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ABSTRACT

Social determinants of health (SDOH) are known to influence mental health outcomes, which are independent

risk factors for poor health status and physical illness. Currently, however, existing SDOH data collection meth-

ods are ad hoc and inadequate, and SDOH data are not systematically included in clinical research or used to in-

form patient care. Social contextual data are rarely captured prospectively in a structured and comprehensive

manner, leaving large knowledge gaps. Extraction methods are now being developed to facilitate the collection,

standardization, and integration of SDOH data into electronic health records. If successful, these efforts may

have implications for health equity, such as reducing disparities in access and outcomes. Broader use of sur-

veys, natural language processing, and machine learning methods to harness SDOH may help researchers and

clinical teams reduce barriers to mental health care.

INTRODUCTION

Research has consistently demonstrated that lower socioeconomic

status (SES) has a strong association with poor overall health and

prevalence of many chronic diseases including cardiovascular dis-

ease, hypertension, diabetes, and depression.1–6 The robust associa-

tion, within and across populations of different countries, is referred

to as the “social gradient of health.”7 The gradient is often thought

of as linking SES to physical health, but a growing literature suggests

its association with mental health issues is particularly important for

at least 2 central reasons. First, mental illness is an independent risk

factor for worse overall health status and higher rates of physical ill-

ness and premature death.8–12 The social determinants of health

(SDOH) have wide-ranging and often unappreciated effects on the

overall well-being of individuals and communities. Second, the link

between SES and mental health can have large, long-lasting, often

generational health effects. For example, adverse childhood experi-

ences, which have an inverse dose-dependent relationship with SES,

can lead to significant developmental disruptions; these are often

expressed insidiously through higher prevalence of mental and phys-

ical disease in adulthood decades later.13,14

Better mental health equity is unlikely without a deeper under-

standing and targeting of the causal factors related to social determi-

nants of health (SDOH). The importance of income, housing

security, education, unemployment, child abuse and neglect, neigh-

borhood conditions, and social support have repeatedly been dem-

onstrated to influence mental health outcomes.7,15–17 But in clinical

practice, these data are often collected in an ad hoc, incomplete

manner—if at all—and thus have limited actionable utility in re-

search and care delivery endeavors.

Currently, diverse streams of SDOH data are collected for ad

hoc reasons by various stakeholders, including patients, practi-

tioners, researchers, advocacy groups, government agencies, and

other public-private entities.18,19 Data are rarely standardized, often

come from unvalidated instruments and questionnaires, and
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typically facilitate community-level analyses over individual-level in-

vestigation.20 Their integration into electronic health records

(EHRs), and by extension, research and clinical care, is not yet stan-

dard practice.21 But systematically capturing, structuring, and using

this data holds the potential to create a new “data asset” in health

systems design, clinical care, and research. In this article we high-

light current challenges for collecting SDOH data, and provide an

overview of possible paths forward, which may help reduce mental

health disparities.

DATA COLLECTION AND STANDARDIZATION

Currently, collecting patient-level SDOH data requires documenta-

tion by health care providers (eg, in an encounter note in the EHR),

self-reported patient questionnaires (paper or electronic), or pro-

spective data collection by researchers for a particular study. Beyond

basic demographic information, home address, and history of smok-

ing or substance use, key SDOH measures are not routinely collected

by clinicians and health systems despite demonstrated association

and causal impact on health outcomes (Figure 1).22,23 Relevant fac-

tors not generally collected include food and housing insecurity, em-

ployment barriers, past exposures to abuse (verbal, physical, and

sexual), residence in social environments that perpetuate trauma

risk, and estimates of social isolation. In the rare cases that such

data are collected, care providers often do not use validated

instruments raising concerns about data interpretation and second-

ary use.24 As a result, individual-level SDOH data collection typi-

cally exists in many different formats through various modalities of

collection and without a robust underlying framework that could fa-

cilitate clinical care, research, and population health management.

Some efforts are being made to address this shortcoming. For ex-

ample, the PRAPARE tool (Protocol for Responding to and Assess-

ing Patients’ Assets, Risk, and Experiences) aims to standardize data

collection on several actionable core domains of social determinants

such as housing stability, income, and social integration and sup-

port.25 Domains were prioritized for screenings in community

health centers, yet the tool has been adapted for use by other institu-

tions in several US regions.26,27 The availability of PRAPARE and

other similar tools, such as HealthBegins and WellRx, are necessary

first steps, but they have yet to be implemented broadly across EHR

systems or integrated into clinical workflows in facilities caring for

patients with mental health disorders (such as primary care settings,

specialty and mental health clinics, and free-standing acute mental

health facilities).28–30 More widespread adoption would increase the

rate at which such tools are validated across dimensions (ie, internal

and external) and improve data collection efforts and our under-

standing of the health contributions of specific social risk factors.

Some progress can be made by supplementing existing tools.

Whereas many of the existing survey tools capture data across a

range of social needs, domain-specific question sets should be cre-

ated and incorporated to supplement such tools and to target distal

factors affecting mental health. These factors may include life satis-

faction, life meaning and purpose, and beneficial and adverse events

in the home or community that impact community stakeholders and

neighborhood perception.31 Additional questions for patients al-

ready receiving mental health care could cover structural and attitu-

dinal barriers to treatment, time until treatment is sought, and

online resources used for answers or guidance (ie, forums, social me-

dia, non-/academic sites).32 By routinely collecting these data, we

can start to address knowledge gaps around how social factors influ-

ence mental health outcomes and design care models to address

them.

In addition to new prospective SDOH data collection methods,

natural language processing (NLP) and advanced machine learning

(ML) algorithms can be leveraged to mine existing sources to extract

existing data. In many cases, at least some information about a

Figure 1. Health influences. Figure 1 has been adapted from County Health Rankings model VC 2014 University of Wisconsin-Madison Public Health Institute.

http://www.countyhealthrankings.org/what-is-health. The size of each section in the outer loop is associated with estimated influence. Inner loop is split evenly

among groups.
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patient’s social situation is recorded by clinicians in EHR notes. Cur-

rent work at the intersection of social media and health has also

shown that some people may also choose to discuss health-related

information and behaviors online through social media channels.

NLP, ML and other semantic methodologies (ie, abstracting mean-

ingful data through contextualized processing) are currently being

developed to extract race and ethnicity, suicidal ideation and

attempts, and problem opioid use from EHR clinical notes and so-

cial media data.33–37 These methods could be extended to extract

individual-level concepts such as emotional well-being, financial sta-

bility, and other social factors associated with mental health.38,39

Although these extraction methods may not be as comprehensive as

rigorous, prospective data collection tools–and require significant ef-

fort to develop–they are able to generate “new” structured data

from unstructured sources and potentially improve secondary use of

relevant social and health information.

The integration of advanced analytical tools that incorporate

SDOH within EHRs raises the issue of interoperability with internal

and external systems as a key challenge. EHRs typically lack robust

data interoperability and information exchange capabilities and suf-

fer from information redundancy due to data silos. As the amount

of SDOH data increases, so too will the work needed to track con-

cept variations, account for duplicates, and maintain parsimonious

data models. By adopting standardized health care data standards

and vocabularies, such as LOINC (Logical Observation Identifiers

Names and Codes) and SNOMED, to describe and classify SDOH

concepts, health systems can reduce superfluous, nonstandardized

data and better incorporate these concepts into clinical care and

decision-support systems.40,41 Clinical research, community health

reporting, and other forms of secondary data uses will benefit from

a more unified and uniform representation of data. Whereas there

remains the possibility of data multiplicity and variability even with

standardized terminologies, health systems can take important steps

toward increased data efficiency and interoperability by adopting

such data standards.

IMPLICATIONS FOR HEALTH EQUITY

Better collection of SDOH data offers clinicians and health systems

the opportunity to identify social correlates of health outcomes that

may be missed by routine clinical data elements. Given the broad

and profound impact social determinants have on mental and physi-

cal health outcomes, it may not be enough to collect narrowly de-

fined social factors like gender, education, poverty, and disability.42

Further efforts should also aim to capture structural and contextual

factors strongly associated with health inequity such as housing se-

curity, unemployment, child abuse/neglect, neighborhood condi-

tions, and social support.43–45

A risk of many informatics-based interventions is that they may

exacerbate inequities by disproportionately benefiting higher SES

individuals through better access, adoption, adherence, and effec-

tiveness measures.46 Patients struggling with mental health disorders

may be particularly at risk given the continued stigma around men-

tal illness in many communities.47–50

To minimize potential bias, SDOH data should be collected

from both traditional (ie, clinical encounters) and non-traditional

sources (ie, social media, forums, wearables, mobile apps, and chat-

bots). NLP, ML and semantically-enhanced methodologies can be

applied to social media platforms to augment community-level

health surveillance and thus “listen” to individuals who may not be

seeking care, but who nonetheless publicly share details related to

depression, suicidal ideation/attempts, or other mental health con-

cerns.51,52 Relevant signals gleaned from social media can then be

used to assess the risk factors of a particular community without in-

vading the privacy of any 1 individual. These data streams can be

mined in parallel with active and passive collection of individual-level

social data to explore novel relationships through applied ML techni-

ques. ML, in turn, may become hypothesis-generating for further

investigations on the impacts of SDOH and potential interventions.

Bridging the knowledge gap is an attainable goal and may allow

for carefully designed interventions and policies that increase access,

reduce attrition, and improve effectiveness.53–58 Having access to a

more robust set of patient social variables will also allow investiga-

tors to 1) perform more sophisticated sampling and recruitment

methods, 2) report relevant SES, language, neighborhood, and de-

mographic information; and 3) conduct subgroup analyses with

greater accuracy by stratifying across multiple social statuses.59,60

Research can also take a step further from drawing simple

associations by testing increased patient empowerments as well as

interventions across groups to determine which interventions are

most effective and for whom.61–63

CONCLUSION

Despite known associations between social determinants and mental

illness, SDOH data are rarely captured in a structured and comprehen-

sive manner by researchers, clinicians, and health systems. In response

to increased interest in SDOH data, several collection tools and extrac-

tion methods are being developed to facilitate capture of this data and

subsequent integration into EHRs. These include survey-based, NLP,

and ML methods to collect and characterize attitudinal, structural,

and social barriers to care. Incorporation of these data carry the poten-

tial to improve care but also to perpetuate or exacerbate existing

health disparities if precautions are not taken. But if properly used,

better data collection and analysis may allow for the development of

new strategies to direct individual patients to appropriate community

services, target care toward population-level needs, and reduce barriers

to mental health care through informed policy-level decisions.
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