Skip to main content
. 2019 Jul 27;19(15):3309. doi: 10.3390/s19153309

Table 4.

Majority vote classification accuracies for individual features. Features are ordered by LDA classification accuracy. The best classifier result for each feature is in bold.

Feature Classification Accuracy (%) Feature Classification Accuracy (%)
LDA SVM RF LDA SVM RF
MFL 76.54 73.45 59.88 MMAV1 64.81 54.94 62.35
MYOP 74.69 66.67 58.64 HFD 64.20 62.35 59.88
MSD 74.69 54.94 55.56 MAVS 64.20 50.00 56.17
AR4 74.07 59.88 50.00 PKF 63.58 67.9 61.11
MSF 72.84 72.84 54.94 MAV 63.58 55.60 64.81
MNPPS 70.99 64.20 52.47 MSA 63.58 53.70 62.35
PSR 70.99 66.67 56.17 MTW 62.96 50.62 64.20
ApEn 69.14 65.43 57.41 RMS 62.35 57.41 65.43
LOG 69.14 57.41 63.58 MHW 61.73 51.85 62.34
MNF 69.14 68.52 54.32 SM3 60.49 61.73 60.49
ZC 68.52 62.35 55.56 MNP 59.88 52.47 63.58
DASDV 68.52 51.85 61.73 TTP 58.79 51.85 64.20
VCF 68.52 57.41 56.17 VAR 58.64 52.47 64.20
AAC 67.90 51.85 59.88 FR 58.02 67.90 58.02
MSS 67.90 51.85 56.17 SM1 58.02 51.85 61.11
MMAV2 67.38 54.32 61.73 SKEW 57.41 53.09 50.00
WL 66.05 51.85 56.17 DFA 56.80 46.30 50.00
CC4 66.05 51.23 50.62 SM2 55.56 56.79 59.23
MDF 65.43 65.43 56.79 WAMP 54.32 56.17 50.62
SampleEn 65.43 64.81 56.17 KURT 52.47 53.70 50.00
SSC 64.81 61.73 51.85