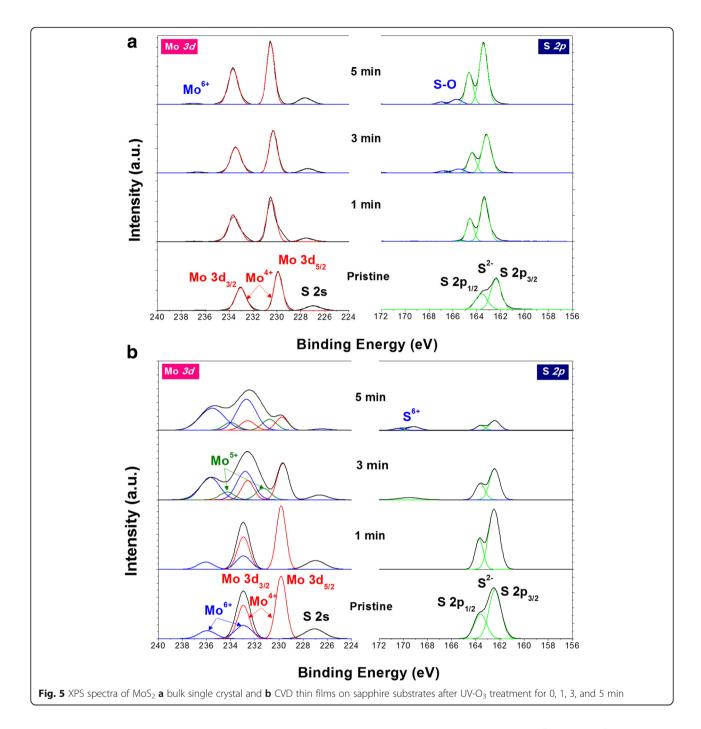


Fig. 3 PL spectra of MoS $_2$ monolayers **a** mechanically exfoliated flakes on SiO $_2$ /Si substrates and **b** CVD thin films on sapphire substrates after UV-O $_3$ treatment for 0, 1, 3, and 5 min

3, and 5 min, respectively. The intensity of PL emission decreases significantly with UV-O3 treatment time and eventually PL is fully quenched for the 5-min-treated MoS₂ monolayers. These results suggest the formation of oxides or defects allowing non-radiative recombination after UV-O₃ treatment. As MoS₂ monolayers become transparent after UV-O₃ treatment, the formation of wide bandgap semiconductor MoO₃ is reasonably expected. The energy of PL emission of pristine MoS₂ is 1.88 eV for exfoliated flakes and 1.86 eV for CVD films. This slight difference is probably due to the effect of underlying substrates as substrates can strongly influence the Raman and PL emission [21]. The wider width of PL emission peak in CVD monolayers suggests higher defect density. Interestingly, further negative shift of PL emission peak is observed in single crystal MoS2 flakes (~ 50 meV) than in CVD thin films (by ~ 10 meV) after UV-O₃ treatment. As the negative shift of PL emission is comparable with trion binding energy (10-40 meV) of MoS₂ [22], this may be due to different concentrations of trion (neutral excitons accepting an electron or a hole) formed by oxidation-induced doping [23, 24]. (In this work, single crystal MoS2 flake is more conductive than CVD MoS₂, suggesting higher doping levels in single crystal MoS₂.) The higher doping level in single crystal MoS₂ flakes will allow high concentration of trions, of which recombination will dominate their PL emission. In contrast, the lower doping level in CVD MoS₂ thin films will allow low concentration of trions. Hence, their PL emission will be dominated by the recombination of neutral excitons. However, as the negative shift of PL emission may also be related to the effect of underlying substrates or strains, more systematic investigation is needed in the future.


Next, to investigate the structural degradation by UV- O_3 treatment, we measure the Raman spectra of MoS_2 monolayers after UV- O_3 treatment for 0, 1, 3, and 5 min, respectively (Fig. 4). The intensity of both E^1_{2g} and A_{1g} modes decreases as the treatment time increases. While the frequency difference between E^1_{2g} and A_{1g} modes remains unchanged for 0–5 min of UV- O_3 treatment time, the two Raman modes almost completely disappear after 5-min treatment, suggesting severe structural distortion and degradation. AFM analysis indicates an increase of surface roughness after UV- O_3 treatment (Additional file 1: Figure S2), which is consistent with the oxidation of MoS_2 [23].

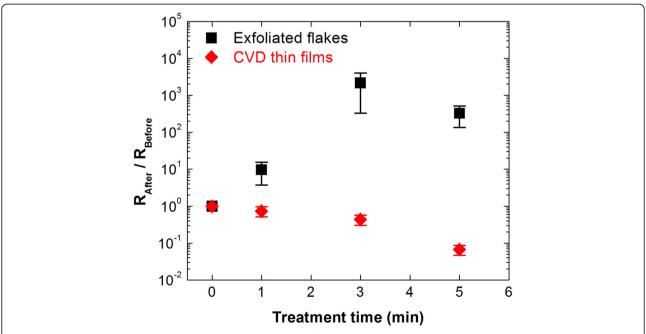
To further investigate the structural degradation of MoS_2 monolayers by UV-O₃ treatment, we measure XPS spectra of MoS_2 . Because the beam size of XPS is much larger than the size of single-layer MoS_2 flakes, XPS spectra for single crystal MoS_2 flakes are obtained from large-area MoS_2 single crystals (~1 cm in size and ~ 100 μ m in thickness). Figure 5 shows the XPS spectra in

Fig. 4 Raman spectra of MoS_2 monolayers **a** mechanically exfoliated flakes on SiO_2/Si substrates and **b** CVD thin films on sapphire substrates after UV-O₃ treatment for 0, 1, 3, and 5 min

Mo 3d and S 2p regions for bulk single crystal and CVD MoS₂ thin films, respectively. The existence of Mo⁴⁺state of pristine MoS₂ can be observed from the binding energy of Mo 3d_{3/2} and Mo 3d_{5/2} orbitals. After UV-O₃ exposure, the intensity of Mo⁶⁺-state at 235.9 eV further increases with UV-O3 treatment time indicating the expanded formation of Mo-O bonding and MoO₃. There are four distinct differences between Fig. 5a and b in Mo 3d region. (1) In Fig. 5b, Mo⁶⁺-state at 235.9 eV in pristine MoS₂ thin films is probably due to residual oxide formed during or after CVD process. (2) The intensity of Mo4+ and S 2s peaks decrease in CVD MoS₂ thin films with longer UV-O₃ exposure. However, the intensity of Mo4+ and S 2s peaks does not change with UV-O₃ treatment time in large MoS₂ single crystals as XPS can still detect Mo⁴⁺ and S 2 s peaks from MoS₂ underneath the oxidized top surface. (3) In single crystal MoS₂, the binding energy of Mo⁴⁺-state shows further positive shift than that in CVD MoS₂ thin films Jung et al. Nanoscale Research Letters (2019) 14:278

suggesting higher n-type doping [25]. The peak shift after the oxidation of MoS_2 in this work (0.41–1.09 eV) is comparable to that in literature (0.6–1.1 eV) [23, 24]. (To prevent charging effect, which may induce similar positive shift, we used a flood gun during XPS measurement.) (4) In CVD MoS_2 thin films, the peaks of Mo^{5+} -state also appear with UV-O₃ treatment suggesting possibly the formation of oxygen vacancies [26] or molybdenum oxysulfide MoO_xS_y [27]. These results can be understood by the oxidation of Mo^{4+} -state in MoS_2

into higher oxidation states (Mo^{5+} and Mo^{6+}) with UV- O_3 exposure. This is also consistent with the XPS results on polycrystalline multilayer MoS_2 thin films after O_2 plasma or UV- O_3 treatment [26, 28, 29].


In S 2p region, the existence of S²-state can be observed from the binding energy of S $2p_{1/2}$ and S $2p_{3/2}$ orbitals in pristine MoS_2 . The binding energy of S²-state in single crystal MoS_2 shows further positive shift than that in CVD MoS_2 thin films suggesting higher n-type doping [25]. Although S-O bond is observed at \sim

165 eV in UV-O₃-treated single crystal MoS₂, it is below the detection limit in CVD thin films. Instead, a new doublet peak of sulfur oxidation state appears at higher binding energy (~ 169 eV) in CVD thin films after UV-O₃ treatment for 3 min. This new doublet corresponds to the S 2p peaks of oxidized sulfur S⁶⁺, suggesting possibly the formation of various molybdenum sulfates Mo $(SO_4)_x$ [28]. While the intensity of S^{2-} doublet keeps decreasing with longer UV-O3 exposure, the intensity of S⁶⁺ doublet further increases after 5-min UV-O₃ treatment, suggesting further conversion of S²⁻ into higher oxidation state (S⁶⁺) by oxidation. Similarly with Mo⁴⁺ peaks, the intensity of S²⁻ peaks does not change with UV-O₃ treatment time in large MoS₂ single crystals. The existence of S⁶⁺-state after O₂ plasma or UV-O₃ treatment is inconsistent in literature. Its existence was reported in polycrystalline multilayer MoS₂ thin films after O₂ plasma treatment [28]. However, it was not observed in other polycrystalline multilayer MoS₂ thin films [26, 29] or single crystals [9, 16, 30] after O₂ plasma or UV-O3 treatment. While this inconsistency may be related to dose- and time-dependence of MoS₂ oxidation [30], more systematic investigation is needed to clarify this in the future.

The different XPS behavior may be related to the difference of composition and crystallinity between single crystals and CVD thin films. The composition of Mo:S is 1:1.97 in bulk single crystals and 1:1.5 in CVD thin films, suggesting higher concentration of S vacancies in CVD thin films. The higher concentration of S

vacancies, combined with the existence of grain boundaries in CVD thin films, may allow higher reactivity to oxygen than that in single crystals.

To further understand the oxidation of MoS₂ monolayers by UV-O3 treatment, we measure the electrical resistance of pristine and UV-O₃-treated MoS₂ monolayers. Because there is sample-to-sample variation of electrical resistance, we use relative ratio of electrical resistance ($R_{\text{After}}/R_{\text{Before}}$), where R_{After} and R_{Before} are electrical resistance after and before UV-O3 treatment, respectively. Figure 6 shows R_{After}/R_{Before} as a function of UV-O₃ treatment time. While R_{After}/R_{Before} of exfoliated MoS2 single crystal flakes significantly increases with longer treatment time, R_{After}/R_{Before} of CVD MoS₂ thin films decreases with longer treatment time. These results suggest that MoO3 formed by the UV-O3 treatment of CVD MoS₂ thin films possesses higher doping level than that of MoS2 single crystal flakes. This is supported by XPS analysis suggesting the possible existence of oxygen vacancies, MoO_xS_v, or Mo (SO₄)_x in CVD MoS₂ monolayers. This is seemingly contradicting with the higher doping in single crystal MoS₂ suggested in Fig. 5a. However, as Fig. 5a is based on bulk single crystals, we cannot exclude the possibility that it does not provide accurate information of the top monolayer. Hence, surface oxidation of bulk MoS₂ single crystal may possibly provide doping only to MoS2 single crystal underneath, transforming top surface region into negligibly doped MoO₃. Consistent with these results, electrical resistance also increased when monolayer

Fig. 6 Ratio of electrical resistance of MoS₂ monolayers as a function of UV-O₃ treatment time (R_{After} : electrical resistance after UV-O₃ treatment, R_{Before} : electrical resistance before UV-O₃ treatment)

 MoS_2 single crystal flakes were oxidized by O_2 plasma [12]. As single crystal MoS_2 without grain boundaries could be more tolerant to oxidation than polycrystalline MoS_2 , the effect of oxidation-induced doping may be stronger in polycrystalline MoS_2 than in single crystal MoS_2 . However, further investigation is needed to understand this difference in the future.

Conclusions

In summary, we investigated the effect of UV-O₃ treatment on polycrystalline CVD thin films and single crystal flakes of monolayer MoS₂. Monolayer MoS₂ becomes transparent after UV-O₃ treatment suggesting the formation of wide bandgap semiconductor MoO₃. As UV-O₃ treatment time increases, the intensity of PL and Raman spectra significantly decreased, suggesting the formation of oxides or defects. In both MoS2, XPS analysis indicated the formation of Mo-O bonds and MoO₃. However, in CVD MoS₂ thin films, the conversion of Mo⁴⁺-and S²⁻-states into Mo⁵⁺- and S⁶⁺-states was also observed after UV-O3 treatment, suggesting the possible existence of oxygen vacancies, MoO_xS_y, or Mo $(SO_4)_x$. As the electrical resistance of single crystal MoS_2 monolayers significantly increased with longer UV-O₃ treatment time, the oxidation of single crystal MoS₂ into MoO₃ seems to provide negligible doping. In contrast, the electrical resistance of CVD MoS₂ monolayers decreased with longer UV-O3 treatment time, suggesting that the oxidation of CVD MoS₂ into MoO₃ provides doping. These results demonstrate the significant impact of crystallinity on the effect of UV-O3 treatment on MoS₂ monolayers, providing possibly interesting implications on fabricating heterojunction structures based on two-dimensional nanomaterials.

Additional File

Additional file 1: Crystallinity and AFM analysis. (DOCX 13198 kb)

Abbreviations

CVD: Chemical vapor deposition; I-V: Current-voltage; R_{After}: Resistance measured after ultraviolet-ozone treatment; R_{Before}: Resistance measured before ultraviolet-ozone treatment; TMDs: Transition metal dichalcogenides; UV-O₃: Ultraviolet-ozone; XPS: X-ray photoelectron spectroscopy

Acknowledgements

Not applicable

Authors' Contributions

CJ and HIY contributed equally to this work. WC initiated the research. CJ worked on the growth and characterization of CVD thin films. HIY worked on the fabrication and characterization of mechanically-exfoliated single-layer flakes. WC wrote the manuscript. All authors read and approved the manuscript.

Funding

This work was supported by the National Research Foundation of Korea (Grant NRF-2013K1A4A3055679, NRF-2016R1A2B4014369, and NRF-2019R1F1A1057293).

Availability of Data and Materials

All data and materials may be provided on a reasonable request.

Competing Interests

The authors declare that they have no competing interests.

Received: 11 April 2019 Accepted: 8 August 2019 Published online: 15 August 2019

References

- Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer MoS, transistors. Nat Nanotechnol 6:147–150
- Kim S, Konar A, Hwang W-S, Lee JH, Lee J, Yang J, Jung C, Kim H, Yoo J-B, Choi J-Y, Jin YW, Lee SY, Jena D, Choi W, Kim K (2012) High-mobility and low-power thin-film transistors based on multilayer MoS₂ crystals. Nat Commun 3:1011
- Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C, Galli G, Wang F (2010)
 Emerging photoluminescence in monolayer MoS₂. Nano Lett 10:1271–1275
- 4. Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Atomically thin MoS_2 : a new direct-gap semiconductor. Phys Rev Lett 105:136805
- Liu H, Xu K, Zhang X, Ye PD (2012) The integration of high-k dielectric on twodimensional crystals by atomic layer deposition. Appl Phys Lett 100:152115
- Allain A, Kang J, Banerjee K, Kis A (2015) Electrical contacts to twodimensional semiconductors. Nat Mater 14:1195–1205
- Yang J, Kim SK, Choi W, Park SH, Jung YK, Cho MH, Kim HS (2013) Improved growth behavior of atomic-layer-deposited high-k dielectrics on multilayer MoS₂ by oxygen plasma pretreatment. ACS Appl Mater Interfaces 5:4739–4744
- Yang W, Sun Q-Q, Geng Y, Chen L, Zhou P, Ding S-J, Zhang DW (2015) The integration of Sub-10 nm gate oxide on MoS₂ with ultra low leakage and enhanced mobility. Sci Rep 5:11921
- 9. Azcatl A, McDonnell S, KC S, Peng X, Dong H, Qin X, Addou R, Mordi Gl, Lu N, Kim J, Kim MJ, Cho K, Wallace RM (2014) MoS_2 functionalization for ultrathin atomic layer deposited dielectrics. Appl Phys Lett 104:111601
- Su W, Kumar N, Spencer SJ, Dai N, Roy D (2015) Transforming bilayer MoS₂ into single-layer with strong photoluminescence using UV-ozone oxidation. Nano Res 8:3878–3886
- Wang J, Li S, Zou X, Ho J, Liao L, Xiao X, Jiang C, Hu W, Wang J, Li J (2015) Integration of high-k oxide on MoS₂ by using ozone pretreatment for high-performance MoS₂ top-gated transistor with thickness-dependent carrier scattering investigation. Small 11:5932–5938
- Kang N, Paudel HP, Leuenberger MN, Tetard L, Khondaker SI (2014) Photoluminescence quenching in single-layer MoS₂ via oxygen plasma treatment. J Phys Chem C 118:21258–21263
- Nan H, Wang Z, Wang W, Liang Z, Lu Y, Chen Q, He D, Tan P, Miao F, Wang X, Wang J, Ni Z (2014) Strong photoluminescence enhancement of MoS₂ through defect engineering and oxygen bonding. ACS Nano 8(6):5738– 5745
- Kim MS, Nam G, Park S, Kim H, Han GH, Lee J, Dhakal KP, Leem J-Y, Lee YH, Kim J (2015) Photoluminescence wavelength variation of monolayer MoS₂ by oxygen plasma treatment. Thin Solid Films 590:318–323
- Park S, Kim SY, Choi Y, Kim M, Shin H, Kim J, Choi W (2016) Interface properties of atomic-layer-deposited Al₂O₃ thin films on ultraviolet/ozonetreated multilayer MoS₂ crystals. ACS Appl Mater Interfaces 8:11189–11193
- Yang HI, Park S, Choi W (2018) Modification of the optoelectronic properties of two-dimensional MoS₂ crystals by ultraviolet-ozone treatment. Appl Surf Sci 443:91–96
- Desai SB, Madhvapathy SR, Amani M, Kiriya D, Hettick M, Tosun M, Zhou Y, Dubey M, Ager JW III, Chrzan D, Javey A (2016) Gold-mediated exfoliation of ultralarge optoelectronically-perfect monolayers. Adv Mater 28:4053–4058
- Lee C, Yan H, Brus LE, Heinz TF, Hone J, Ryu S (2010) Anomalous lattice vibrations of single- and few-layer MoS₂. ACS Nano 4:2695–2700
- Baek SH, Choi Y, Choi W (2015) Large-area growth of uniform single-layer MoS₂ thin films by chemical vapor deposition. Nanoscale Res Lett 10:388
- Balendhran S, Deng J, Ou JZ, Walia S, Scott J, Tang J, Wang KL, Field MR, Russo S, Zhuiykov S, Strano MS, Medhekar N, Sriram S, Bhaskaran M,

- Kalantar-zadeh K (2013) Enhanced charge carrier mobility in twodimensional high dielectric molybdenum oxide. Adv Mater 25:109–114
- 21. Buscema M, Steele GA, van der Zant HSJ, Castellanos-Gomez A (2014) The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS₂. Nano Res 7:561–571
- 22. Mak KF, He K, Lee C, Lee GH, Hone J, Heinz TF, Shan J (2013) Tightly bound trions in monolayer MoS_2 . Nat Mater 12:207–211
- Chen M, Nam H, Wi S, Ji L, Ren X, Bian L, Lu S, Liang X (2013) Stable few-layer MoS₂ rectifying diodes formed by plasma-assisted doping. Appl Phys Lett 103:142110
- Zhu H, Qin X, Cheng L, Azcatl A, Kim J, Wallace RM (2016) Remote plasma oxidation and atomic layer etching of MoS₂. ACS Appl Mater Interfaces 8: 19119–19126
- Fang H, Tosun M, Seol G, Chang TC, Takei K, Guo J, Javey A (2013)
 Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano Lett 13:1991–1995
- 26. Ko TY, Jeong A, Kim W, Lee J, Kim Y, Lee JE, Ryu GH, Park K, Kim D, Lee Z, Lee MH, Lee C, Ryu S (2017) On-stack two-dimensional conversion of MoS_2 into MoO_3 . 2D Mater 4:014003
- Bessonov AA, Kirikova MN, Petukhov DI, Allen M, Ryhänen T, Bailey MJA (2015) Layered memristive and memcapacitive switches for printable electronics. Nat Mater 14:199–204
- 28. Brown NMD, Cui N, McKinley A (1998) An XPS study of the surface modification of natural ${\rm MoS_2}$ following treatment in an RF-oxygen plasma. Appl Surf Sci 134:11–21
- Kwon KC, Kim C, Le QV, Gim S, Jeon J-M, Ham JY, Lee J-L, Jang HW, Kim SY (2015) Synthesis of atomically thin transition metal disulfides for charge transport layers in optoelectronic devices. ACS Nano 9:4146–4155
- 30. Azcatl A, KC S, Peng X, Lu N, McDonnell S, Qin X, de Dios F, Addou R, Kim J, Kim MJ, Cho K, Wallace RM (2015) HfO_2 on $UV-O_3$ exposed transition metal dichalcogenides: interfacial reactions study. 2D Mater 2:014004

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com