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Abstract: Wearable robotic braces have the potential to improve rehabilitative therapies for patients
suffering from musculoskeletal (MSK) conditions. Ideally, a quantitative assessment of health would
be incorporated into rehabilitative devices to monitor patient recovery. The purpose of this work is
to develop a model to distinguish between the healthy and injured arms of elbow trauma patients
based on electromyography (EMG) data. Surface EMG recordings were collected from the healthy
and injured limbs of 30 elbow trauma patients while performing 10 upper-limb motions. Forty-two
features and five feature sets were extracted from the data. Feature selection was performed to
improve the class separation and to reduce the computational complexity of the feature sets. The
following classifiers were tested: linear discriminant analysis (LDA), support vector machine (SVM),
and random forest (RF). The classifiers were used to distinguish between two levels of health: healthy
and injured (50% baseline accuracy rate). Maximum fractal length (MFL), myopulse percentage
rate (MYOP), power spectrum ratio (PSR) and spike shape analysis features were identified as the
best features for classifying elbow muscle health. A majority vote of the LDA classification models
provided a cross-validation accuracy of 82.1%. The work described in this paper indicates that it is
possible to discern between healthy and injured limbs of patients with MSK elbow injuries. Further
assessment and optimization could improve the consistency and accuracy of the classification models.
This work is the first of its kind to identify EMG metrics for muscle health assessment by wearable
rehabilitative devices.
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1. Introduction

Musculoskeletal (MSK) conditions are disorders or injuries that affect the bones, joints, skeletal
muscles and/or connective tissues. Without adequate rehabilitation, MSK injuries could become
chronic as a result of joint stiffness and reduced muscle strength [1].

The development of lightweight robotic braces offers a potential for improved rehabilitation.
Wearable rehabilitation robotic devices have been successful in improving rehabilitation program
compliance, accelerating recovery, and monitoring health for patients suffering from neuromuscular
damage from stroke [2]. Mechatronic braces for patients with neurological disorders have been
developed to assist with mobility and to allow patients to perform exercises at home and at their
own convenience [3]. However, there has been little work done to develop rehabilitation devices for
patients with MSK injuries, in which damage affects the bones, muscles, and connective tissues, but in
which the central nervous system is intact.
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The rehabilitation of the elbow following trauma is an inherently challenging process due to the
complexity of the elbow joint [4]. Inadequate rehabilitation leads to the development of stiff elbow
and a loss of range of motion (ROM) [5]. Rehabilitation following elbow trauma should involve
passive and active ROM exercises to ensure that the ensuing collagen remodeling and elongation of the
tendinous and capsular tissues allow for joint motion. ROM exercises typically involve elbow flexion
and extension, and forearm pronation performed with the elbow at 90 degrees [4].

Most of the scientific evidence to support certain rehabilitation approaches is based on
retrospective and case series studies with small sample sizes, not on randomized clinical trials
(RCTs) [5], and the optimum dosage of the frequency and repetition of ROM exercises is unknown [4,5].
Furthermore, the rehabilitative procedures tested are often poorly described and not reproducible [5],
and the outcome measures often depend on the therapist’s perspective [6]. Measurements from smart
wearable devices could improve the objectivity of muscle health assessment, and lead towards stronger
evidence-based rehabilitation.

An ideal rehabilitative smart device would be capable of objectively and autonomously
determining a patient’s muscle health. This would enable a path towards (1) improved diagnostics,
(2) the development of individualized therapies specific to a patient’s level of health, and (3) the
identification of objective outcome measures to inform evidence-based rehabilitation practices.
Electromyography (EMG), the study of the electrical currents generated during muscle contraction,
offers a possible solution for assessing muscle health with a smart brace. EMG signals can be collected
directly from muscle units by inserting a needle into the muscle fiber. Surface EMG (sEMG) signals are
collected noninvasively by placing electrodes on the surface of the skin. Quantitative EMG analysis is
an established diagnostic tool for patients with nerve damage and skeletal muscle damage.

A range of models including artificial neural networks, support vector machines, and decision
trees have been used to successfully classify needle EMG signals as neuropathic, myopathic, or
normal [7,8]. There is some evidence that sEMG data from patients with elbow injuries conform to
patterns that distinguish the level of injury and could therefore be used to quantify the success of a
therapy. Patients with elbow motion deficits following injury have been observed to have increased
sEMG activity in their elbow muscles during elbow flexion and extension compared to controls [9].
However, there is no classification method that can be implemented in an elbow rehabilitation device to
monitor and assess patient health following elbow trauma. If these differences could be modeled using
a classification system, they could be implemented in a rehabilitative robotic device and a patient’s
health could be monitored as they progress through the rehabilitation process.

As a first step in this direction, this paper investigates methods of using sEMG data for classifying
upper limbs as healthy or injured. The remainder of the paper is organized as follows: Section 2
provides background information about feature extraction for sEMG signal classification. Section 3
explains the methods used in the study, including data collection, feature extraction, feature selection,
and classification. Section 4 describes the classification results, Section 5 is the discussion, and Section 6
provides the conclusions.

2. Background

EMG data are typically classified using pattern recognition techniques [10]. Following
EMG acquisition, the data are windowed into segments, and features are extracted from each
segment. Feature extraction allows useful information to be obtained from the sEMG signal, and
reduces unwanted information and noise [11]. Numerous features have been proposed for sEMG
classification [12,13]. The features used in this study are summarized in Table 1.
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Table 1. List of common sEMG features with references. K is the number of window segments used for
multi-window features.

Feature Abbr. Reference Feature Abbr. Reference

Average amplitude change AAC [13] Mean spike amplitude MSA [14]

Autoregressive coefficients (second
and fourth order)

AR2
AR4 [13,15] Mean spike duration MSD [14]

Approximate entropy ApEn [12,16] Mean spike frequency MSF [14]

Coefficients of cepstral analysis
(fourth order) CC4 [13] Mean spike slope MSS [14]

Difference absolute standard
deviation value DASDV [13] Multiple trapezoidal windows

(K = 3) MTW [12]

Detrended fluctuation analysis DFA [17] Myopulse percentage rate MYOP [13]

Frequency ratio FR [13] Peak frequency PKF [13]

Higuchi’s fractal dimension HFD [17] Power spectrum ratio PSR [13]

Kurtosis KURT [12] Root mean square RMS [13]

Log detector LOG [13] Skewness SKEW [12]

Mean absolute value MAV [18] Spectral moments
SM1
SM2
SM3

[13]

Mean absolute value slope (K = 3) MAVS [18] Slope sign change SSC [18]

Median frequency MDF [13] Sample entropy SampleEn [12,19]

Maximum fractal length MFL [17] Total power TTP [13]

Multiple Hamming windows (K = 3) MHW [12] Variance of EMG VAR [13]

Modified mean absolute value 1 MMAV1 [13] Variance of central frequency VCF [13]

Modified mean absolute value 2 MMAV2 [13] Willison amplitude WAMP [13]

Mean frequency MNF [13] Waveform length WL [18]

Mean power MNP [13] Zero crossings ZC [18]

Mean number of peaks per spike MNPPS [14]

2.1. sEMG Features

sEMG features can be categorized by the type of information about the signal that they
provide [13]. The following categories of features are commonly used:

Time Domain Features

Features extracted from the time domain can provide information about the (1) energy, (2)
frequency, and (3) information complexity of the sEMG signal. The mean absolute value (MAV),
Willison amplitude (WAMP), and wavelength (WL) features were found to provide the best motion
classification accuracies of these three subclasses of features [13]. Time domain features can be further
derived from features calculated for each window segment. For example, the slope of the mean
absolute value (MAVS) feature is the difference of the MAV between two adjacent window segments.
Time domain features are preferable for real-time devices because they require low computational
complexity to calculate [13].

The Hudgins feature set, developed by Hudgins in 1993, consists of the following five time
domain features: MAV, MAVS, WL, slope sign change (SSC), and zero crossings (ZC) [18]. MAVS is
typically omitted from the Hudgins set in the most recent literature [20]. Many myoelectric devices
implement the Hudgins feature set or a variation of the Hudgins feature set because it includes features
that are effective for motion classification and computationally simple to extract [20].
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Frequency Domain Features

Frequency domain features are primarily used to study muscle fatigue and motor unit recruitment.
They are not as computationally efficient as time domain features and provide weaker performance
for motion classification [13,15].

Spike Shape Analysis Features

Further information about muscle activation and motor unit activity can be assessed from the
morphology of the sEMG signal with spike shape analysis (SSA) features [21]. A spike is defined as a
single upward and downward deflection that is greater than a predefined threshold amplitude. The
threshold is typically the 95% confidence interval for baseline EMG activity [14].

Prediction Model Coefficients

The fourth-order autoregressive (AR) and cepstral models are commonly implemented for sEMG
signals [13]. The second order AR coefficients (AR2) have also been successful for motion classification
when combined with the root mean square (RMS) time domain feature [15].

Entropy Features

The approximate entropy (ApEn) feature is a measure of system complexity used to classify
stochastic processes [16]. ApEn has been applied to sEMG signals for motion classification [22].
ApEn represents the likelihood that similar patterns of observations will not be followed by similar
observations. The sample entropy (SampleEn) feature is a refinement of ApEn that improves the
consistency of comparisons between data sets [19].

Fractal Dimension Features

Fractal dimension (FD) features provide information about the morphology, spectrum, and
variance of the EMG signal. The FD is a measurement of the non-linear property of a signal, and
is related to muscle size and complexity, but is unrelated to the strength of muscle contraction. FD
is useful for classifying motions using single EMG channels, and low-level muscle activations [17].
Several FD features have been proposed for the classification of EMG signals, including Higuchi’s
fractal dimension (HFD), maximum fractal length (MFL), and detrended fluctuation analysis (DFA).

Higher Order Statistics

Higher order statistics of EMG signals, such as skewness (SKEW) and kurtosis (KURT) can
identify details of the EMG signal that are missed when the signal is assumed to be a Gaussian process.
For example, the kurtosis of the EMG signal tends to be greater than zero, and decreases towards
approximating a Gaussian distribution as the contraction level increases [23].

2.2. Features for Evaluating Muscle Health

Several sEMG features have been found to exhibit differences between healthy subjects and
patients with neuromuscular or muscle disorders including Duchenne muscular dystrophy [24],
non-specific arm pain [21], stiff elbow [9], and elbow trauma [25].

Spike shape analysis was implemented for identifying and evaluating patients of non-specific
arm pain. Significant increases in mean spike amplitude (MSA), mean spike frequency (MSF), mean
spike slope (MSS), and mean number of peaks per spike (MNPPS) and significant decreases in mean
spike duration (MSD) were observed in the sEMG signals collected from the extensor carpi radialis
muscle in subjects with non-specific arm pain compared to controls [21].

Haddara [25] compared six sEMG features (median frequency (MDF), mean frequency (MNF),
zero crossings (ZC), RMS, MAV, and MSA) collected from elbow trauma patients and a group of
healthy subjects. Statistically significant differences were primarily identified using the RMS and MAV
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features. The RMS and MAV features collected from the patients at the end of the therapy program
were found to resemble the healthy population more closely. The frequency domain features, MDF
and MNF, showed no significant differences between the groups.

2.3. Classification

Following feature extraction, machine learning classifiers (including linear discriminant analysis
(LDA), support vector machines (SVM), and decision tree classifiers) are applied to the extracted
features to classify the EMG data. LDA is a robust classifier and is advantageous for embedded
processors involved with real-time applications because it provides fast prediction speeds and small
memory usages. LDA has been applied to a variety of EMG classification problems [26], and is generally
found to provide acceptable classification accuracies [20]. An extension of the LDA classification
method is the SVM classifier, which uses separating hyperplanes to distinguish between two classes of
data. The SVM classifier has been used for many EMG applications including motion classification [15]
and the diagnosis of neuromuscular disorders [27].

LDA and linear SVM models may perform poorly if the relationships between features are
non-linear. Decision tree classifiers are simple models that provide easily interpretable results, and can
outperform linear models when classifying non-linear data. A single decision tree classifier determines
an outcome based on a series of splitting rules starting at the top of a tree and continuing into a series
of branches. The decision tree stratifies the feature space into regions to provide the prediction. A
single decision tree model is susceptible to over-fitting and a lack of robustness. These problems can
be avoided by aggregating many decision trees. The random forest (RF) algorithm prevents decision
tree models from considering most of the available predictors at each split [28].

2.4. Summary

Pattern recognition techniques have been applied to the classification of sEMG signals by
motion [13,29], force [30], neuromuscular health [7], and fatigue [31,32]. There has not been a
study, however, classifying muscular health of patients following MSK injury, although preliminary
evidence suggests that muscle activation patterns differ between healthy and injured patients [25]. This
paper investigates the application of sEMG features to the classification of muscle health following
MSK injury.

3. Methods

Working from the sEMG features presented above, this section now describes the methods of
data collection and data analysis (feature extraction, feature selection, classification, evaluation, and
optimization) with the objective of identifying and assessing the ability of features to distinguish elbow
muscle health.

3.1. Data Collection

Data collection began following approval from the Health Science Research Ethics Board at
Western University (Reference No. 106913, approved on 7 February 2017). Thirty patients (21 male, 9
female) with traumatic elbow injuries were recruited from the Roth McFarlane Hand and Upper Limb
Centre at St. Joseph’s Hospital in London, Ontario. Patients presented with elbow fractures, elbow
dislocations, arthroscopic releases, and bicep tendon repairs, including surgical implants. Patients were
excluded if they indicated that they had congenital MSK defects, or if they had previously experienced
elbow trauma on their contralateral limb. The mean time since the injury was sustained was 9.6 ± 5.9
weeks. The mean reported age of the patients was 45.0 ± 11.5 years, the mean reported height was
175 ± 9.8 cm and the mean reported weight was 89.2 ± 20.3 kg. Seventeen subjects had injured their
dominant hand and 13 had injured their non-dominant hand.

sEMG signals were recorded from the following 7 muscles: biceps brachii (BB), triceps brachii
lateral head (TBlat), triceps brachii long head (TBlong), pronator teres (PT), brachioradialis (BRD),



Sensors 2019, 19, 3309 6 of 15

extensor carpi ulnaris (ECU), and flexor carpi ulnaris (FCU). Electrodes were placed according to the
SENIAM recommendations for electrode placement [33].

All sEMG signals were collected and amplified with a commercial wireless myoelectric system
(Trigno Wireless system, Delsys Inc., Natick, MA, USA). The signals were amplified with a gain of
300×, and the sampling frequency was 1925.93 Hz. The sensors were affixed to the skin using the
recommended double-sided adhesive stickers (Trigno Sensor Skin Interface SC–F03).

Patients were asked to perform three repetitions of the following motions with both the injured
and the contralateral uninjured arm: elbow flexion (EF), elbow extension (EE), forearm pronation
(P), forearm supination (S), wrist flexion (WF), wrist extension (WE), ulnar deviation (UD), radial
deviation (RD), hand open (HO), and hand close (HC). Motions were selected based on standard elbow
rehabilitation exercises. Wrist and hand exercises were included because elbow trauma patients are
also encouraged to perform wrist and finger exercises during rehabilitation [4]. The forearm, wrist,
and hand exercises were performed with the elbow held at approximately 90 degrees (Figure 1).

Figure 1. Ten upper-limb motions performed: (a) elbow flexion (EF), (b) elbow extension (EE),
(c) forearm pronation (P), (d) forearm supination (S), (e) wrist flexion (WF), (f) wrist extension (WE),
(g) ulnar deviation (UD), (h) radial deviation (RD), (i) hand open (HO), and (j) hand close (HC).

Motions were performed in sets with the patient pausing at the end of each motion. The following
order of motion sets was used for every trial: EF/EE, P/S, WF/WE, UD/RD, and HO/HC. Each
motion set was performed with the injured arm three times, and then with the uninjured arm three
times. The forearm, wrist, and hand exercises were performed with the elbow at approximately
90 degrees. The patients were instructed to perform all motions at a comfortable pace.

3.2. Data Processing

All off-line data analysis was performed using MATLAB software (The MathWorks Inc., Natick,
MA, USA, Version R2017b).

The sEMG data were divided into segments representing each motion based on muscle activation.
The double-threshold method for detecting EMG onset was used to facilitate segmentation. The
double-threshold method detects a muscle activation onset once a certain number of consecutive
samples, th2, exceeds a threshold amplitude, th1 [34]. The th1 value was b + 15σ, where b is the
baseline value of the sEMG signal and σ is the standard deviation of b. The th2 value was set to 25. The
signals were first conditioned with the Teager-Kaiser energy operator (TKEO) and then rectified and
passed through a 2nd order Butterworth 50 Hz low pass filter to improve the robustness and accuracy
of muscle activation onset detection [35].

The TKEO is defined as follows [35]:

Ψ[x(n)] = x2(n)− x(n + 1)x(n − 1) (1)

where x is the EMG value, and n is the sample number.
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The segmentations for each sEMG recording were verified visually and sets that were not
segmented correctly by the algorithm were segmented manually. About 50% of the data sets had to be
resegmented manually. Data sets from three subjects were excluded from further analysis after visual
inspection indicated that the data were corrupted.

The sEMG signals were filtered with a 2nd order Butterworth 20–400 Hz band pass filter to
remove low frequency motion artifacts, and uninformative high-frequency components. The signals
were also filtered with a 60 Hz notch filter to reduce power line interference [36].

3.3. Feature Extraction

Forty-two EMG features were extracted from each EMG segment. These features are listed in
Table 1. The features were selected to be representative of each type of information that has been
extracted from sEMG signals (as described in Section 2). These features were also used to develop
three preliminary feature sets, as follows:

• Feature Set 1 (FS1): MAV, SSC, WL, ZC
• Feature Set 2 (FS2): RMS, AR2
• Feature Set 3 (FS3): MSA, MSF, MSS, MNPPS, MSD

FS1 is the Hudgins feature set [18]. FS2 is the feature set developed by Oskeoi and Hu [15]
that was observed to perform well for motion classification. FS3 is a feature set consisting of spike
shape features [14]. All features were calculated from the signal collected over the entire motion. One
feature was obtained for each muscle. For example, for FS1 there were 4 features times 7 sEMG muscle
channels for a total of 28 features in the feature vector for each segment. Feature values for healthy and
injured limbs from the same patient were calculated independently. The features were not adjusted so
that direct comparisons could be made between the healthy and injured limbs of individual patients.

3.4. Classification

Classification models were developed and evaluated for each of the ten motions separately. The
LDA, SVM, and RF classification models were investigated. The LDA classifier was selected because it
is simple, and has been found to be effective for classifying EMG signals in the literature. The SVM
classifier was selected as an extension of the LDA classifier. The RF classifier was selected due to its
usefulness for classifying stroke rehabilitation outcomes [28]. The RF classifier was generated from
200 decision trees. Classification models were initially developed to distinguish between healthy and
injured limbs. The classification models were also investigated for distinguishing between patients at
two different stages of rehabilitation: 0–6 weeks and 7+ weeks.

3.5. Evaluation

The classification accuracies for the feature sets extracted from each motion were evaluated for the
LDA, SVM, and RF models. The classification accuracies were computed using a leave-one-patient-out
cross-validation method. One patient was used as a test set, and the remaining patients were used
as the training set. This process was repeated for each patient. The accuracy was calculated as the
number of correct classifications divided by the total number of patients.

3.6. Optimization of Feature Sets and Models

Both the feature sets and classification models were further optimized. A majority vote was
performed for each patient to combine the outputs of the individual motion models. The majority vote
models were further optimized by generating weighted majority vote models.

Feature selection algorithms are used to choose the best features in order to improve the
classification accuracy and to minimize the number of features required for classification. A feature
set should maximize the class separability within a feature space, so that classes are maximally
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distinguishable. The computational complexity of a feature set should be kept as low as possible to
reduce the feature extraction time and the hardware memory requirements [37].

The RELIEFF feature selection algorithm [38] provides a weight for each feature based on its
predictive ability. The algorithm iterates through instances of each feature and searches for the k-nearest
neighbours in the same class (nearest hits) and from a different class (nearest misses). A good feature
has a similar value to the nearest hit classes, and a very different value from the nearest miss classes.
The differences between each feature instance and the nearest hits are added to the feature weight, and
the differences between each feature instance and the nearest misses are subtracted from the feature
weight. Feature weights are scaled on the interval [−1,1]. The best individual features were found by
comparing their individual performance in a majority vote model. The RELIEFF algorithm [38] was
used with the number of k-nearest neighbours to search for set to 10, as recommended in [28] to search
for the best combinations of features within a feature set.

Following the development and testing of the various classification models, the influence of
patient characteristics (sex, age, body mass index (BMI), and the time since injury) on the outcomes
of the models was investigated. Age was divided into three categories: (1) <30 (n = 8), (2) 30–45
(n = 13), (3) >45 (n = 6). BMI was divided into categories of normal (18.5–25), overweight (25–30),
and obese (>30). Each BMI category contained nine patients. Three categories of time since injury
were investigated: healthy, the early stages of rehabilitation (0–6 weeks of therapy), and the late stages
of rehabilitation (7+ weeks of therapy). The rationale behind these divisions was that strengthening
rehabilitation exercises begin at 7–8 weeks of therapy [4,5]. As well, patients in later stages of
recovery have been observed to have more similar EMG metrics to healthy subjects [25]. The patient
characteristics were input into the classification models as non-zero ordinal categories, and the models
were reevaluated.

4. Results

4.1. Preliminary Feature Sets

The three preliminary feature sets (FS1–FS3) were developed based on feature set
recommendations in the literature. Classification models were developed for each individual motion.
The classification results for each feature set and motion are shown in Table 2.

The models distinguished between the two levels of health with accuracies ranging from
45.9–79.6%, depending on the classification algorithm and the motion. The RF models provided
the best classification accuracies for the majority of the motions when used with FS1 and FS2. For
example, the RF classification accuracies for FS1 ranged from 56.8–72.2%, while the LDA and SVM
classification accuracies ranged from 55.6–69.1% and 54.9–67.9%, respectively. Better performance for
the non-linear RF classifier suggest that many of the relationships between the features in FS1 and FS2
that influence health are non-linear. There was no evident best classifier for FS3, although the best
accuracy was obtained with the LDA model for WF, which provided an accuracy of 79.6%.

The initial classification results suggest that some motions are better than others for classifying
patient health. Table 3 shows the range of classification accuracies for each motion. The EE motion
provided the range with the highest accuracies overall (62.3–77.8%). The models for the WE and HO
motions provided the ranges with the lowest classification accuracies (54.3–66.7% and 48.2–64.2%
respectively). All other motions achieved a classification accuracy of at least 72.2% for one of the
models; however, the RD motion provided classification accuracies below 70% with the exception of
only one classification model.
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Table 2. Classification accuracies for each preliminary feature set. The best classification result for each
motion within each feature set is in bold.

Feature Set Motions Classification
Accuracy (%)

LDA SVM RF

FS1
(MAV, SSC,
WL, ZC)

EF 62.3 60.5 70.3
EE 65.4 62.3 71.6
P 69.1 67.9 67.3
S 60.5 62.3 68.5
WF 67.3 56.8 69.1
WE 55.6 64.8 56.8
UD 58.6 62.3 71.6
RD 61.7 65.4 66.0
HC 64.8 54.9 72.2
HO 55.6 61.1 57.4

FS2
(RMS, AR2)

EF 59.9 57.4 67.9
EE 61.7 64.8 69.8
P 67.3 49.4 71.6
S 58.6 54.9 69.8
WF 63.6 59.3 65.4
WE 60.5 54.3 59.9
UD 62.3 57.4 63.0
RD 59.1 45.9 69.2
HC 63.0 56.2 66.7
HO 58.6 64.2 63.0

FS3
(MSA, MSF, MSS,
MNPPS, MSD)

EF 74.1 61.1 64.8
EE 61.1 77.8 68.5
P 72.2 63.0 61.1
S 50.0 63.0 72.2
WF 79.6 64.8 75.9
WE 57.4 66.7 64.8
UD 72.2 68.5 61.1
RD 61.1 77.8 57.4
HC 57.4 59.3 64.8
HO 48.2 50.0 51.9

Table 3. Range of classification accuracies for each motion.

Motion Classification Accuracy (%)

EF 57.4–74.2
EE 62.3–77.8
P 49.4–72.2
S 50.0–72.2

WF 56.8–79.6
WE 54.3–66.7
UD 57.4–72.2
RD 45.9–77.8
HC 54.9–72.2
HO 48.2–64.2

4.2. Individual Features

Following the previous analysis, the performance of each feature were evaluated individually.
A majority vote was taken across the ten different motions for each individual feature. The decision
agreed upon by the majority of the ten individual motion models for each patient was selected as the
final classification result. This procedure reduced the effect of errors made by individual motion models.
The majority vote models were evaluated using a leave-one-patient-out cross-validation. Table 4 shows
the individual classification performance ranked in order of LDA classification performance.



Sensors 2019, 19, 3309 10 of 15

Table 4. Majority vote classification accuracies for individual features. Features are ordered by LDA
classification accuracy. The best classifier result for each feature is in bold.

Feature Classification
Accuracy (%) Feature Classification

Accuracy (%)
LDA SVM RF LDA SVM RF

MFL 76.54 73.45 59.88 MMAV1 64.81 54.94 62.35
MYOP 74.69 66.67 58.64 HFD 64.20 62.35 59.88
MSD 74.69 54.94 55.56 MAVS 64.20 50.00 56.17
AR4 74.07 59.88 50.00 PKF 63.58 67.9 61.11
MSF 72.84 72.84 54.94 MAV 63.58 55.60 64.81

MNPPS 70.99 64.20 52.47 MSA 63.58 53.70 62.35
PSR 70.99 66.67 56.17 MTW 62.96 50.62 64.20

ApEn 69.14 65.43 57.41 RMS 62.35 57.41 65.43
LOG 69.14 57.41 63.58 MHW 61.73 51.85 62.34
MNF 69.14 68.52 54.32 SM3 60.49 61.73 60.49
ZC 68.52 62.35 55.56 MNP 59.88 52.47 63.58

DASDV 68.52 51.85 61.73 TTP 58.79 51.85 64.20
VCF 68.52 57.41 56.17 VAR 58.64 52.47 64.20
AAC 67.90 51.85 59.88 FR 58.02 67.90 58.02
MSS 67.90 51.85 56.17 SM1 58.02 51.85 61.11

MMAV2 67.38 54.32 61.73 SKEW 57.41 53.09 50.00
WL 66.05 51.85 56.17 DFA 56.80 46.30 50.00
CC4 66.05 51.23 50.62 SM2 55.56 56.79 59.23
MDF 65.43 65.43 56.79 WAMP 54.32 56.17 50.62

SampleEn 65.43 64.81 56.17 KURT 52.47 53.70 50.00
SSC 64.81 61.73 51.85

The individual feature models classified between healthy and injured limbs with accuracies
ranging from 46.3–76.5%. The LDA classifier provided the highest classification accuracy for 27/41
of the individual features, therefore the following features were ranked the highest for each feature
category: LOG (time domain: energy), DASDV (time domain: information complexity), MYOP (time
domain: frequency), MAVS (time domain: multi-window), PSR (frequency domain), MSD (spike shape
analysis), AR4 (prediction model coefficients), ApEn (entropy), MFL (fractal dimension), and SKEW
(higher order statistics).

4.3. Feature Set Development

The individual feature performances were used to inform the development of new feature sets.
FS4 consisted of the overall top ranked features. The MFL and MYOP features were selected because
adding subsequent features was found to degrade the classification accuracy. FS5 was developed to
include the maximum ranked feature within each feature category. SKEW was excluded because of its
low individual performance (below 60% for all classifiers). FS5 ultimately consisted of the following
features: LOG, DASDV, MYOP, MAVS, PSR, AR4, ApEn, MFL, MSD.

Feature reduction is necessary in order to improve the performance, speed, and memory usage
of the classifiers. FS5 contained nine features, therefore it was desirable to minimize the number of
features in this set. The RELIEFF algorithm was implemented to rank the top scoring features in FS5.
The MSD, PSR, and MFL features were consistently ranked among the best features in FS5 for all
motions, and were selected for the optimized feature set. This method would likely lead to upward
bias, therefore future work could entail reevaluating the selected features on a new set of patient data.

The classification accuracies for the new feature sets are summarized in Table 5. FS4 provided the
best ranges of classification accuracies when used with the LDA and SVM classifiers (63.0–78.4% and
60.5–79.6%); however the ranges achieved with the RF classifier were poor (57.4–70.4%). FS5 tended
to work better with the SVM and RF classifiers, and tended to have poor classification accuracies
when used with the LDA classifier. Following optimization with the RELIEFF algorithm, FS5 tended
to achieve higher classification accuracies, although the accuracies were degraded for some of the
motions and classifiers. The LDA classifier demonstrated the greatest improvement following feature
reduction. The RF classification results did not improve following the feature reduction.
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Table 5. Classification accuracies for each feature set. The best classification result for each motion
within each feature set is in bold.

Feature Set Motions Classification
Accuracy (%)

LDA SVM RF

FS4
(MFL, MYOP)

EF 78.4 70.4 63.6
EE 68.5 65.4 67.3
P 71.6 70.4 63.6
S 72.2 71.0 70.4
WF 70.3 70.4 70.4
WE 66.0 60.5 57.4
UD 77.2 79.6 67.3
RD 74.7 69.1 67.9
HC 69.8 69.8 63.6
HO 63.0 70.4 63.6

FS5
(LOG, DASDV, MYOP,
MAVS, PSR, AR4,
ApEn, MFL, MSD)

EF 61.7 73.5 71.0
EE 75.9 72.8 72.8
P 59.9 66.7 67.9
S 58.0 71.0 67.9
WF 64.8 59.9 69.1
WE 51.9 58.6 63.0
UD 69.1 74.7 64.8
RD 61.1 73.5 67.3
HC 56.2 63.6 67.3
HO 56.8 64.8 60.5

FS5 Optimized
with RELIEFF
(PSR, MFL, MSD)

EF 69.8 71.6 64.8
EE 72.5 72.2 75.9
P 72.8 70.4 66.0
S 71.0 72.8 70.4
WF 56.8 69.1 68.5
WE 61.7 66.7 64.2
UD 72.2 76.5 69.1
RD 67.3 64.8 68.5
HC 65.4 71.0 61.7
HO 63.6 66.7 71.6

4.4. Majority Vote Models

Majority vote models were developed for all of the feature sets. Majority vote decisions for
each patient were obtained using the outputs from all of the motion models, and from the outputs
of only the top motion models (EF, EE, P, S, WF, UD, and HC). Table 6 shows the majority vote
classification accuracies.

The classification accuracies ranged from 58.6–74.7%. Most of the accuracies obtained with the
majority vote models were within the upper range of accuracies that had been achieved with the
individual motion models. Two of the majority vote models (SVM with FS1 and LDA with FS2)
surpassed the accuracies of all of the individual motion models. This indicates that misclassification
can be reduced by performing a majority vote, although the motion models often still agree on
incorrect classifications.

The majority vote model was extended by implementing a majority vote decision between “top”
motions that provided better individual classification accuracies. This would decrease the number
of motions that a patient would be required to perform, as well as the size of the input data sets.
The WE and HO motions provided low ranges of classification accuracies (Table 3), so they were
eliminated from the majority vote decision. The RD motion was also removed from the majority
vote decision because, with the exception of one classification model, the individual motion models
provided classification accuracies below 70%. Majority vote decisions based on the outputs of the top
motions (EF, EE, P, S, WF, UD, and HC) were weighted equally.



Sensors 2019, 19, 3309 12 of 15

Table 6. Majority vote classification accuracies. Majority vote decisions were developed from all ten
motions, from only the top motions (EF, EE, P, S, WF, UD, and HC), and from a weighted majority vote.
The best classification results within each feature set are in bold.

Feature Set Motions Classification
Accuracy (%)

LDA SVM RF

FS1 All 67.9 69.8 71.0
Top 70.4 69.1 75.3
Weighted 72.2 71.0 74.1

FS2 All 70.4 58.6 69.8
Top 69.1 60.5 67.9
Weighted 73.5 64.8 75.3

FS3 All 71.6 74.7 71.6
Top 72.2 72.8 74.1
Weighted 71.6 73.5 77.2

FS4 All 77.8 73.4 62.3
Top 79.6 77.8 64.2
Weighted 82.1 74.1 71.0

FS5 All 64.8 73.5 66.7
Top 68.5 76.5 65.4
Weighted 67.3 75.9 75.3

FS5 Optimized
with RELIEFF

All 74.1 74.8 63.0
Top 74.1 77.2 62.3
Weighted 79.6 81.5 77.2

A weighted majority vote decision was also applied to the individual motion models. Each model
was weighted by its respective classification accuracy. For example, when using the LDA classifier
with FS1, the weights for each decision model were selected as follows: EF = 62.3, EE = 65.4, etc.,
based on the classification results found in Table 2. The sum of the weights of the decision models that
identified the patient as healthy was determined, as well as the sum of the weights of the models that
identified the patient as injured. The highest sum (representing either healthy or injured) was selected
as the final weighted majority vote decision. The weighted majority vote classification accuracies
ranged from 64.8–77.2%, and the weighted vote provided improvements to the basic majority vote
classification accuracy for all models.

4.5. Patient Characteristics

Features representing patient characteristics of sex, age, BMI, and time since injury were added to
FS1–FS5, and the classification accuracies were obtained using leave-one-patient-out cross-validation.
The inclusion of the patient characteristic features did not significantly improve the classification
accuracies for any of the motion models. Based on this analysis, the patient characteristics of sex, age,
BMI, time since injury, and hand dominance do not provide important information for the classifiers
tested that could assist with determining the category of muscle health.

5. Discussion

The feature sets recommended in the literature were first explored for classifying muscle health.
When compared to FS1, FS2 performed similarly with the various classifiers, but had an overall worse
performance than FS1. FS3 was unique in that there was not a single classifier that was the best;
however, FS3 also provided the highest accuracies out of all feature sets. These observations are
consistent with the literature, which suggests that feature set selection is more important than classifier
selection for obtaining high classification accuracy with EMG signals [36].

The addition of more features in the feature set can improve accuracy, until an asymptote is
reached, at which point adding new features will not improve the accuracy [13]. The inclusion of four
features in FS1 compared to two in FS2 could account for the better classification performance of FS1.
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Likewise, FS3 contained the greatest number of features of the three feature sets tested, and displayed
higher accuracies than FS1 and FS2.

The LDA classifier tended to provide better classification for individual features; however, the RF
classifier provided better accuracies when used with feature sets. As the RF classifier can classify based
on nonlinear relationships between features, this may have contributed to the higher performance
when used with feature sets.

The EE motion was found to provide best classification, and the WE, HO, and RD motions were
found to provide poor classification accuracies. The WE, HO, and RD motions are hand and wrist
motions, therefore, the performance of these motions may be less impacted by an injury to the elbow.
For example, the HO motion involves the relaxation of the forearm muscles as the hand is released from
the closed position, which may be less strenuous on the elbow. The lower classification performance
may also be due to the muscles involved in the motion. The primary muscles involved in RD, the
extensor carpi radialis and the flexor carpi radialis, were not used as inputs for the classification
models. The WE motion is primarily performed by the ECU muscle, which suggests that the activation
of the ECU muscle is less informative for assessing elbow muscle health.

The RELIEFF algorithm identified the MFL, MYOP, PSR, and MSD features as preferable for
identifying muscle health. The feature set FS4 provided the highest classification accuracy achieved
(82.1%). Although not ideal, this sets a baseline for future comparisons.

This study used the injured and uninjured limbs of the same participants. This design ensured
that the healthy and injured data sets were matched for the population of patients (in terms of age, sex,
and BMI) presenting at clinics with elbow trauma injuries. However, this design does not consider
potential differences in muscle activity due to handedness. For example, research suggests that biceps
activity is lower in the dominant arm [39]. Overuse of the healthy limb to compensate for the loss of
function in the injured limb could also have influenced the results.

ROM and strength recovery were not measured in this study. It is recommended that for future
studies, a cohort of patients should be observed at multiple stages over the recovery process, to observe
healing patterns within individuals.

The purpose of the model was to allow for an objective metric of muscle health to be determined
that could identify if a patient was healing. This work was also directed towards identifying trends in
EMG behaviour that reflect muscle health following elbow trauma. EMG has been used to study the
muscle health of patients with neuromuscular injuries; however, no models have yet been developed
to identify and diagnose the muscle health of elbow trauma patients. This is the first model of its
kind. There is evidence that this could be a precursor to developing a more advanced model of muscle
health, so that a patient could be monitored as they progress through the rehabilitation process.

To develop a practical model of muscle health for a wearable device with multiple classes of
patient health, future work should be directed towards collecting data from a larger cohort of patients
with similar injuries, or from the same patients at multiple stages of recovery.

6. Conclusions

This paper introduced and evaluated a method of using sEMG signals to classify subjects between
two levels of upper-limb muscle health. The models developed achieved classification accuracies
of 45.9–82.1%. The healthy and injured data sets were collected from the same patient, so that the
healthy data sets can be compared to the injured sets, and can allow for a better representation of the
population of patients (in terms of age, sex, BMI) presenting at clinics with elbow trauma injuries.
EMG features capable of predicting muscle health were identified. The best individual features were
identified to be MFL, MYOP, PSR, and spike shape analysis features, in particular MSD. The best
individual motions for classifying health were EF, EE, P, S, WF, UD, and HC. The first classification
models to distinguish between healthy and injured limbs of elbow trauma patients based on EMG
data were developed. There is the potential for implementing a classification model of health in a
rehabilitative elbow brace to assess patients recovering from elbow trauma; however, further work in
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this direction, including further data collection, validation, optimization, and improvements to the
existing state-of-the-art EMG acquisition systems will be necessary to achieve this goal.

Author Contributions: Data collection, E.F.; conceptualization and supervision, A.L.T.; recruitment, patient
recruitment, S.C.; data analysis and validation E.F. and D.J.L.; the main content of this manuscript was created
and written by E.F. and reviewed by all authors.

Funding: This work was funded by the Natural Sciences and Engineering Research Council (NSERC) of Canada
under grant RGPIN-2014-03815 and by the Ontario Ministry of Economic Development, Trade and Employment
and the Ontario Ministry of Research and Innovation through the Early Researcher Award (A. L. Trejos). Financial
support for E. Farago was provided by a Transdisciplinary Bone & Joint Training Award from the Collaborative
Training Program in Musculoskeletal Health Research (CMHR) at Western University, and by an NSERC Canada
Graduate Scholarship.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Canadian Institute of Musculoskeletal Health and Arthritis. IMHA Strategic Plan 2014–2018. 2014. Available
online: http://www.cihr-irsc.gc.ca/e/48830.html/ (accessed on 28 May 2019).

2. Maciejasz, P.; Eschweiler, J.; Gerlach-Hahn, K.; Jansen-Troy, A.; Leonhardt, S. A survey on robotic devices for
upper limb rehabilitation. J. Neuroeng. Rehabil. 2014, 11, 3. [CrossRef] [PubMed]

3. Myomo. 2018. Available online: http://myomo.com/ (accessed on 28 May 2019).
4. Chinchalkar, S.J.; Szerkeres, M. Rehabilitation of elbow trauma. Hand Clin. 2004, 20, 363–374. [CrossRef]

[PubMed]
5. Fusaro, I.; Orsini, S.; Stignani Kantar, S.; Sforza, T.; Benedetti, M.G.; Bettelli, G.; Rotini, R. Elbow rehabilitation

in traumatic pathology. Musculoskelet. Surg. 2014, 98, S95–S102. [CrossRef] [PubMed]
6. Macdermid, J.C.; Vincent, J.I.; Kieffer, L.; Kieffer, A.; Demaiter, J.; Macintosh, S. A survey of practice patterns

for rehabilitation post elbow fracture. Open Orthop. J. 2012, 6, 429–439. [CrossRef] [PubMed]
7. Yousefi, J.; Hamilton-Wright, A. Characterizing EMG data using machine-learning tools. Comput. Biol. Med.

2014, 51, 1–13. [CrossRef]
8. Adel, T.; Smith, B.; Urner, R.; Stashuk, D.; Lizotte, D.J. Generative multiple-instance learning models

for quantitative electromyography. In Proceedings of the 29th conference on Uncertainty in Artificial
Intelligence (UAI), Corvallis, OR, USA, 11–15 August 2013.

9. Page, C.; Backus, S.I.; Lenhoff, M.W. Electromyographic activity in stiff and normal elbows during elbow
flexion and extension. J. Hand Ther. 2003, 16, 5–11. [CrossRef]

10. Nazmi, N.; Rahman, M.A.A.; Yamamoto, S.I.; Ahmad, S.A.; Zamzuri, H.; Mazlan, S.A. A review of
classification techniques of EMG signals during isotonic and isometric contractions. Sensors 2016, 16, 1304.
[CrossRef]

11. Chowdhury, R.H.; Reaz, M.B.I.; Ali, M.A.B.M.; Bakar, A.A.A.; Chellappan, K.; Chang, T.G. Surface
electromyography signal processing and classification techniques. Sensors 2013, 13, 12431–12466. [CrossRef]

12. Phinyomark, A.; Quaine, F.; Charbonnier, S.; Serviere, C.; Tarpin-Bernard, F.; Laurillau, Y. EMG feature
evaluation for improving myoelectric pattern recognition robustness. Expert Syst. Appl. 2013, 40, 4832–4840.
[CrossRef]

13. Phinyomark, A.; Phukpattaranont, P.; Limsakul, C. Feature reduction and selection for EMG signal
classification. Expert Syst. Appl. 2012, 39, 7420–7431. [CrossRef]

14. Gabriel, D.A.; Lester, S.M.; Lenhardt, S.A.; Cambridge, E.D.J. Analysis of surface EMG spike shape across
different levels of isometric force. J. Neurosci. Methods 2007, 159, 146–152. [CrossRef] [PubMed]

15. Oskoei, M.A.; Hu, H. Support vector machine-based classification scheme for myoelectric control applied to
upper limb. IEEE Trans. Biomed. Eng. 2008, 55, 1956–1965. [CrossRef] [PubMed]

16. Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991,
88, 2297–2301. [CrossRef] [PubMed]

17. Phinyomark, A.; Phukpattaranont, P.; Limsakul, C. Fractal analysis features for weak and single-channel
upper-limb EMG signals. Expert Syst. Appl. 2012, 39, 11156–11163. [CrossRef]

18. Hudgins, B.; Parker, P.; Scott, R.N. A new strategy for multifunction myoelectric control. IEEE Trans.
Biomed. Eng. 1993, 40, 82–94. [CrossRef] [PubMed]

http://www.cihr-irsc.gc.ca/e/48830.html/
http://dx.doi.org/10.1186/1743-0003-11-3
http://www.ncbi.nlm.nih.gov/pubmed/24401110
http://myomo.com/
http://dx.doi.org/10.1016/j.hcl.2004.06.004
http://www.ncbi.nlm.nih.gov/pubmed/15539093
http://dx.doi.org/10.1007/s12306-014-0328-x
http://www.ncbi.nlm.nih.gov/pubmed/24659223
http://dx.doi.org/10.2174/1874325001206010429
http://www.ncbi.nlm.nih.gov/pubmed/23115603
http://dx.doi.org/10.1016/j.compbiomed.2014.04.018
http://dx.doi.org/10.1016/S0894-1130(03)80018-2
http://dx.doi.org/10.3390/s16081304
http://dx.doi.org/10.3390/s130912431
http://dx.doi.org/10.1016/j.eswa.2013.02.023
http://dx.doi.org/10.1016/j.eswa.2012.01.102
http://dx.doi.org/10.1016/j.jneumeth.2006.07.004
http://www.ncbi.nlm.nih.gov/pubmed/16942800
http://dx.doi.org/10.1109/TBME.2008.919734
http://www.ncbi.nlm.nih.gov/pubmed/18632358
http://dx.doi.org/10.1073/pnas.88.6.2297
http://www.ncbi.nlm.nih.gov/pubmed/11607165
http://dx.doi.org/10.1016/j.eswa.2012.03.039
http://dx.doi.org/10.1109/10.204774
http://www.ncbi.nlm.nih.gov/pubmed/8468080


Sensors 2019, 19, 3309 15 of 15

19. Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample
entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. [CrossRef] [PubMed]

20. Englehart, K.; Hudgins, B. A robust, real-time control scheme for multifunction myoelectric control. IEEE
Trans. Biomed. Eng. 2003, 50, 848–854. [CrossRef] [PubMed]

21. Calder, K.M.; Gabriel, D.A.; McLean, L. Differences in EMG spike shape between individuals with and
without non-specific arm pain. J. Neurosci. Methods 2009, 178, 148–156. [CrossRef]

22. Zhao, J.; Jiang, L.; Cai, H.; Liu, H.; Hirzinger, G. A novel EMG motion pattern classifier based on wavelet
transform and nonlinearity analysis method. In Proceedings of the IEEE International Conference on
Robotics and Biomimetics, Kumming, China, 17–20 December 2006; pp. 1494–1499.

23. Nazarpour, K.; Al-Timemy, A.H.; Bugmann, G.; Jackson, A. A note on the probability distribution function
of the surface electromyogram signal. Brain Res. Bull. 2013, 90, 88–91. [CrossRef]

24. Hogrel, J.Y. Clinical applications of surface electromyography in neuromuscular disorders. Neurophysiol. Clin.
2005, 35, 59–71. [CrossRef]

25. Haddara, R.; Zhou, Y.; Chinchalkar, S.; Trejos, A.L. Postoperative healing patterns in elbow using
electromyography: Towards the development of a wearable mechatronic elbow brace. In Proceedings of the
IEEE International Conference on Rehabilitation Robotics, London, UK, 17–20 July 2017; pp. 1395–1400.

26. Fougner, A.; Scheme, E.; Chan, A.D.; Englehart, K.; Stavdahl, Ø. Resolving the limb position effect in
myoelectric pattern recognition. IEEE Trans. Neural Syst. Rehabil. Eng. 2011, 19, 644–651. [CrossRef]
[PubMed]

27. Subasi, A. Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders.
Comput. Biol. Med. 2013, 43, 576–586. [CrossRef] [PubMed]

28. Patel, S.; Hughes, R.; Hester, T.; Stein, J.; Akay, M.; Dy, J.; Bonato, P. Tracking motor recovery in stroke
survivors undergoing rehabilitation using wearable technology. In Proceedings of the IEEE Engineering
in Medicine and Biology Society Conference, Buenos Aires, Argentina, 31 August–4 September 2010;
pp. 6858–6861.

29. Toledo-Pérez, D.C.; Martínez-Prado, M.A.; Gómez-Loenzo, R.A.; Paredes-García, W.J.; Rodríguez-Reséndiz, J.
A Study of Movement Classification of the Lower Limb Based on up to 4-EMG Channels. Electronics 2019,
8, 259. [CrossRef]

30. Scheme, E.; Englehart, K. Electromyogram pattern recognition for control of powered upper-limb prostheses:
State of the art and challenges for clinical use. J. Rehabil. Res. Dev. 2011, 48, 643–660. [CrossRef] [PubMed]

31. Subasi, A.; Kiymik, M.K. Muscle fatigue detection in EMG using time-frequency methods, ICA and neural
networks. J. Med. Syst. 2010, 34, 777–785. [CrossRef]

32. De la Peña, S.; Polo, A.; Robles-Algarín, C. Implementation of a Portable Electromyographic Prototype for
the Detection of Muscle Fatigue. Electronics 2019, 8, 619. [CrossRef]

33. SENIAM project. Sensor placements. Available online: http://seniam.org/ (accessed on 28 May 2019).
34. Drapała, J.; Brzostowski, K.; Szpala, A.; Rutkowska-Kucharska, A. Two stage EMG onset detection method.

Arch. Control Sci. 2012, 22, 427–440. [CrossRef]
35. Solnik, S.; Rider, P.; Steinweg, K.; Devita, P.; Hortobágyi, T. Teager-Kaiser energy operator signal conditioning

improves EMG onset detection. Eur. J. Appl. Physiol. 2010, 110, 489–498. [CrossRef]
36. Hakonen, M.; Piitulainen, H.; Visala, A. Current state of digital signal processing in myoelectric interfaces

and related applications. Biomed. Signal Process. Control 2015, 18, 334–359. [CrossRef]
37. Zardoshti-Kermani, M.; Wheeler, B.C.; Badie, K.; Hashemi, R.M. Feature evaluation for movement control of

upper extremity prostheses. IEEE Trans. Rehabil. Eng. 1995, 3, 324–333. [CrossRef]
38. Kononenko, I.; Šimec, E.; Robnik-Šikonja, M. Overcoming the myopia of inductive learning algorithms with

RELIEFF. Appl. Intell. 1997, 7, 39–55. [CrossRef]
39. Bagesteiro, L.B.; Sainburg, R.L. Handedness: Dominant Arm Advantages in Control of Limb Dynamics.

J. Neurophysiol. 2002, 88, 2408–2421. [CrossRef] [PubMed]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1152/ajpheart.2000.278.6.H2039
http://www.ncbi.nlm.nih.gov/pubmed/10843903
http://dx.doi.org/10.1109/TBME.2003.813539
http://www.ncbi.nlm.nih.gov/pubmed/12848352
http://dx.doi.org/10.1016/j.jneumeth.2008.11.015
http://dx.doi.org/10.1016/j.brainresbull.2012.09.012
http://dx.doi.org/10.1016/j.neucli.2005.03.001
http://dx.doi.org/10.1109/TNSRE.2011.2163529
http://www.ncbi.nlm.nih.gov/pubmed/21846608
http://dx.doi.org/10.1016/j.compbiomed.2013.01.020
http://www.ncbi.nlm.nih.gov/pubmed/23453053
http://dx.doi.org/10.3390/electronics8030259
http://dx.doi.org/10.1682/JRRD.2010.09.0177
http://www.ncbi.nlm.nih.gov/pubmed/21938652
http://dx.doi.org/10.1007/s10916-009-9292-7
http://dx.doi.org/10.3390/electronics8060619
http://seniam.org/
http://dx.doi.org/10.2478/v10170-011-0033-z
http://dx.doi.org/10.1007/s00421-010-1521-8
http://dx.doi.org/10.1016/j.bspc.2015.02.009
http://dx.doi.org/10.1109/86.481972
http://dx.doi.org/10.1023/A:1008280620621
http://dx.doi.org/10.1152/jn.00901.2001
http://www.ncbi.nlm.nih.gov/pubmed/12424282
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	sEMG Features
	Features for Evaluating Muscle Health
	Classification
	Summary

	Methods
	Data Collection
	Data Processing
	Feature Extraction
	Classification
	Evaluation
	Optimization of Feature Sets and Models

	Results
	Preliminary Feature Sets
	Individual Features
	Feature Set Development
	Majority Vote Models
	Patient Characteristics

	Discussion
	Conclusions
	References

