Skip to main content
Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry logoLink to Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry
. 1968 Sep-Oct;72A(5):505–520. doi: 10.6028/jres.072A.043

The Configurations 3dn4p in Doubly Ionized Atoms of the Iron Group*

C Roth 1
PMCID: PMC6696585  PMID: 31824113

Abstract

Experimental levels of the configurations 3dn4p in the third spectra of the iron group were compared with corresponding calculated values. Besides the electrostatic and spin-orbit interactions the αL(L + 1), βQ and T corrections were considered in the individual and general treatments. The insertion of the parameters β and T improved the results by about 25 percent. The root-mean-square (rms) error on fitting 581 experimental levels by means of 21 free interaction parameters was 138 cm−1. Altogether 912 energy levels were predicted.

Keywords: βQ and T corrections, configurations 3dn4p, energy levels, iron group, interaction parameters, third spectra

1. Introduction

Individual and general treatments of the configurations 3dn + 3dn−14s in the third spectra of the iron group were considered by Y. Shadmi [1]. Preliminary investigations of some configurations 3dn4p in the third spectra of the iron group were performed by Shimoni, Hollander and Abraham [24].

Racah and Trees [57] have shown that second order effects caused by perturbations on the configuration ln by configurations differing from ln by two electrons can be described by a model interaction of the form

2α(1112)+βq12

where q12 is the seniority operator [8]. For the configuration dn this becomes

α[L(L+1)6n]+βQ

where Q is the total seniority operator [8]. If the constant −6 is incorporated into the height of the configuration the above correction reduces to

αL(L+1)+βQ

The αL(L + 1) correction was first introduced by Trees [5]. The effect of the βQ correction was studied by Racah and Shadmi [9] in the even configurations (3d + 4s)n of the second spectra of V, Cr, and Fe.

Trees and Jorgenson [10] have shown that the main perturbing configuration on 3s23p63dn is the configuration 3s23p43dn+2. Trees [11] also remarked that the configuration 3s3p63dn+1 should give a perturbation of the same magnitude as 3s23p43dn+2. This perturbation is not included in 2α(11 · 12) + βq12, since now the configurations differ by only one electron. By second-order perturbation theory this effect depends upon the ratio H2ΔE, where H is the interaction parameter that appears in the nondiagonal term,

H=R2(3d3d,3d3s)35

and ΔE is the energy difference between the two configurations. The parameter H2ΔE is denoted by T. When calculating the model interaction one uses second-order perturbation theory of degenerate configurations which permits the introduction of these interactions before diagonalizing the energy matrices of the separate configurations. Hence the algebraic matrices of T are not diagonal. It should be noted that T represents a three-body interaction whereas α and β represent two-body interactions.

Rajnak and Wybourne [12], by using second-order perturbation theory obtained expressions for the matrix elements of the electrostatic interaction between the ln configuration and the different species of perturbing configurations differing from ln by one or two electrons or electron-holes. Effective three-body interactions were considered to account for the perturbation due to one-electron excitations. Racah and Stein [13] developed an elegant method which considerably simplified the calculations of Rajnak and Wybourne.

The electrostatic and spin-orbit interaction matrices for the configurations dnp were available from the matrix library at the Hebrew University. To these matrices the author added the algebraic matrices of the parameters β and T using the program ADDCONF of Racah.

In the first part (the individual treatment, ILS), the algebraic matrices multiplied by radial parameters are diagonalized using the program of Racah [14]. Besides the eigenvalues, the diagonalization routine also yields the derivatives of the eigenvalues with respect to the parameters, the squares of the eigenvectors (percentage compositions) and the calculated Lande g values. The appropriate experimental levels are then fitted to the eigenvalues and using the derivatives obtained in the diagonalization, a least squares optimization of the parameters is performed. In these calculations the improved values of the theoretical energy levels, the corrected values of the parameters including their statistical deviations and the sum of the squares of the differences between the observed and calculated levels are obtained.

Where the Δi are the differences between the observed and calculated levels, n is the number of known levels, and m is the number of free parameters, the rms error Δ defined as

Δ=i=1nΔi2nm

is also given by the least squares routine. The same derivatives can be used for several variations in the least squares either imposing different conditions on the parameters or inserting the experimental levels with different assignments. These latter variations are particularly important since they help to determine whether certain experimental levels may be inserted with changed assignments, or in some cases even rejected. The parameters of that variation which yields the best results are used to perform a new diagonalization. This iterative process is continued until mathematical convergence is attained.

If the parameters obtained from the individual treatments can be expressed in terms of simple interpolation formulas a general diagonalization is performed. Then in the general least squares (GLS) all the configurations 3dn4p are considered as one problem by forcing the interaction parameter to vary linearly, or perhaps linearly with small quadratic corrections.

2. Parameters

For the d − d interaction the Slater parameters F2 and F4 were replaced by

B=1441[9F2(dd)5F4(dd)]=F2(dd)5F4(dd)
C=563F4(dd)=35F4(dd)

For the d – p interaction the parameters F2, G1, and G3 are given by

F2=135F2(dp),G1=115G1(dp) and G3=3245G3(dp)

The parameters of the spin-orbit interactions for the electrons d and the electron p are denoted by ζd and ζp, respectively. The three correction parameters mentioned previously are denoted by α, β, and T. Finally, the additive parameter chosen to normalize to zero the lowest energy value for a particular configuration, is denoted by A.

3. Discussion and Results

By extrapolating and intrapolating the results of Shimoni, Hollander and Abraham [24], approximate initial values for the parameters of the individual treatment were obtained. Since the effects of the parameters β and T had not been considered previously for the third spectra, they were inserted initially here with a value of zero. However, since derivatives with respect to these two parameters were obtained it was possible to study the effects of β and T by letting them vary freely in the least-squares. After two iterations in the individual treatments of all the configurations mathematical convergence was attained for all the parameters. Then on the basis of the results from the individual treatments a general diagonalization was performed in which the parameters B, C, F2, G1 G3, α, and ζp varied linearly, whereas ζd had in addition a small quadratic correction. The parameters β and T again had an initial value of zero.

The configurations dnp consist of 372 theoretical terms splitting into 912 levels. In the general least-squares 225 experimental terms splitting into 581 levels were inserted. The rms error with β and T eliminated was 180.3 cm−1 (28 free parameters) whereas when β and T were allowed to vary linearly the rms error was reduced to 138.4 cm−1 (32 free parameters). The values of β and T in the latter variation were

β(dnp)=285±22(45±20)(n5)
T(dnp)=3.2±0.2(0.6±0.2)(n5)

the uncertainties in these parameters and those following in the text and tables are the rms deviations obtained in the least squares optimization of their values.

Since α and β take into account second order effects by two-body interactions we would expect that if β be allowed to vary the value of α should drop. That is indeed the case as in the variation with β and T eliminated α had values (in units of cm−1)

α1=82±1+(1.2±0.9)(n5)

whereas by letting β and T vary linearly in the GLS we obtained

α2=56±1.8(2.5±1.4)(n5)

In addition C increases when β is inserted. With β and T eliminated the value of C in the GLS was

C(dnp)=3920.8±6.3+(287.1±5.5)(n5)

whereas by letting β and T vary linearly in the GLS we had

C(dnp)=4062.2±9.9+(327.8±8.6)(n5)

This result also is as expected since if we consider the basis configuration d2 the only term affected by β is 1S, which contains 7C.

In figures (18) we give values of the parameters versus atomic number obtained from the individual least squares (the vertical lines indicate the rms errors in the values of the parameters). The straight lines (and the parabola for ζd) give the values of the parameters from the general least squares. From the graphs it is apparent that the assumption of linearity (with a small quadratic correction for ζd) is valid here.

Figure 1.

Figure 1.

Parameter B(dd) versus n for 3dn4p configurations (V iii to Cu iii).

Figure 8.

Figure 8.

Parameter ζp versus n for 3dn4p configurations (Ti iii to Zn iii).

Unless specified otherwise the source of the experimental data is “Atomic Energy Levels,” Vols. I and II by C. E. Moore [15], henceforth referred to as AEL.

The numerical values of all levels and parameters are in cm−1.

We now wish to discuss briefly the results for each configuration.

Sc iii – 4p. This configuration consists of only 1 term splitting into 2 levels. It is useful in providing a value for the parameter ζp.

Ti iii – 3d4p. In the configuration dp there are 6 terms splitting into 12 levels, all of which are known experimentally for Ti iii.

In the individual least squares we fitted the 12 experimental levels to the theoretical levels with the same assignments as in AEL. The 4 electrostatic parameters A, F2, G1, and G3 were used to determine the 6 terms. The rms error obtained was 162. Furthermore, all the 12 levels fitted very nicely in the GLS. This result is significant and indicates that the interaction with the configuration sp is not strong here.

V iii – 3d24p. In the configuration d2p, there are 19 terms splitting into 45 levels. In the paper by Iglesias [16], 18 observed terms splitting into 43 levels are given – the only term missing is (1S)2P.

The only change in assignment was

(3F)z2D52(3F)z4D52

Without the exchange, the deviations of these two levels were −680 for z2D52 and 410 for z4D52. With the exchange the deviations were reduced to −152 and −128 respectively. In addition, the eigenfunctions of the two levels are strongly mixed.

Since there are no levels based on the core d2 1S, we can only have a maximum of 4 electrostatic parameters of d2 to satisfy the 4 terms 3P, 1D, 3F, and 1G. These 4 parameters are A, B, C, and α. If we give either T or β freedom then the problem is overdefined. In the individual least squares the mean error in fitting 43 levels with β and T eliminated was 135.

Cr iii – 3d34p. In the configuration d3p there are 48 theoretical terms splitting into 110 levels. In AEL, there are 27 observed terms splitting into 74 levels. We found it necessary to reject 7 experimental levels.

The following is a list of the 7 levels neglected with their approximate deviations had they been inserted into the last GLS

Name Value Deviation
(4F)z5D0 95779 −810
(2G)z1G4 114355 1160
(2H)y1G4 117099 −2090
(2G)z1H5 117187 3840
(2F)v3D2 138362 5740
(2F)v3D3 138976 6710
(b2D)v3F3 150972 1680

In the individual least squares, the deviation obtained for the level (4F)z5D0 was −625, whereas the other levels of z5D fitted with deviations of less than 50. Thus we felt justified in neglecting the level z5D0. The levels (2G)z1G4, (2H)y1G4, (2G)z1H5 and (2F)v3D2 had deviations higher than 1000 in the individual least squares, and were thus rejected. In the individual least squares we considered the variation of assigning the level (b2D)v3F3 to (b2D)1F3. However, this required that β have a value of −590, whereas the value of β from the GLS is −195. With the latter value of β, the deviation obtained on assigning v3F3 to (b2F)1F is −1056, and thus too high to be considered.

The following changes in assignment were performed

(a4F)z5D1(a4F)z5F1
AEL(a4P)z3P2(4P)y5D2
AEL(a4P)y5D0,2(4P)z3P0,2
AEL(a4P)y3D1,2,3(2P)z3D1,2,3

In the first three cases the eigenfunctions of all the levels concerned are mixed considerably. The term (4P)3D is definitely higher than the term (2P)3D.

By neglecting the level (2D)v3F3 at 150972, it was found that β and T did not suffer any appreciable change. Thus, the best result in the individual least squares was obtained on fitting 22 terms splitting into 67 levels with 7 electrostatic and 2 spin-orbit parameters, to yield a mean error of 136.

Mn iii – 3d44p. The configuration d4p comprises 68 terms splitting into 180 levels. In AEL there are only 6 observed terms, all based on d4 5D, which split into 25 levels. No individual least squares were performed as then we would have to keep the parameters α, B, and C fixed. The 25 observed levels fit very well in the GLS with the same assignments as in AEL.

Fe iii – 3d54p. In the configuration d5p there are 88 terms splitting into 214 levels, of which 75 terms splitting into 189 levels are known experimentally for Fe iii. All the observed levels fit well with the following changes in assignment:

(a4P)z5D3(a4G)z5F3
(a2I)z3I6,7(a2I)z3K6,7
(a4F)y5G5(a2F)y3G5
AEL(b2F)t3F4(b2F)w1G4
AEL(a2H)x1G4(b2F)t3F4

It should be emphasized that in each of the changed levels the composition is never pure, but contains a contribution of that level which has the same assignment as that given in AEL. In general the mixing in this configuration is very strong. Racah [17] has shown that for d5, or equivalently for d5p, all diagonal second-order effects are well represented by two-body interactions. Thus, the parameter T has little if any significance here. In the individual least squares the mean error was 186 with β eliminated, and 144 when β was allowed to vary freely. Then β assumed a value of −292 ± 23.

Co iii – 3d64p. From 68 theoretical terms splitting into 180 levels there are 33 experimental terms splitting into 95 levels.

The two levels (3P)y4P52 and (3P)z2D52 are given with question marks in AEL. As they would yield deviations of around −800 and −600 respectively, if inserted into the GLS, they were neglected.

The following changes in assignment were performed:

(3H)z4H92,112,132(3H)z4I92,112,132
(3G)x4G92(3G)x4F92
(1I)x2H92,112(A1G)w2H92,112
AEL(3P)z4S32(B3P)4D32
AEL(3P)x4P52(B3P)4D52

In each of the first three exchanges there was considerable mixing of the eigenfunctions involved.

The calculated values of the levels (B3P)4S32 and (B3P)4P52 are 161611 and 164334, respectively. Thus, the two levels z4S32 and x4P52 cannot be fitted to the theoretical levels with the same assignments. The only possible assignment for the level (3P′)z4S is the theoretical level consisting of a mixture of (B3P)4D32 and (B3F)4D32. In the GLS the deviation for this level is −282. Similarly the level (3P)x4P52 was assigned to the same theoretical term as z4S with J equal to 52 giving a deviation of 120 in the GLS.

In the individual least squares β and T have a marked effect. On fitting 93 levels using 7 electrostatic parameters and 2 spin-orbit parameters (β and T eliminated) the mean error was 176. When β and T were allowed to vary freely, the mean error was reduced to 130. The values of β and T in that variation were

β=424±86
T=4.8±0.6

Ni iii – 3d74p. From 48 predicted terms splitting into 110 levels, Shenstone [18] gives 43 experimental terms which split into 95 levels. The following 3 levels were rejected:

(2P)3P2) at 141112.5?
(b2D)u3D2 at 173062.0?
(b2D)u3D3 at 172916.9?

The calculated level (2P)3P2 is at 133902, and since for J equal to 2 all the theoretical levels in the vicinity of 141000 have corresponding experimental levels, the level (2P)3P2 was rejected. Similarly the calculated levels (b2D)u3D2, 3 are at 183976 and 184740, respectively, and since there are no theoretical levels in the vicinity of 173000, the levels u3D2, 3 could not be inserted into the least-squares calculations.

Shenstone [18] mentions that two strong lines should be due to transitions between the odd levels z3I7, z3H6 and the even levels a3H6, a3G5. Shenstone then attributes these two lines as being due to a3G5z3H6 (56304.2 cm−1) and a3H6z3I7 (57044.7 cm−1). Thus, he obtains the levels (2G)z3H6 at 131428 and (2H)z3I7 at 138731. However, from our initial diagonalization the level (2H)z3I7 was at 137842 and the level (2G)z3H6 was at 131901. This shows that the transitions to which Shenstone attributes these two lines should be interchanged. Then one obtains the experimental levels (2H)z3I7 at 137990.6 and (2G)z3H6 at 132168.9. In the GLS these fitted with deviations of 154 and 263, respectively.

As suggested by Professor Racah the two strong lines given by Shenstone at 147723 cm−1 and 145094 cm−1 correspond to the transitions (2F)1F3alD2 and (2F)1F3a3P2′, respectively. Then it follows that the experimental level (2F)1F should have a value of 161755. In the GLS this level fitted with a deviation of only 20. The following changes in assignment were performed:

1.(4P)y3D2,3(4P)z5P2,3
2.  Shen.  (4P)z3P0(2P)1S0
3.  Shen.  (2P)z1P1(2P)3S1
4.  Shen. (2P)y3P1(2P)1P1
5.  (2F)w3F2(2F)w1D2
6.  (2F)w3F3(2F)v3D3
7. Shen. (2F)w3F4(2F)3G4

In the first case there is considerable mixing between the eigenfunctions of (4P)y3D and (4P)z5P. The predicted level (4P)3P0 is at 135695 cm−1, and thus the experimental level z3P0 at 138147 cm−1 cannot be assigned to the theoretical level with the same term designation. This level fits quite well to the theoretical level (2P)1S as indicated by change 2. It should be noted that the eigenfunction of (2P)1S contains 39 percent of (4P)3P.

A variation was considered to fit the level (2P)z1P to the theoretical level with the same term designation and perform the change (2P)y3P1 → (2P)3S1. However, the deviations for both levels were much larger than the deviations with changes 3 and 4 (−167 for the level (2P)3S and 22 for the level (2P)z1P).

When the levels of the term (2F)w3F were assigned to the theoretical levels of the same term designation, the deviations were almost 1000. Since such high deviations are completely incompatible with the other results obtained, we performed the changes 5, 6, and 7, thus completely splitting the term (2F)w3F. It should be noted, however, that in all these changes the parent, 2F, remains the same.

In the individual least squares, on inserting 93 experimental levels with β and T eliminated, the mean error was 169. When β and T were allowed to vary freely the mean error was reduced to 136. In that variation the values of β and T were

β=413±63
T=4.9±0.6

Cu iii – 3d84p. Of the 19 predicted terms of d8p, the only experimental term missing in Cu iii is (1S)2P.

The only change in assignment was

(3P)x2D32(3P)y2P32

The eigenfunctions of these two levels are strongly mixed.

As for d2p, since there are no levels based on the parent (d2)1S, it is not possible to let either β or T change freely.

In the individual least squares, the mean error on fitting 43 levels with β and T eliminated was 126. For the values of β and T fixed at −427 and −4.9 respectively (the values obtained for those parameters in the first GLS) the mean error dropped only to 125.

This result is as expected since the inclusion of β affects only the term d8(lS), which is not known experimentally, and T reduces in this case to a two-body interaction, the effect of which is absorbed by the other d8 parameters.

Zn iii – 3d94p. In this configuration all 12 predicted levels are known. The following changes in assignment were performed:

1.3D21D2
2.3D31F3

In both cases there was mixing between the eigenfunctions of the levels involved.

In the individual least squares using the 4 electrostatic parameters A, F2, G1, and G3 as well as the 2 spin-orbit parameters ζd and ζp, the mean error was 105.

Ga iii – 3d104p. Like Sc iiip this configuration consists of only 1 term splitting into 2 levels, and is useful in providing a value for ζp.

4. Table Entries

The numerical values of all levels and parameters given in the following tables are in units of cm−1

1. Parameters: Tables 110

Table 1.

Parameters of Ti iii – 3d4p

Parameter GDIAG 1 ILS 1 GLS 1 GLS’ 1 GLS’ 2
A 79440 78917 ± 52 78938 79016 78999
F2 460 437 ± 10 443 442 441
G1 410 423 ± 13 409 408 407
G3 50 48 ± 4 48 49 50
α 84 Fix 84 78 66 68
ζd 115 154 ± 58 136 135 139
ζp 359 379 ± 206 334 336 328
Δ 162

Table 10.

General parameters of the third spectra of the iron group

Parameter GDIAG 1 GLS 1 GLS’ 1 GLS’ 2
B 1076 1071.4± 1.5 1070.0± 1.3 1068.5± 1.3
ΔB 55 55.8± 1.1 50.6± 0.9 50.9± 0.9
C 3926 3920.8± 6.3 4068.8± 10.0 4062.2± 9.9
ΔC 288 287.1± 5.5 326.0± 8.5 327.8± 8.6
F2 484 479.3± 2.2 477.5± 1.8 477.0± 1.8
ΔF2 6 9.3± 1.1 8.8± 0.9 8.9± 0.9
G1 410 404.8± 2.1 403.4± 1.7 402.7± 1.7
ΔG1 0 −0.9± 1.1 −1.3± 0.9 −1.0± 0.9
G3 58 55.6± 0.7 56.0± 0.6 56.0± 0.6
ΔG3 2 1.5± 0.5 1.6± 0.4 1.6± 0.4
α 84 82.2± 1.1 55.9± 1.8 57.4± 1.7
Δα 0 1.2± 0.9 −2.5± 1.4 −2.9± 1.4
β 0 Fix 0 −323.5 ± 23.6 −285.0 ± 21.7
Δβ 0 Fix 0 −34.5 ± 20.2 −45.1 ± 20.5
T 0 Fix 0 −3.3± 0.2 −3.2± 0.2
ΔT 0 Fix 0 −0.5± 0.2 −0.6± 0.2
ζd 561 558.0 ± 17.5 560.9 ± 13.8 560.3 ± 13.5
Δ1ζd 125 115.2± 5.1 115.9± 4.1 115.4± 4.0
Δ2ζd
9 6.4± 2.5 6.3± 2.0 6.5± 2.0
ζp 691 648.2 ± 22.6 648.4 ± 17.9 639.5 ± 17.7
Δζp 83 76.3 ± 11.0 78.1 ± 8.7 78.1 ± 8.6
Δ 180.3 140.1 138.4

In the general diagonalization all the parameters with the exception of ζd had approximate expressions of the form

P(dp)=P+(n5)ΔP

In the general least squares then only P and ΔP were the independent parameters.

For ζd we had

ζd(dp)=ζd+(n5)Δ1ζd+[(n5)210]Δ2ζd

Here ζd, Δ1ζd and Δ2ζd were the independent parameters in the general least squares.

The numerical values of the parameters for the initial general diagonalization are given in the column GDIAG 1.

The columns ILS1 and GLS1 give the values of the parameters of the initial iteration with β and T eliminated, in the individual and general least squares, respectively. The columns ILS’1 and GLS’1 give the values of the parameters of the initial iteration with β and T free to change in the individual and general least squares respectively.

The parameters as given in GLS’1 were taken for the general diagonalization of the final iteration. The column GLS’2 gives the values of the parameters in the general least squares of the final iteration.

2. Levels: Tables 1121

Table 11.

Observed and calculated levels of SC iii 4p

Name J Percentage AEL Observed Calculated O–C Lande C.
4p 1/2;
3/2
100
100
62102
62576
62152
62526
−50
50
0.667
1.333

Table 21.

Observed and calculated levels of Ga iii 3d104p

Name J Percentage AEL Observed Calculated O–C Lande C.
(1S)p2P 1/2
3/2
100
100
65167
66885
65254
66798
−87
87
0.667
1.333

In the column “NAME” the calculated designation of the term is given. Whenever terms of the parent dn have different seniorities these are denoted by the letters A and B (for d5 2D by A, B, and C), the higher calculated term being designated by A. Whenever a calculated term has a corresponding experimental term, the small letters z, y, x … are used as in AEL [13].

The entries in the columns “J”, “OBSERVED”, and “CALCULATED” are self-evident. In the column “PERCENTAGE”, for each calculated level either the three highest contributions or all those contributions exceeding 7 percent are given.

Whenever the experimental and calculated term designations differ, the experimental designation is entered in the column “AEL” using the notation of C. Moore [13]. In many instances the exchanges involve complete terms rather than isolated levels. Unless specified otherwise the entries in the column “AEL” pertain to exchanges in terms. The column “O—C” gives the difference between the observed and calculated values of the levels. The column “LANDE C”, gives the calculated Lande g-values.

The entries are in ascending order of magnitude of the calculated terms.

Figure 2.

Figure 2.

Parameter C(dd) versus n for 3dn4p configurations (V iii to Cu iii).

Figure 3.

Figure 3.

Parameter F2(dp) versus n for 3dn4p configurations (Ti iii to Zn iii).

Figure 4.

Figure 4.

Parameter G1(dp) versus n for 3dn4p configurations (Ti iii to Zn iii).

Figure 5.

Figure 5.

Parameter G3(dp) versus n for 3dn4p configurations (Ti iii to Zn iii).

Figure 6.

Figure 6.

Parameter α versus n for 3dn4p configurations (V iii to Cu iii).

Figure 7.

Figure 7.

Parameter ζd versus n for 3dn4p configurations (Ti iii to Zn iii).

Table 2.

Parameters of V iii – 3d24p

Parameter GDIAG 1 ILS 1 GLS 1 GLS’ 1 GLS’ 2
A 95958 95900 ± 43 95992 96387 96313
B 911 880 ± 4 903 918 915
C 3062 3183 ± 33 3060 3091 3078
F2 466 454 ± 4 452 451 450
G1 410 416 ± 5 408 407 405
G3 52 49 ± 2 51 51 51
α 84 72 ± 5 79 63 62
β 0 Fix 0 Fix 0 −220 −150
T 0 Fix 0 Fix 0 −1.7 −1.3
ζd 177 220 ± 24 206 207 208
ζp 442 371 ± 64 420 414 406
Δ 135

Table 3.

Parameters of Cr iii – 3d34p

Parameter GDIAG 1 ILS 1 GLS 1 GLS’ 1 GLS’ 2
A 113164 113160 ± 70 113142 113633 113559
B 966 962 ± 4 960 969 966
C 3350 3354 ± 21 3347 3417 3406
F2 472 458 ± 7 461 460 459
G1 410 403 ± 6 407 406 405
G3 54 57 ± 2 53 53 53
α 84 81 ± 3 80 61 63
β 0 Fix 0 Fix 0 −254 −195
T 0 Fix 0 Fix 0 −2.2 −1.9
ζd 257 272 ± 28 290 292 291
ζp 525 496 ± 58 496 492 486
Δ 136

Table 4.

Parameters of Mn iii – 3d44p

Parameter GDIAG 1 GLS 1 GLS’ 1 GLS’ 2
A 138047 137848 138256 138187
B 1021 1015 1019 1017
C 3638 3634 3743 3734
F2 478 470 469 468
G1 410 406 405 404
G3 56 54 54 54
α 84 81 58 60
β 0 Fix 0 −289 −240
T 0 Fix 0 −2.8 −2.5
ζd 355 385 389 387
ζp 608 572 570 562

Table 5.

Parameters of Fe iii – 3d54p

Parameter GDIAG 1 ILS 1 ILS’ 1 GLS 1 GLS’ 1 GLS’ 2
A 126350 125832 ± 91 125710 ± 74 125843 125781 125725
B 1076 1071 ± 2 1068 ± 2 1071 1070 1068
C 3926 3920 ± 9 4071 ± 9 3921 4069 4062
F2 484 477 ± 4 474 ± 3 479 478 477
G1 410 404 ± 4 397 ± 3 405 403 403
G3 58 55 ± 1 57 ± 1 56 56 56
α 84 82 ± 1 55 ± 1 82 56 57
β 0 Fix 0 −292 ± 23 Fix 0 −323 −285
T 0 Fix 0 Fix 0 Fix 0 −3.3 −3.2
ζd 471 484 ± 30 521 ± 23 494 498 494
ζp 691 730 ± 43 692 ± 34 648 648 640
Δ 186 144

Table 6.

Parameters of Co iii – 3d64p

Parameter GDIAG 1 ILS 1 ILS’ 1 GLS 1 GLS’ 1 GLS’ 2
A 131330 131748 ± 131 131593 ± 106 131512 131544 131507
B 1131 1139 ± 6 1120 ± 5 1127 1121 1119
C 4214 4177 ± 15 4426 ± 32 4208 4395 4390
F2 490 506 ± 5 497 ± 4 488 486 486
G1 410 412 ± 6 403 ± 5 403 402 402
G3 60 55 ± 2 57 ± 1 57 58 58
α 84 88 ± 3 47 ± 6 83 53 55
β 0 Fix 0 −424 ± 86 Fix 0 −358 −330
T 0 Fix 0 −4.8 ± 0.6 Fix 0 −3.8 −3.8
ζd 605 641 ± 30 672 ± 30 615 621 617
ζp 774 662 ± 56 672 ± 43 724 727 718
Δ 176 130

Table 7.

Parameters of Ni iii – 3d74p

Parameter GDIAG 1 ILS 1 ILS’ 1 GLS 1 GLS’ 1 GLS’ 2
A 129516 129509 ± 52 129715 ± 47 129556 129751 129733
B 1186 1176 ± 4 1166 ±3 1182 1171 1170
C 4502 4530 ± 18 4762 ± 32 4495 4721 4718
F2 496 499 ± 5 499 ± 4 497 495 495
G1 410 395 ± 5 398 ± 4 403 401 401
G3 62 59 ± 2 58 ± 2 59 59 59
α 84 83 ± 3 49 ± 5 84 51 52
β 0 Fix 0 −413 ± 63 Fix 0 −393 −375
T 0 Fix 0 −4.9 ± 0.6 Fix 0 −4.4 −4.2
ζd 757 703 ± 26 726 ± 18 750 755 751
ζp 857 772 ± 54 755 ± 38 800 805 796
Δ 169 136

Table 8.

Parameters of Cu iii – 3d84p

Parameter GDIAG 1 ILS 1 GLS 1 GLS’ 1 GLS’ 2
A 131863 131864 ± 45 131847 132122 132123
B 1241 1247 ± 5 1238 1222 1221
C 4790 4764 ± 35 4782 5047 5046
F2 502 498 ± 4 507 504 503
G1 410 402 ± 5 402 400 401
G3 64 64 ± 3 60 61 61
α 84 84 ± 5 86 48 49
β 0 Fix 0 Fix 0 −427 −420
T 0 Fix 0 Fix 0 −4.9 −5.0
ζd 927 890 ± 5 897 902 898
ζp 940 862 ± 49 877 883 874
Δ 126

Table 9.

Parameters of Zn iii – 3d94p

Parameter GDIAG 1 ILS 1 GLS 1 GLS’ 1 GLS’ 2
A 142734 142277 ± 39 142285 142529 142531
F2 508 504 ± 6 516 513 512
G1 410 408 ± 6 401 398 399
G3 66 60 ± 6 62 63 62
α 84 Fix 84 87 46 46
ζd 1215 1095 ± 39 1056 1062 1059
ζp 1023 1013 ± 72 953 961 952
Δ 105

Table 12.

Observed and calculated levels of Ti iii 3d4p

Name J Percentage AEL Observed Calculated O–C Lande
C.
(2D)z1D 2 98 75197 75413 −216 0.997
(2D)z3D 1 100 77000 76926 74 0.501
2 95 + 4(2D)3F 77167 77096 71 1.144
3 93 + 6(2D)3F 77424 77334 90 1.317
(2D)z3F 2 94 + 5(2D)3D 77421 77444 −23 0.693
3 94 + 6(2D)3D 77746 77728 18 1.100
4 100 78159 78107 52 1.250
(2D)z3P 0 100 80944 81010 −66
1 99 80938 81011 −73 1.496
2 100 81024 81086 −62 1.499
(2D)z1F 3 100 83117 82791 326 1.000
(2D)z1P 1 99 83796 83987 −191 1.003

Table 13.

Observed and calculated levels of V iii 3d24p

Name J Percentage AEL Observed Calculated O–C Lande
C.
(3F)z4G 5/2 98 85524 85539 −15 0.579
7/2 99 85876 85871 5 0.986
9/2 100 86306 86279 27 1.172
11/2 100 86809 86753 56 1.273
(3F)z4F 3/2 98 86717 86651 66 0.407
5/2 99 86938 86866 72 1.028
7/2 99 87219 87147 72 1.236
9/2 99 87544 87490 54 1.332
(3F)z2F 5/2 85 + 6(1D)2F + 4(3F)2D 87881 87952 −71 0.878
7/2 88 + 5(1D)2F + 5(3F)4D 88328 88424 −96 1.156
(3F)z2D 3/2 59 + 29(3F)4D + 9(3P)2D 88559 88720 −161 0.913
5/2 52 + 35(3F)4D + 9(3P)2D (3F)z4D 89458 89610 −152 1.260
(3F)z4D 1/2 96 + 4(:3F)4D 89006 89026 −20 0.001
3/2 67 + 25(3F)2D + 4(3P)2D 89193 89264 −71 1.080
5/2 59 + 28(3F)2D + 5(3F)2F (3F)z2D 88944 89072 −128 1.285
7/2 91 + 4(3F)2F + 4(3F)4D 89418 89520 −102 1.414
(3F)z2G 7/2 96 91710 91483 227 0.890
9/2 96 92053 91871 182 1.112
(3P)z2S 1/2 99 94714 94906 −192 1.992
(3P)z4S 3/2 74 + 25(1D)2P 97512 97509 5 1.826
(1D)z2P 1/2 97 98399 98300 99 0.674
3/2 70 + 26(3P)4S 98062 98063 −1 1.490
(1D)y2F 5/2 88 + 7(3F)2F 98384 98240 144 0.872
7/2 86 + 6(3F)2F + 5(3P)4D 98825 98598 227 1.157
(3P)y4D 1/2 95 + 4(3F)4D 99073 99044 29 0.004
3/2 91 + 4(3F)4D + 4(1D)2D 99182 99170 12 1.184
5/2 88 + 5(1D)2D 99440 99421 19 1.349
7/2 91 +5(1D)2F 99941 99846 95 1.413
(1D)y2D 3/2 81 + 6(3P)2D + 6(3F)2D 99508 99765 −257 0.836
5/2 80 + 7(3P)4D + 6(3F)2D 99805 100046 −241 1.217
(3P)z4P 1/2 99 101646 101618 28 2.662
3/2 99 101786 101757 29 1.729
5/2 98 102075 102040 35 1.590
(1G)y2G 7/2 96 + 4(3F)2G 102961 102970 −9 0.890
9/2 96 + 4(3F)2G 103035 103032 3 1.110
(3P)x2D 3/2 80 + 10(1D)2D + 9(3F)2D 105320 105269 51 0.807
5/2 82 + 10(3F)2D + 8(1D)2D 105283 105267 16 1.200
(1G)z2H 9/2 99 106441 106288 153 0.910
11/2 100 106903 106682 221 1.091
(3P)y2P 1/2 99 107060 107049 11 0.667
3/2 97 107166 107184 −18 1.327
(1G)x2F 5/2 97 110181 110364 −183 0.857
7/2 97 109855 110075 −220 1.143
(1S)2P 1/2 98 129512 0.667
3/2 98 130003 1.333

Table 14.

Observed and calculated levels of Cr iii 3d34p

Name J Percentage AEL Observed Calculated O–C Lande
C.
(4F)z3G 2 100 93766 93780 −14 0.335
3 100 94029 94045 −16 0.917
4 100 94375 94394 −19 1.150
5 100 94800 94823 −23 1.267
6 100 95304 95330 −26 1.333
(4F)z5D 0 97 96592
1 78 + 19(4F)5F (a4F)z5F 96774 96686 88 1.207
2 35 + 37(4F)5F + 26(4F)3D (a4F)z5D 96386 96451 −65 1.224
3 60 + 26(4F)5F + 12(4F)3D 96713 96750 −37 1.413
4 83 + 15(4F)5F 97097 97124 −27 1.476
(4F)z3F 1 46 + 38(4F)3D + 13(4F)5D (a4F)z5D 96148 96244 −96 0.404
2 47 + 51(4F)5D (a4F)z5F 96921 96857 64 1.263
3 70 + 29(4F)5D 97120 97083 37 1.323
4 84 + 14(4F)5D 97359 97357 2 1.369
5 98 97618 97670 −52 1.395
(4F)z3D 1 53 + 35(4F)5F + 6(4F)5D 97077 97150 −73 0.389
2 65 + 16(4F)5F + 11(4F)5D 97306 97431 −125 1.178
3 79 + 9(4F)5D + 6(4P)3D 97683 97885 −202 1.344
(4F)z3G 3 93 + 5(2G)3G 99841 99697 144 0.753
4 93 + 5(2G)3G 100100 99981 119 1.053
5 92 + 5(2G)3G 100421 100344 77 1.204
(4F)z3F 2 96 101444 101476 −32 0.668
3 95 101745 101801 −56 1.083
4 96 102100 102187 −87 1.250
(4P)z3P 1 99 108248 108192 56 2.488
2 98 108459 108404 55 1.826
3 99 108793 108708 85 1.665
(4P)z3P 0 45 + 44(4P)5D + 5(A2D)3P (a4P)y5P 109146 108985 161
1 46 + 46(4P)5D + 6(A2D)3P 109807 1.505
2 61 + 28(4P)5D + 6(A2D)3P 109434 109250 184 1.500
(2G)z3H 4 85 + 14(2H)3H 109534 109614 −80 0.804
5 83 + 14(2H)3H 109944 110017 −73 1.036
6 84 + 15(2H)3H 110505 110560 −55 1.166
(4P)y5D 0 52 + 36(4P)3P + 4(2P)1S 109686
1 45 + 42(4P)3P 109237 109147 90 1.497
2 69 + 25(4P)3P (a4P)z3P 109570 109806 −236 1.502
3 96 109721 109936 −215 1.499
4 97 110154 110350 −196 1.500
(2G)y3G 3 86 + 5(4F)3G 111375 111399 −24 0.770
4 89 + 5(4F)3G 111643 111663 −20 1.051
5 87 + 5(4F)3G 111854 111877 −23 1.189
(2P)z1S 0 90 + 8(4P)3P 111843
(2G)y3F 2 70 + 22(A2D)3F 112398 112522 −124 0.688
3 71 + 14(A2D)3F + 6(2G)1F 112466 112599 −133 1.061
4 52 + 37(2G)1G + 8(A2D)3F 112371 112492 −121 1.151
(2G)1G 4 59 + 30(2G)3F + 5(A2D)3F 113199 1.086
(2G)1H 5 77 + 18(2H)1H 113346 1.005
(2P)3P 0 64 + 32(A2D)3P 113292
1 59 + 33(A2D)3P 113380 1.489
2 40 + 25(A2D)3P + 18(4P)5S 114207 1.521
(2G)z1F 3 74 + 15(A2D)1F + 7(2G)3F 113539 1.005
(2P)1D 2 32 + 17(2P)3P + 17(A2D)1D 113602 1.225
(4P)z5S 2 71 + 12(2P)1D + 10(A2D)1D 113356 113768 −412 1.728
(2P)y3D 1
2
3
80 + 12(4P)3D + 5(4F)3D
73 + 10(4P)3D + 5(2P)1D
70 + 12(4P)3D + 5(4F)3D
(a4P)y3D 114716
115182
115553
114441
114927
115315
275
255
238
0.515
1.145
1.312
(2H)y3H 4
5
6
82 + 14(2G)3H
85 + 14(2G)3H
84 + 15(2G)3H
115570
115669
115844
115362
115460
115643
208
209
201
0.809
1.034
1.165
(2P)3S 1 50 + 32(A2D)1P + 8(2P)1P 116127 1.534
(A2D)1P 1 36 + 42(2P)3S + 15(2P)1P 116202 1.385
(A2D)x3F 2
3
4
63 + 16(2G)3F + 13(4P)3D
51 + 20(2P)3D + 17(4P)3D
84 + 12(2G)3F
116392
116532
116967
116348
116724
117017
44
−192
−50
0.759
1.176
1.250
(4P)3D 1
2
3
59 + 16(2P)3D + 9(A2D)3D
57 + 19(2P)3D + 10(A2D)3F
55 + 23(A2D)3F + 7(A2D)3D
116665
116625
116490
0.583
1.105
1.259
(2H)z3I 5
6
7
98
99
100
117145
117488
117922
116957
117297
117727
188
191
195
0.837
1.025
1.143
(A2D)x3D 1
2
3
85 + 9(4P)3D
88 + 9(4P)3D
84 + 6(4P)3D
118055
118423
118598
118006
118322
118580
49
101
18
0.520
1.169
1.313
(2H)1G 4 81 + 15(2F)1G 119191 1.002
(2H)y1H 5 79 + 19(2G)1H 119040 119224 184 1.005
(A2D)3P 0
1
2
57 + 33(2P)3P + 10(4P)3P
53 + 31(2P)3P + 10(4P)3P
52 + 36(2P)3P + 11(4P)3P
119575
119457
119334
1.495
1.494
(A2D)1F 3 79 + 11(2G)1F + 5(A2D)3D 119682 1.017
(2H)1I 6 99 120120 1.001
(2H)x3G 3
4
5
90 + 5(2F)3G
89 + 5(2F)3G
90 + 4(2F)3G
120765
120748
120700
120795
120808
120755
−30
−60
−55
0.756
1.048
1.194
(4P)3S 1 63 + 22(2P)1P + 7(A2D)1P 121744 1.676
(2P)1P 1 50 + 32(4P)3S + 17(A2D)1P 122192 1.312
(A2D)1D 2 59 + 39(2P)1D 122689 1.003
(2F)w3F 2
3
4
95
94
94
128754
128782
128849
128943
128981
129055
−189
−199
−206
0.671
1.080
1.246
(2F)w3G 3
4
5
93 + 6(2H)3G
92 + 5(2H)3G
95 + 5(2H)3G
131118
131267
131449
131009
131160
131337
109
107
112
0.756
1.054
1.200
(2F)1D 2 79 + 19(B2D)1D 132294 0.998
(2F)3D 1
2
3
93 + 6(B2D)3D
92 + 6(B2D3D
91 + 7(B2D)3D
132846
132624
132261
0.500
1.164
1.329
(2F)1G 4 83 + 16(2H)1G 133967 1.001
(2F)1F 3 94 134899 1.002
(B2D)3D 1
2
3
95 + 4(2F)3D
94 + 4(2F)3D
94 + 4(2F)3D
146918
146939
147030
0.504
1.166
1.330
(B2D)1D 2 74 + 12(2F)1D + 12(B2D)3F 148648 0.955
(B2D)3F 2
3
4
84 + 12(B2D)1D
94
98
149279
149289
149495
0.714
1.084
1.250
(B2D)3P 0
1
2
99
99
99
151996
151828
151493
1.496
1.497
(B2D)1F 3 97 152028 1.002
(B2D)1P 1 100 156958 1.000

Table 15.

Observed and calculated levels of Mn iii 3d44p

Name J Percentage AEL Observed Calculated O–C Lande
C.
(5D)z6F 1/2
3/2
5/2
7/2
9/2
11/2
100
100
100
100
100
100
110037
110174
110400
110713
111113
111603
109996
110136
110366
110684
111090
111583
41
38
34
29
23
20
−0.664
1.067
1.314
1.397
1.434
1.454
(5D)z6P 3/2
5/2
7/2
98
98
100
111778
111885
112060
111553
111700
111926
225
185
134
2.388
1.881
1.713
(5D)z4P 1/2
3/2
5/2
73 + 24(5D)6D
66 + 30(5D)6D
51 + 48(5D)6D
112816
113080
113678
112716
113150
113772
100
−70
−94
2.828
1.784
1.626
(5D)z6D 1/2
3/2
5/2
7/2
9/2
75 + 24(5D)4P
69 + 30(5D)4P
52 + 46(5D)4P
99
97
113993
114097
114290
114211
114503
114055
114169
114382
114337
114661
−62
−72
−92
−126
−158
3.169
1.825
1.632
1.583
1.548
(5D)z4F 3/2
5/2
7/2
9/2
96
96
95
94
116582
116694
116853
117064
116438
116567
116754
117007
144
127
99
57
0.403
1.032
1.243
1.340
(5D)z4D 1/2
3/2
5/2
7/2
98
98
98
98
120977
121094
121270
121484
121090
121223
121425
121669
−113
−129
−155
−185
0.002
1.200
1.371
1.428
(3H)z4H 7/2
9/2
11/2
13/2
80 + 18(3G)4H
79 + 17(3G)4H
79 + 16(3G)4H
82 + 14(3G)4H
130903
131077
131322
131645
0.672
0.967
1.128
1.226
(A3P)4D 1/2
3/2
5/2
7/2
83 + 14(A3F)4D
82 + 16(A3F)4D
78 + 20(A3F)4D
69 + 29(A3F)4D
130981
131401
132018
132746
0.025
1.202
1.370
1.424
(3H)4I 9/2
11/2
13/2
15/2
94
95
96
100
132880
133244
133604
133950
0.743
0.973
1.112
1.200
(A3F)4G 5/2
7/2
9/2
11/2
72 + 18(3G)4G + 9(3H)4G
59 + 15(3G)4G + 11(3H)4G
45 + 13(3G)4G + 12(3H)4G
55 + 22(3H)4G + 20(3G)4G
133037
133207
133423
133918
0.577
0.974
1.152
1.267
(A3P)2S 1/2 50 + 42(A3P)4P 133423 2.205
(3H)2G 7/2
9/2
49 + 28(A3F)2G + 7(3G)2G
39 + 27(A3F)2G + 18(A3F)4G
133868
134085
0.903
1.124
(A3P)4P 1/2

3/2
5/2
52 + 32(A3P)2S
+ 13(A3P)2P
91
90
134548
134369
135057
2.180
1.724
1.570
(A3F)4F 3/2
5/2
7/2
9/2
50 + 30(A3F)2D + 6(3D)2D
50 + 25(3H)4G + 6(3G)4G
84 + 8(3H)4G
86 + 4(3H)4G
135191
135572
135754
135853
0.620
0.889
1.215
1.322
(3H)4G 5/2
7/2
9/2
11/2
34 + 24(A3F)4F
+ 19(A3F)4G
52 + 28(A3F)4G + 12(3G)4G
54 + 31(A3F)4G + 10(3G)4G
51 + 40(A3F)4G + 8(3G)4G
135382
135466
135517
135570
0.763
1.004
1.175
1.268
(A3P)2P 1/2
3/2
71 + 17(A3P)2S
+ 7(A3F)4D
44 + 28(A3P)4S
+ 15(A3F)4F
136005
135666
0.870
1.352
(A3F)2D 3/2
5/2
33 + 26(A3F)4F
+ 25(A3P)4S
54 + 18(A3F)4F + 12(3D)2D
136101
136199
1.001
1.170
(3H)2I 11/2
13/2
92 + 4(1I)2I
93
136218
136350
0.932
1.082
(A3P)4S 3/2 39 + 30(A3P)2P
+ 16(A3F)4D
136593 1.508
(A3F)4D 1/2
3/2

5/2
78 + 15(A3P)4D
61 + 15(A3P)4D
+ 13(A3P)2P
62 + 18(A3P)4D
136897
136927
136823
0.051
1.217
1.301
7/2 51 + 27(A3P)4D + 7(A3F)2F 136851 1.372
(3H)2H 9/2
11/2
71 + 14(A1G)2H + 6(3G)2H
72 + 11(A1G)2H + 9(3G)4H
137452
137936
0.915
1.096
(A3F)2F 5/2
7/2
35 + 28(3G)2F + 15(3D)2F
38 + 23(3G)2F + 14(3D)2F
137521
137828
0.918
1.175
(3G)4H 7/2
9/2
11/2
13/2
80 + 17(3H)4H
76 + 15(3H)4H + 5(3H)2H
73 + 13(3H)4H + 12(3H)2H
83 + 14(3H)4H
137669
137961
138285
138650
0.674
0.970
1.127
1.226
(A3P)2D 3/2
5/2
70 + 13(A3F)2D + 7(3G)4F
55 + 21(3G)4F + 9(A3F)2D
137890
138811
0.780
1.146
(3G)4F 3/2
5/2
7/2
9/2
68 + 14(3D)4F + 8(A3P)2D
50 + 25(A3P)2D + 11(3D)4F
69 + 14(3D)4F + 10(A3F)4F
71 + 13(3D)4F + 6(A3F)4F
138607
138435
138540
138501
0.462
1.074
1.227
1.312
(A3F)2G 7/2
9/2
53 + 24(3H)2G + 9(A1G)2G
44 + 24(3H)2G + 12(3G)2H
139649
139893
0.903
1.096
(3G)2F 5/2
7/2
42 + 41(A3F)2F + 7(3G)4G
48 + 40(A3F)2F
139903
140385
0.835
1.138
(3G)2H 9/2
11/2
48 + 18(3G)4G + 9(3H)2H
53 + 23(3G)4G + 10(3H)4G
140092
140069
0.999
1.149
(3G)4G 5/2
7/2
9/2
11/2
57 + 25(3H)4G + 8(A3F)2F
62 + 24(3H)4G
46 + 17(3G)2H + 17(3H)4G
47 + 27(3G)2H + 16(3H)4G
140169
140310
140611
140880
0.616
0.996
1.113
1.212
(3G)2G 7/2
9/2
74 + 15(3H)2G + 6(A1G)2G
67 + 17(3H)2G + 12(A1G)2G
143210
143338
0.897
1.111
(3D)4D 1/2
3/2
5/2
7/2
92
87
79 + 12(3D)4P
88
143618
143625
143659
143821
0.047
1.198
1.383
1.413
(1I)2I 11/2
13/2
90 + 7(A1G)2H
74 + 23(1I)2K
144109
144067
0.935
1.045
(A1G)2H 9/2
11/2
80 + 10(3H)2H
76 + 10(3H)2H
144414
144756
0.914
1.082
(1I)2K 13/2
15/2
77 + 23(1I)2I
100
144789
145221
0.966
1.067
(3D)4F 3/2
5/2
7/2
9/2
70 + 16(3G)4F + 8(3D)4P
72 + 16(3G)4F + 6(3D)4D
77 + 16(3G)4F + 6(3D)4D
83 + 16(3G)4F
144791
144912
145044
145161
0.552
1.050
1.248
1.332
(3D)4P 1/2
3/2
5/2
93
82 + 8(3D)4F
81 + 10(3D)4D
144897
144635
144220
2.630
1.584
1.557
(A1G)2F 5/2
7/2
81 + 5(3G)2F
82 + 4(3G)2F
144986
144427
0.864
1.138
(3D)2P 1/2
3/2
45 + 47(A1S)2P
56 + 38(A1S)2P
145317
145564
0.658
1.333
(A1G)2G 7/2
9/2
80 + 10(3G)2G
78 + 15(3G)2G
146744
146939
0.895
1.111
(1I)2H 9/2
11/2
87 + 9(3G)2H
85 + 9(3G)2H + 6(A1G)2H
148625
148261
0.910
1.089
(3D)2F 5/2
7/2
73 + 11(3G)2F + 5(1F)2F
73 + 9(3G)2F
148837
148611
0.858
1.142
(A1S)2P 1/2
3/2
41 + 42(3D)2P + 12(A1D)2P
43 + 24(3D)2P + 13(A1D)2P
148942
148779
0.666
1.264
(3D)2D 3/2
5/2
64 + 15(A1D)2D + 9(B3F)2D
58 + 30(A1D)2D
149769
149334
0.859
1.200
(A1D)2D 3/2
5/2
67 + 15(3D)2D
58 + 23(3D)2D
151050
151384
0.815
1.187
(A1D)2F 5/2
7/2
81 + 5(1F)2F
83 + 10(1F)2F
152281
152678
0.872
1.143
(A1D)2P 1/2
3/2
86 + 6(3D)2P
81 + 8(3D)2P
155354
155436
0.668
1.331
(1F)2F 5/2
7/2
81 + 7(A1D)2F + 6(A1G)2F
78 + 10(A1D)2F + 6(A1G)2F
156247
156404
0.860
1.139
(1F)2G 7/2
9/2
94
95
158193
158795
0.894
1.112
(1F)2D 3/2
5/2
70 + 16(B3P)2D + 10(B3F)2D
66 + 18(B3P)2D + 11(B3F)2D
160897
160156
0.797
1.199
(B3F)4F 3/2
5/2
7/2
9/2
96
92
92
98
163001
163010
163054
163169
0.422
1.048
1.247
1.331
(B3P)4P 1/2
3/2
5/2
82 + 11(B3P)4D
69 + 18(B3P)4D
49 + 30(B3P)4D + 10(B3F)4D
163878
163655
163647
2.268
1.592
1.469
(B3P)4D 1/2
3/2
5/2
7/2
58 + 26(B3F)4D + 14(B3P)4P
47 + 22(B3F)4D + 22(B3P)4P
34 + 45(B1P)4P + 15(B3F)4D
63 + 28(B3F)4D
164305
164266
164249
163950
0.394
1.311
1.461
1.412
(B3F)4G 5/2
7/2
9/2
11/2
79 + 16(B3F)2F
80 + 15(B3F)2F
97
99
165162
165369
165617
165794
0.636
1.015
1.172
1.272
(B3F)2F 5/2
7/2
73 + 16(B3F)4G
73 + 17(B3F)4G
166018
165864
0.823
1.118
(B3P)2D 3/2
5/2
47 + 23(1F)2D + 22(B3F)2D
45 + 24(1F)2D + 16(B3F)2D
165686
165463
0.819
1.191
(B3P)4S 3/2 97 168114 1.991
(B3F)2G 7/2
9/2
97
97
169691
169375
0.890
1.111
(B3F)4D 1/2
3/2
5/2
7/2
70 + 29(B3P)4D
69 + 30(B3P)4D
69 + 30(B3P)4D
68 + 31(B3P)4D
170024
169959
169810
169537
0.007
1.201
1.370
1.426
(B3P)2P 1/2
3/2
90
93
170434
170053
0.688
1.333
(B3P)2S 1/2 98 172395 1.975
(B1G)2H 9/2
11/2
68 + 29(B1G)2G
98
173087
173889
0.970
1.091
(B1G)2G 7/2
9/2
95
68 + 29(B1G)2H
173425
173870
0.896
1.051
(B3F)2D 3/2
5/2
66 + 33(B3P)2D
41 + 36(B1G)2F + 17(B3P)2D
175759
175377
0.801
1.058
(B1G)2F 5/2
7/2
50 + 30(B3F)2D + 11(B3P)2D
83 + 6(B3F)2F
175850
175345
0.999
1.137
(B1D)2P 1/2
3/2
94
94
190177
189762
0.667
1.331
(B1D)2F 5/2
7/2
93
94
192652
193245
0.860
1.143
(B1D)2D 3/2
5/2
98
99
196243
196498
0.802
1.197
(B1S)2P 1/2
3/2
95
96
216022
216787
0.667
1.333

Table 16.

Observed and calculated levels of Fe iii 3d54p

Name J Percentage AEL Observed Calculated O–C Lande C.
(6S)z7P 2 100 82002 81854 148 2.331
3 99 82334 82159 175 1.915
4 100 82847 82626 221 1.750
(6S)z5P 1 98 89491 89343 148 2.499
2 98 89335 89177 158 1.835
3 98 89085 88916 169 1.668
(4G)z5G 2 96 113584 113807 −223 0.341
3 91 + 5(4G)5G 113605 113832 −227 0.897
1 89 + 8(4G)5H 113635 113873 −238 1.130
5 88 + 9(4G)5H 113677 113932 −255 1.251
6 90 + 7(4G)SH 113740 114020 −280 1.323
(4G)z5H 3 94 + 5(4G)5G 114949 114731 218 0.525
4 90 + 8(4G)5G 115111 114913 198 0.923
5 90 + 9(4G)5G 115290 115106 184 1.116
6 92 + 7(4G)5G 115474 115295 179 1.223
7 100 115642 115455 187 1.286
(4G)z5F 1 76 + 12(4P)5D + 6(4D)5F 116938 116890 48 0.222
2 57 + 28(4P)5D + 6(4D)SD 116975 116960 15 1.197
3 55 + 22(4P)5D + 9(4D)5F (a4P)z5D 116475 116467 8 1.326
4 81 + 7(4D)5F (a4G)z5F 116467 116451 16 1.355
5 90 + 5(4D)5F 116317 116328 11 1.397
(4P)z5D 0 80 + 16(4D)5D 116365 116485 −120
1 67 + 16(4D)5D + 11(4G)5F 116380 116466 −86 1.279
2 46 + 29(4G)5F + 11(4D)5D 116419 116458 −39 1.310
3 49 + 32(4G)5F + 10(4D)5D (a4G)z5F 117069 117110 41 1.425
4 75 + 14(4D)5D + 8(4G)5F (a4P)z5D 117522 117597 −75 1.484
(4P)z5S 2 92 116898 117246 −348 1.961
(4G)z5F 2 90 118164 118310 − 146 0.671
3 75 + 10(4P)5P 118247 118433 −186 1.174
4 89 118350 118543 −193 1.242
(4G)z3H 4 95 118686 118562 124 0.810
5 97 118557 118469 88 1.035
6 96 118355 118310 45 1.168
(4P)y5P 1 78 + 14(4D)5P 118868 118825 43 2.433
2 69 + 19(4D)5P 118722 118678 44 1.801
3 53 + 22(4D)5P + 14(4G)3F 118443 118385 58 1.559
(4P)z3P 0 76 + 17(4D)3P 120180 120299 −119
1 71 + 18(4D)3P 119982 120089 −107 1.534
2 66 + 18(4D)3P + 5(4P)5P 119698 119801 −103 1.528
(4D)y5F 1 85 + 11(4G)5F 120697 120731 −34 0.025
2 84 + 10(4G)5F 120826 120867 −41 1.012
3 84 + 8(4G)5F 121009 121055 −46 1.258
4 87 + 7(4G)5F 121242 121285 −43 1.353
5 92 + 6(4G)5F 121469 121480 −11 1.399
(4G)z3G 3 94 121920 121931 −11 0.751
4 95 121941 121986 −45 1.051
5 95 121950 122030 −80 1.201
(4D)y5D 0 75 + 19(4P)5D 123456 123106 350
1 35 + 46(4P)3D + 8(4P)5D (a4P)z3D 122843 122812 31 1.044
2 36 + 46(4P)3D + 7(4P)5D 122628 122571 57 1.330
3 36 + 31(4P)3D + 14(4D)5P (a4D)y5D 122830 122761 69 1.459
4 78 + 16(4P)5D 122944 122552 392 1.495
(4P)z3D 1 41 + 22(4D)5P + 21(4D)5D (a4D)y5D 122921 123066 −145 1.303
2 40 + 25(4D)5D + 18(4D)5P 122899 122953 −54 1.410
3 53 + 29(4D)5D + 5(4P)5D (a4P)z3D 122347 122310 37 1.389
(4D)x5P 1 56 + 20(4D)5D + 12(4P)5P 123553 123473 80 2.141
2 55 + 18(4P)5P+ 16(4D)5D 123697 123749 −52 1.728
3 45 + 23(4P)5P + 13(4D)5D 123750 123857 −107 1.583
(4D)y3D 1 84 + 8(4F)3D 124955 124817 138 0.515
2 84 + 7(4F)3D 124904 124747 157 1.183
3 71 + 12(4D)SP 124854 124704 150 1.380
(4D)y3F 2 88 + 6(A2G)3F 125673 125735 −62 0.687
3 86 + 6(A2G)3F 125638 125714 −76 1.100
4 90 + 6(A2G)3F 125444 125510 −66 1.254
(4P)z3S 1 95 126391 126437 −46 1.981
(4D)y3P 0 77 + 18(4P)3P 128372 128649 −277
1 74 + 19(4P)3P 128606 128904 −298 1.513
2 72 + 2l(4P)3P 128918 129237 −319 1.499
(2I)z3K 6 83 + 15(2I)3I (a2I)z3I 129855 129757 98 0.886
7 76 + 17(2I)3I + 6(2I)1K 130041 130111 −70 1.038
8 100 130852 130705 147 1.125
(2I)z3I 5 82 + 9(2I)1H 130256 130362 −106 0.859
6 78 + 16(2I)3K (a2I)z3K 130757 130793 −36 1.003
7 71 + 21(2I)3K 131035 130791 244 1.110
(A2D)z1D 2 32 + 26(A2F)3F + 24(A2D)3F 131445 131665 −220 0.858
(2I)z1H 5 69 + 13(2I)3I + 9(A2G)1H 131711 131986 −275 0.982
(2I)z1K 7 89 + 9(2I)3I 131992 131987 5 1.013
(A2D)x3F 2 42 + 26(A2D)’D + 17(A2F)1D 132105 132331 −226 0.832
3 58 + 25(A2F)3F 132080 132183 −103 1.058
4 58 + 22(A2F)3F + 10(A2F)3G 132785 132847 −62 1.198
(2I)y3H 4 84 132659 132797 −138 0.832
5 86 + 6(2I)1H 132565 132743 −178 1.031
6 90 132263 132442 −179 1.160
(A2F)z1G 4 57 + 17(A2F)3G + 10(2F)1G 134360 134247 113 1.014
(A2F)y3G 3 53 + 25(A2D)1F + 13(A2F)3F 134549 134476 73 0.881
4 54 + 36(A2F)3F + 5(4F)5G 135554 135461 93 1.127
5 55 + 35(4F)5G (a4F)y5G 135316 135120 196 1.225
(A2D)x3P 0 90 + 6(4F)5D) 135088 134978 110
1 59 + 20(A2D)3D + 11(A2F)3D 134549 134467 82 1.139
2 67 + 25(A2F)3D 134265 134149 116 1.385
(A2D)x3D 1 60 + 22(A2D)3P + 8(4F)5F 135217 135197 20 0.708
2 62 + 12(4F)5G + 9(4F)5F 135279 135283 −4 1.040
3 32 + 25(A2F)3D + 24(4F)5G 134976 135047 −71 1.182
(4F)y5G 2 75 + 10(A2F)3F + 7(A2D)3D 134938 134888 50 0.477
3 54 + 27(A2D)3D 135097 134996 101 1.065
4 81 + 8(A2F)1G 135240 135158 82 1.134
5 58 + 39(A2F)3G (a2F)y3G 135735 135548 187 1.239
6 50 + 44(2I)1I (a2I)z1I 135582 135552 30 1.176
(2I)z1I 6 50 + 46(4F)5G (a4F)y5G 135739 135635 104 1.159
(A2d)w3D 1 66 + 19(A2D)1P 136465 136194 271 0.687
2 36 + 37(4F)5F + 10(A2D)3D 136794 136487 307 1.097
3 65 + 11(A2D)3D 135706 135411 295 1.264
(A2D)z1F 3 31 + 24(A2F)3G + 10(4F)5F 136200 136174 26 0.994
(4F)x5F 1 76 + 10(A2D)3D 136236 136305 −69 0.155
2 38 + 36(A2F)3D + 13(4F)3D 136118 136172 −54 1.103
3 65 + 13(4F)5D + 6(A2F)3G 136009 136150 −141 1.229
4 74 + 17(4F)5D 135991 136121 −130 1.368
5 88 136185 136310 −125 1.386
(A2F)w3F 2 46 + 19(A2D)3F + 10(A2F)3D 136532 136675 −143 0.790
3 41 + 14(A2D)3F + 14(A2D)1F 136797 136846 −49 1.105
4 42 + 28(A2D)3F + 15(A2F)3G 136613 136555 58 1.194
(2H)x3H 4 46 + 44(A2G)3H (a2G)x3H 137528 137500 28 0.821
5 43 + 42(A2G)3H + 6(2H)3I 137764 137731 33 1.035
6 46 + 41(A2G)3H + 6(2H)3I 138264 138248 16 1.154
(4F)x5D 0 91 + 6(A2D)3P 137573 137608 −35
1 85 + 6(A2D)3P 137561 137605 −44 1.404
2 77 + 9(4F)5F 137545 137610 −65 1.425
3 74 + 14(4F)5F 137423 137509 −86 1.443
4 75 + 16(4F)5F 137210 137297 −87 1.464
(2H)x3G 3 41 + 28(4F)3G + 16(A2F)3G 138188 138313 −125 0.768
4 43 + 30(4F)3G + 13(A2F)3G 138103 138228 −125 1.051
5 47 + 29(4F)3G + 10(A2F)3G 138055 138214 −159 1.141
(A2D)z1P 1 71 + 17(A2F)3D 138692 138498 194 0.905
(4F)w3G 3 42 + 41(A2G)3G + 7(2H)3G 139680 139539 141 0.767
4 42 + 36(A2G)3G + 10(2H)3G 139625 139477 148 1.044
5 43 + 25(A2G)3G + 16(2H)3I 139461 139350 113 1.141
(2H)y3I 5 79 + 8(2H)3H + 7(4F)3G 139509 139410 99 0.904
6 87 + 5(2H)3H 139846 139762 84 1.033
7 96 140196 140165 31 1.142
(A2G)y1G 4 40 + 19(A2F)1G + 17(2H)1G 139827 139749 78 1.037
(A2F)y1D 2 56 + 38(A2D)1D 139764 139779 −15 0.991
(A2F)y1F 3 72 + 8(A2D)1F + 6(A2G)1F 140453 140468 −15 1.001
(A2G)v3F 2 42 + 31(4F)3F + 13(4F)3D 140751 140998 −247 0.749
3 42 + 26(4F)3F + 15(4F)3D 140693 140901 −208 1.120
4 45 + 26(4F)3F + 9(A2G)1G 141003 141195 −192 1.205
(2H)y1I 6 88 + 5(2H)3H 141540 141442 98 1.013
(4F)v3D 1 84 + 6(4D)3D 141469 141576 −107 0.512
2 68 + 8(A2G)3F + 6(4D)3D 141399 141571 −172 1.081
3 64 + 7(A2G)3F + 7(4D)3D 141467 141663 −196 1.278
(4F)u3F 2 48 + 24(A2G)3F + 22(A2F)3F 142535 142682 −147 0.679
3 50 + 24(A2G)3F + 20(A2F)3F 142313 142460 −147 1.080
4 50 + 25(A2G)3F + 21(A2F)3F 142047 142197 −150 1.246
(A2G)w3H 4 45 + 47(2H)3H (a2H)w3H 142856 142754 102 0.819
5 46 + 38(2H)3H + 9(A2G)3G 142908 142783 125 1.052
6 50 + 40(2H)3H + 7(2H)1I 143321 143253 68 1.155
(A2G)v3G 3 43 + 24(A2F)3G + 18(4F)3G 144117 143854 263 0.766
4 42 + 23(A2F)3G + 14(4F)3G 144086 143844 242 1.048
5 40 + 20(A2F)3G + 12(2H)3G 143884 143657 227 1.172
(B2F)x1G 4 35 + 30(A2F)3F + 14(A2G)1G (b2F)t3F 144332 144445 −113 1.090
(A2G)y1H 5 66 + 18(2H)1H + 12(2I)1H 144587 144462 125 1.005
(B2F)t3F 2 66 + 19(A2G)3F + 7(4F)3F 144502 144598 −96 0.694
3 73 + 11 (A2G)3F + 6(4F)3F 144571 144697 −126 1.076
4 48 + 20(B2F)1G + 8(2H)1G (a2H)x1G 144968 145120 −152 1.156
(2H)x1H 5 70 + 23(A2G)1H 144843 144729 114 1.007
(A2G)x1F 3 76 + 5(B2F)1F + 5(B2D)1F 145039 145227 −188 1.006
(B2F)x1D 2 82 + 7(B2F)3F + 7(B2D)1D 145618 145658 −40 0.979
(B2F)u3G 3
4
5
55 + 36(2H)3G + 6(A2G)3G
59 + 32(2H)3G + 6(A2G)3G
66 + 28(2H)3G + 5(A2G)3G
146891
147161
147406
146938
147217
147490
−47
−56
−84
0.759
1.052
1.200
(B2F)u3D 1
2
3
90
89
86 + 7(4F)3D
147556
147615
147636
147602
147700
147761
−46
−85
−125
0.533
1.171
1.326
(2S)w3P 0
1
2
85 + 12(B2D)1P
82 + 13(B2D)3P
82 + 14(B2D)1P
148655
148915
149526
148596
148854
149441
59
61
85
1.466
1.492
(2H)w1G 4 34 + 44(B2F)1G+ 21(A2G)1G (b2F)w1G 149013 149063 −50 1.001
(B2F)w1F 3 93 150655 150566 89 1.005
(2S)y1P 1 78 + 19(B2D)1P 151637 151652 −15 1.004
(B2D)s3F 2
3
4
75 + 18(B2D)3D
61 + 27(B2D)3D + 6(B2D)1F
94
157684
157982
158563
157737
157940
158559
−53
42
4
0.765
1.149
1.249
(B2D)t3D 1
2
3
95
76 + 18(B2D)3F
67 + 29(B2D)3F
158257
158417
158729
157919
158123
158447
338
294
282
0.520
1.080
1.256
(B2F)v1G 3 82 + 12(B2G)1F 159493 159453 40 1.010
(B2D)v3P 0
1
2
87 + 13(2S)3P
82 + 13(2S)3P
81 + 14(2S)3P
160038 160319
160307
160291
−253 1.468
1.483
(B2D)1P 1 80 + 15(2S)1P 161258 1.010
(B2D)w1D 2 92 + 6(B2F)1D 16285? 161749 336 1.003
(B2G)v3H 4
5
6
93 + 5(B2G)3G
90 + 6(B2G)3G
98
165719
165940
166187?
165640
165834
166287
79
106
−100
0.814
1.043
1.167
(B2G)r3F 2
3
4
93 + 5(C2D)3F
50 + 46(B2G)2G
81 + 11(B2G)3F
167002
166498
166222
167059
166531
166268
−57
−33
−46
0.667
0.928
1.220
(B2G)t3G 3
4
5
53 + 44(B2G)3F
85 + 11(B2G)3F
91 + 7(B2G)3H
167085
167207
167299
167065
167154
167242
20
53
57
0.907
1.064
1.185
(B2G)w1H 5 95 168780 168674 106 1.006
(B2G)v1G 4 96 169278? 169202 76 1.003
(B2G)u1F 3 87 + 12(C2D)1F 170311? 170439 −128 0.998
(2P)3P 0
1
2
77 + 22(C2D)3P
76 + 23(C2D)3P
76 + 24(C2D)3P
178674
178823
179241
1.502
1.497
(2P)1S 0 99 181398
(2P)3D 1
2
3
93
66 + 22(2P)1D + 5(C2D)1D
92 + 7(C2D)3D
182519
182490
183099
0.504
1.121
1.333
(2P)1D 2 57 + 26(2P)3D + 14(C2D)1D 183519 1.047
(2P)3S 1 98 184869 1.979
(2P)1P 1 78 + 19(C2D)1P 185970 1.013
(C2D)3F 2
3
4
91 + 5(B2G)3F
89 + 5(C2D)3D
96
191071
191235
191700
0.690
1.096
1.250
(C2D)3F 1
2
3
94
89 + 6(2P)3D
89 + 7(2P)3D
192255
192579
192934
0.505
1.147
1.318
(C2D)1D 2 69 + 16(2P)1D + 11(C2D)3P 193395 1.067
(C2D)1F 3 94 194617 1.003
(C2D)3P 0
1
2
77 + 22(2P)3P
77 + 23(2P)3P
66 + 20(2P)3P + 12(C2D)1D
194973
194703
194332
1.498
1.430
(C2D)1P 1 81 + 18(2P)1P 198959 0.999

Table 17.

Observed and calculated levels of Co iii 3d64p

Name J Percentage AEL Observed Calculated O-C Lande C.
(5D)z6D 1/2 99 99182 99357 ‒175 3.324
3/2 99 99044 99207 ‒163 1.863
5/2 98 98823 98971 ‒148 1.654
7/2 97 98546 98671 ‒125 1.585
9/2 99 98290 98386 ‒96 1.553
(5D)z6F 1/2 98 103691 103488 203 ‒0.650
3/2 98 103656 103446 210 1.069
5/2 97 103594 103372 222 1.315
7/2 96 103502 103264 238 1.397
9/2 96 103387 103124 263 1.433
11/2 100 103245 102950 295 1.454
(5D)z6P 3/2 98 106592 106534 58 2.380
5/2 94 105965 105912 53 1.860
7/2 91 + 7(5D)4D 105009 104964 45 1.691
(5D)z4D 1/2 95 107508 107468 40 ‒0.006
3/2 94 107297 107250 47 1.213
5/2 91 + 5(5D)6P 106955 106897 58 1.392
7/2 89 + 7(5D)6P 106489 106415 74 1.447
(5D)z4F 3/2 98 108403 108435 ‒32 0.407
5/2 97 108053 108073 ‒20 1.035
7/2 96 107530 107536 ‒6 1.244
9/2 96 106765 106760 5 1.336
(5D)z4P 1/2 98 111283 111318 ‒35 2.665
3/2 98 110962 110993 ‒31 1.733
5/2 98 110371 110401 ‒30 1.599
(A3P)z4S 3/2 61 + 36(A3P)4P 124189 1.881
(3H)z4G 5/2 44 + 44(A3F)4G + 6(3G)4G 125369 125406 ‒37 0.608
7/2 46 + 40(A3F)4G + 7(3G)4G 125227 125264 ‒37 0.987
9/2 47 + 33(A3F)4G + 7(3C)4G 125012 125053 ‒41 1.151
11/2 64 + 27(A3F)4G + 7(3G)4G 124766 124861 ‒95 1.269
(3H)z4I 9/2 57 + 26(3H)4H + 7(3H)4G (3H)z4H 125422 125418 4 0.852
11/2 59 + 30(3H)4H + 7(3G)4H 125296 125286 10 1.030
13/2 58 + 31(3H)4H + 6(3H)2I 125276 125308 ‒32 1.150
15/2 100 126119 125945 174 1.199
(3H)z4H 7/2 60 + 14(3H)2G + 8(3G)4H 125690 125839 ‒149 0.761
9/2 41 + 35(3H)4I + 10(3H)2G (3H)z4I 126239 126246 ‒7 0.921
11/2 55 + 36(3H)4I + 6(3G)4H 126501 126505 ‒4 1.073
13/2 59 + 34(3H)4I + 5(3G)4H 126475 126507 ‒32 1.185
(A3P)y4P 1/2 90 + 6(A3P)4D 126373 2.465
3/2 30 + 29(A3P)4S + 28(A3P)4D) 126631 1.562
5/2 60 + 25(A3P)4D + 9(A3P)2D 125343 1.472
(A3F)y4F 3/2 86 + 7(3D)4F 126987 127217 ‒230 0.425
5/2 78 + 6(3D)4F 126871 127096 ‒225 1.034
7/2 48 + 16(A3P)4D + 9(3H)4H 126892 127048 −156 1.192
9/2 82 126998 127160 −162 1.305
(3H)z2G 7/2 43 + 18(A3F)4F + 11(3G)2G 127318 127499 −181 0.953
9/2 59 + 15(3G)2G + 12(3H)4H 127051 127272 −221 1.086
(A3P)z2D 3/2 32 + 23(A3P)4P + 23(A3P)4D 127793 1.251
5/2 58 + 25(A3P)4P + 8(A3F)2D 126336 1.309
(A3P)y4D 1/2 90 + 6(A3P)4P 128536 128152 384 0.168
3/2 42 + 31(A3P)2D + 12(A3F)2D 128423 128681 −258 1.034
5/2 60 + 15(A3P)2D + 10(A3P)4P 128085 128242 −157 1.345
7/2 80 + 7(A3F)4F 126549 126588 −39 1.388
(3H)z2I 11/2 92 128259 128200 59 0.935
13/2 90 + 7(3H)4I 127673 127650 23 1.082
(A3F)x4D 1/2 84 + 11(3D)4D 128937 129158 −221 0.015
3/2 80 + 10(3D)4D 128805 129036 −231 1.179
5/2 73 + 9(3D)4D 128525 128755 −230 1.343
7/2 69 + 8(3D)4D 128018 128257 −239 1.353
(A3F)y4G 5/2 35 + 27(3H)4G + 24(A3F)2F 129747 129740 7 0.672
7/2 44 + 26(3H)4G + 12(A3F)2F 129707 129680 27 1.009
9/2 52 + 25(3H)4G + 9(A3F)2G 129592 129534 58 1.162
11/2 68 + 22(3H)4G 129556 129505 51 1.261
(A3F)z2F 5/2 41 + 19(3H)4G + 9(3G)2F 130407 130400 7 0.752
7/2 49 + 12(3G)2F + 8(3H)4G 130184 130233 −49 1.095
(A3P)2P 1/2 55 + 34(A3P)2S 130940 1.149
3/2 87 + 6(A1D)2P 131328 1.322
(A3F)y2G 7/2 62 + 17(3G)4G 131279 131283 −4 0.941
9/2 60 + 13(3G)2H + 9(A3F)4G 130802 130782 20 1.073
(3H)z2H 9/2 37 + 23(3G)2H + 21 (A3F)2G 131538 131606 −68 0.978
11/2 23 + 34(3G)2H + 22(3G)4G 131054 131109 −55 1.137
(3G)x4G 5/2 63 + 17(3G)4F + 8(A3F)2F 131884 131773 111 0.709
7/2 38 + 24(3G)4F + 20(A3F)2G 131582 131491 91 1.040
9/2 49 + 24(3G)4F + 8(3G)4G (3G)x4F 131887 131857 30 1.194
11/2 59 + 19(3H)2H + 10(3H)4G 131098 131311 −213 1.218
(A3P)2S 1/2 65 + 29(A3P)2P 132300 1.540
(3G)y4H 7/2
9/2
11/2
13/2
74 + 11(3H)4H + 6(A3F)2G
76 + 9(3H)4H
74 + 10(3H)2H + 7(3H)4H
88 + 10(3H)4H
132624
132587
132507
132377
132433
132392
132322
132144
191
195
185
233
0.715
0.987
1.135
1.228
(3G)x4F 3/2
5/2
7/2
9/2
71 + 14(3D)4F
56 + 18(3G)4G+ 11(3D)4F
44 + 28(3G)4G + 9(3D)4F
52 + 32(3G)4G + 5(3D)4F
(3G)x4G 132592
132489
132277
131098
132454
132392
132219
131011
138
97
58
87
0.437
0.934
1.108
1.268
(A3F)2D 3/2
5/2
72 + 19(A3P)2D
78 + 13(A3P)2D
134195
133837
0.776
1.183
(3G)y2H 9/2
11/2
50 + 39(3H)2H
47 + 45(3H)2H
135404
134696
135521
134850
−117
− 154
0.922
1.094
(3G)y2F 5/2
7/2
54 + 18(3D)2F + 10(A3F)2F 57+ 14(A3W + 13(3D)2F 136129
136290
136217
136361
−88
−71
0.869
1.128
(3G)x2G 7/2
9/2
72 + 14(3H)2G
74 + 18(3H)2G
137812
137661
137684
137565
128
96
0.912
1.103
(1I)2K 13/2
15/2
98
100
137375
138185
0.936
1.067
(A1G)x2H 9/2
11/2
69 + 17(1I)2H
49 + 44(1I)2H
(1I)x2H 138921
139138
138722
139035
199
103
0.927
1.090
(3D)4P 1/2
3/2
5/2
82 + 8(3D)4D
82 + 5(3D)4D
90
139158
138832
138618
2.333
1.668
1.584
(3D)4F 3/2
5/2
7/2
9/2
72 + 19(3G)4F
68 + 16(3G)4F + 6(3D)4D
46 + 14(3D)4D + 10(3G)4F
54 + 30(A1G)2G
139436
139585
139727
140141
0.443
1.050
1.231
1.246
(3D)4D 1/2
3/2
5/2
7/2
53 + 20(3D)2P + 12(3D)4P
55+ 18(3D)2P+ 10(3D)4P
77 + 9(A3F)4D + 8(3D)4F
27 + 22(3D)4F + 17(A1G)2F
139616
139831
140109
140090
0.510
1.252
1.337
1.202
(A1G)w2G 7/2
9/2
61 + 13(3D)4F
54 + 29(3D)4F
140383
140358
140214
140308
169
50
0.966
1.177
(3D)2P 1/2
3/2
54 + 25(3D)4D + 12(A1S)2P
60 + 23(3D)4D + 10(A1S)2P
140568
140444
0.479
1.296
(A1G)x2F 5/2
7/2
48 + 21(3D)2F + 10(A3F)2F
30 + 44(3D)4D + 7(A3F)4D
140787
140646
140734
140582
53
64
0.875
1.285
(1I)w2H 9/2
11/2
68 + 21(A1G)2H
33 + 50(A1G)2H
(1G)w2H 141347
141191
141443
141140
−96
51
0.912
1.072
(1I)y2I 11/2
13/2
87 + 9(1I)2H
99
141874
141869
141926
141925
−52
−56
0.945
1.076
(3D)2D 3/2
5/2
88
90
142452
142664
0.820
1.200
(3D)2F 5/2
7/2
56 + 23(A1G)2F
+ 13(A1D)2F
61 + 17(A1G)2F
+ 14(A1D)2F
143970
143377
0.865
1.145
(A1S)2P

(A1D)2F
1/2
3/2

5/2
7/2
51 + 28(A1D)2P
+ 12(3D)2P
43 + 43(A1D)2P
+ 10(3D)2P
53 + 18(A1D)2D + 15(A1G)2F 72 + 15(A1G)2F
144469
143865
146196
147106
0.673
1.319
0.935
1.144
(A1D)2D 3/2
5/2
78 + 11(1F)2D
62 + 17(A1D)2F + 14(1F)2D
146760
147093
0.838
1.125
(A1D)2P 1/2
3/2
65 + 27(A1S)2P
43 + 38(A1S)2P
147373
147994
0.671
1.299
(1F)2G 7/2
9/2
92
95
151919
152806
0.892
1.112
(1F)2D 3/2
5/2
79 + 11(A1D)2D
71 + 15(A1D)2D
154134
153438
0.813
1.198
(B3P)4D 1/2
3/2
5/2
7/2
54 + 44(B3F)4D
50 + 45(B3F)4D
38 + 45(B3F)4D + 14(1F)2F
29 + 35(B3F)4D + 35(1F)2F
(3P1)z4S
(3P1)x4P
155702
156291
155753
155984
156171
156215
−282
120
0.004
1.188
1.290
1.313
(1F)2F 5/2
7/2
75 + 7(B3F)4D + 7(B3P)4D
54 + 23(B3F)4D
+ 17(B3P)4D
156526
156628
0.941 1.256
(B3P)2S 1/2 93 159796 2.024
(B3F)4G 5/2
7/2
9/2
11/2
97
96
95
98
160338
160581
160820
161090
0.575
0.984
1.171
1.272
(B3P)4S 3/2 98 161611 1.989
(B3F)2D 3/2
5/2
51 + 37(B3P)2D
49 + 35(B3P)2D + 8(B3P)4P
163340
163896
0.844
1.229
(B3P)4P 1/2
3/2
5/2
91
88
71 + 8(B3F)2D + 8(B3P)4D
163229
163563
164334
2.611
1.667
1.510
(B3F)2G 7/2
9/2
89
88
164268
163773
0.907
1.125
(B3F)4D 1/2
3/2
5/2
7/2
54 + 42(B3P)4D
40 + 37(B3P)4D
+ 15(B3F)4F
39 + 42(B3F)4F
+ 14(B3P)4P
32 + 38(B3P)4D
+ 29(B3F)4F
164541
164765
165040
165903
0.042
1.091
1.251
1.360
(B3F)4F 3/2
5/2
7/2
9/2
78 + 9(B3F)4D
51 + 23(B3P)4D
+ 22(B3F)4D
62 + 22(B3P)4D
+ 11(B3F)4D
93 + 6(B3F)2C
165215
165546
165234
165624
0.557
1.194
1.286
1.318
(B3P)2D 3/2
5/2
41 + 36(B3F)2D
+ 16(B3P)2P
60 + 34(B3F)2D
166507
167276
0.877
1.210
(B3P)2P 1/2
3/2
92
77 + 12(B3P)2D
167203
167968
0.652
1.240
(B3F)2F 5/2
7/2
94
87 + 12(B1G)2F
168299
168167
0.858
1.142
(B1G)2H 9/2
11/2
95
98
170204
171002
0.915
1.091
(B1G)2F 5/2
7/2
86 + 6(1F)2F
57 + 27(B1G)2G + 6(B3F)2F
172252
171679
0.858
1.072
(B1G)2G 7/2
9/2
68 + 21(B1G)2F
94
173022
172850
0.962
1.108
(B1D)2D 3/2
5/2
98
98
190563
190826
0.805
1.195
(B1D)2F 5/2
7/2
95
96
194508
195232
0.862
1.143
(B1D)2P 1/2
3/2
93 + 6(B1S)2P
93 + 5(B1S)2P
196236
195859
0.667
1.328
(B1S)2P 1/2
3/2
94 + 6(B1D)2P
95 + 5(B1D)2P
219596
220550
0.667
1.333

Table 18.

Observed and calculated levels of Ni iii 3d74p

Name J Percentage AEL Observed Calculated O–C Lande C.
(4F)z5F 1 96 112402 112376 26 0.054
2 88 + 9(4F)5D 111914 111907 7 1.031
3 78 + 17(4F)5D 111221 111241 −20 1.281
4 65 + 29(4F)5D 110371 110431 −60 1.387
5 94 + 5(4F)3G 110212 110157 55 1.391
(4F)z5G 2 88 + 5(4F)5D + 5(4F)5F 114371 114162 209 0.436
3 86 + 7(4F)5F 114110 113895 215 0.959
4 84 + 8(4F)3F + 6(4F)3G 113705 113482 223 1.165
5 82 + 12(4F)3G + 6(4F)5F 113141 112921 220 1.266
6 100 112787 112489 298 1.333
(4F)z5D 0 91 + 8(4P)5D 114295 114441 −146
1 88 + 8(4P)3D 114095 114226 −131 1.450
2 78 + 8(4F)5G + 7(4P)3D 113651 113746 −95 1.369
3 73 + 13(4F)5F + 8(4F)5G 112935 113002 −67 1.420
4 63 + 26(4F)3F + 6(4F)5G 111898 111939 −41 1.437
(4F)z3G 3 88 + 7(4F)3F 117606 117660 −54 0.786
4 83 + 9(4F)3F + 7(4F)5G 116674 116706 −32 1.076
5 87 + 13(4F)5G 115272 115292 −20 1.208
(4F)z3F 2 92 118115 118082 33 0.678
3 83 + 8(4F)3G 117251 117232 19 1.068
4 85 + 10(4F)3G 116192 116167 25 1.232
(4F)z3D 1 93 120273 120304 −31 0.500
2 92 119670 119694 −24 1.155
3 90 + 5(4F)3F 118746 118754 −8 1.318
(4P)z5S 2 99 122282 122739 −457 1.994
(4P)y5D 0 86 + 8(4F)5D + 5(2P)3P 130190 130242 −52
1 75 + 7(4F)5D + 7(2P)3P 129958 130022 −64 1.531
2 82 + 7(4F)5D 129913 129937 −24 1.484
3 84 + 7(4F)5D 129954 129944 10 1.490
4 93 + 6(4F)5D 130312 130224 88 1.497
(4P)z5S 1 53 + 12(2P)3S + 11(4P)5D 130863 131111 −248 1.908
(2G)z3H 4 61 + 28(2G)3F + 6(2G)1G 132157 132057 100 0.953
5 74 + 15(2G)1H + 7(2G)3G 131500 131367 133 1.035
6 96 132169 131906 263 1.163
(4P)z5P 1 73 + 20(4P)3S 133340 133446 −106 2.279
2 45 + 21(2P)3P + 20(4P)3D (4P)r3D 132818 132919 −101 1.549
3 71 + 19(4P)3D 133095 133060 35 1.576
(2G)y3F 2 94 134233 134198 35 0.676
3 78 + 11(2G)3G 133158 133174 −16 1.055
4 41 + 33(2G)3H + 13(2G)3G 131792 131814 −22 1.051
(2G)z1G 4 47 + 24(2G)3F + 14(2H)1G 133325 133415 −90 1.064
(2P)3P 0 69 + 19(A2D)3P + 6(4P)3P 133134
1 45 + 19(4P)3D + 12(4P)5P 133556 1.399
2 49 + 10(2P)3D + 9(4P)5P 133902 1.417
(4P)y3D 1 54 + 15(2P)3D + 13(2P)3P 133840 134055 −215 0.806
2 42 + 37(4P)5P + 6(4P)5D (4P)r5P 133500 133406 94 1.432
3 65 + 20(4P)5P 133391 133434 −43 1.384
(2G)z1H 5 62 + 23(2G)3H + 14(2G)3G 134218 134119 99 1.034
(2G)y3G 3 70+ 16(2G)1F + 8(2G)3F 134335 134375 −40 0.832
4 73 + 14(2G)1G + 6(2H)1G 134415 134523 −108 1.028
5 78 + 19(2G)1H 133692 133722 −30 1.156
(2G)z1F 3 57 + 15(2G)3G + 14(A2D)1F 135024 135062 −38 0.965
(4P)z3 P 0 52 + 35(2P)1S + 11(2P)3P 135695
1 78 + 11(2P)3D 136099 136192 −93 1.371
2 75 + 10(A2D)3P 135351 135455 − 104 1.470
(2P)x3D 1 54 + 15(A2D)3D + 12(4P)3P 137364 137395 −31 0.682
2 41 + 29(2P)1D + 12(A2D)3D 136813 136950 −137 1.113
3 77 + 8(A2D)3F 136965 136964 1 1.322
(2P)1D 2 20 + 24(2P)3D + 20(4P)3D 137768 1.137
(2H)3I 5 95 138061 137997 64 0.843
6 74 + 25(2H)1I 137392 137357 35 1.020
7 100 137991 137837 154 1.143
(2H)x3G 3 85 + 6(2F)3G 138852 138891 −39 0.771
4 90 + 5(2F)3G 138031 138118 −87 1.052
5 94 + 5(2F)3G 137020 137161 −141 1.198
(2P)1S 0 61 + 39(4P)3P (4P)z3P 138147 138618 −471
(A2D)w3D 1 50 + 27(2P)1P + 12(2P)3D 138979 138889 90 0.669
2 63 + 10(2P)3D + 7(2P)1D 139254 139172 82 1.121
3 79 + 11(A2D)3F 138487 138359 128 1.307
(2H)z1I 6 74 + 24(2H)3I 139634 139600 34 1.010
(A2D)x3F 2 73 + 10(A2D)3D + 8(A2D)1D 140916 140871 45 0.782
3 71 + 8(2P)3D + 6(2G)1F 140545 140503 42 1.117
4 98 140184 140117 67 1.250
(2P)3S 1 67 + 8(2P)1P + 8(4P)3S (2P)z1P 140885 141052 −167 1.780
(2P)z1P 1 49 + 17(A2D)3D + 13(2P)3S (2P)y3P 141415 141393 22 1.077
(A2D)z1D 2 46 + 29(A2D)3P + 15(2P)1D 142434 142323 111 1.155
(2H)y3H 4 95 143004 143062 −58 0.810
5 95 142576 142642 −66 1.034
6 98 142188 142259 −71 1.165
(A2D)y1F 3 73 + 16(2G)1F + 7(A2D)3F 143865 143944 −79 1.014
(2H)y1G 4 70 + 27(2G)1G 144154 144162 −8 0.997
(A2D)x3P 0 80 + 15(2P)3P 145110
1 67 + 11(2P)3P + 9(2P)1P 144624 144667 −43 1.431
2 48 + 24(A2D)1D + 11(2P)3P 143560 143476 84 1.334
(A2D)y1P 1 88 145950 146006 −56 1.062
(2H)y1H 5 96 146326 146504 −178 1.001
(2F)y1D 2 60 + 32(2F)3F (2F)w3F 155444 155123 321 0.897
(2F)3G 3 82 + 10(2F)3F + 6(2H)3G 155392 0.787
4 73 + 15(2F)3F + 6(2F)1G (2F)w3F 155842 155842 0 1.078
5 94 + 5(2H)3G 156734 1.200
(2F)w3F 2 64 + 29(2F)1D (2F)y1D 156524? 156518 6 0.786
3 68 + 19(2F)3D + 8(2F)8G (2F)v3D 156853 156444 409 1.107
4 50 + 28(2F)1G + 20(2F)3G 156906 1.138
(2F)v3D 1 93 + 5(B2D)3D 157235 157142 93 0.502
2 85 + 8(2F)1D 157155 157121 34 1.152
3 72 + 18(2F)3F (2F)w3F 156972 156833 139 1.270
(2F)x1G 4 65 + 32(2F)3F 157376 157317 59 1.084
(2F)1F 3 97 161755 161735 20 1.003
(B2D)w3P 0 99 176738 176727 11
1 98 176583 176601 −18 1.491
2 99 176488 176513 −25 1.497
(B2D)v3F 2 96 177858 0.670
3 96 178452? 178440 12 1.083
4 97 179196 1.250
(B2D)1P 1 95 181237 0.991
(B2D)1F 3 97 181516 1.007
(B2D)3D 1 95 183763 0.518
2 73 + 25(B2D)1D 183976 1.123
3 96 184740 1.327
(B2D)1D 2 72 + 25(B2D)3D 184456 1.042

Table 19.

Observed and calculated levels of Cu iii 3d84p

Name J Percentage AEL Observed Calculated O–C Lande C.
(3F)z4D 1/2 94 + 6(3P)4D 122637 122764 −127 0.004
3/2 93 + 5(3P)4D 121864 122012 −148 1.185
5/2 91 + 5(3P)4D 120578 120765 −187 1.357
7/2 93 + 4(3P)4D 118864 119113 −249 1.421
(3F)z4G 5/2 93 + 6(3F)4F 123440 123316 124 0.604
7/2 81 + 10(3F)4F + 8(3F)2G 122504 122416 88 1.008
9/2 66 + 22(3F)2G + 12(3F)4F 121337 121318 19 1.178
11/2 100 121698 121488 210 1.273
(3F)z4F 3/2 90 + 5(3F)2D 125745 125721 24 0.445
5/2 84 + 6(3F)4G 125382 125324 58 1.011
7/2 73 + 13(3F)2F + 10(3F)4G 124558 124506 52 1.202
9/2 82 + 14(3F)2G 123550 123516 34 1.296
(3F)z2G 7/2 82 + 10(3F)2F + 6(3F)4G 126094 126175 −81 0.926
9/2 64 + 31(3F)4G + 5(3F)4F 124442 124432 10 1.141
(3F)z2D 3/2 82 + 8(1 D)2D + 7(3F)4F 128435 128465 −30 0.781
5/2 77 + 14(3F)2F + 5(1D)2D 126892 126934 −42 1.149
(3F)z2F 5/2 79 + 14(3F)2D + 5(3F)4F 128679 128736 −57 0.912
7/2 75 + 12(3F)4F + 9(3F)2G 126829 126902 −73 1.127
(3P)z4P 1/2 90 + 7(1D)2P 137041 137012 29 2.468
3/2 76 + 10(1D)2P + 5(1D)2D 136483 136500 −17 1.607
5/2 76 + 15(1D)2D 136607 136605 2 1.497
(1D)y2F 5/2 81 + 8(3P)4P 138084 138009 75 0.939
7/2 83 + 10(3P)4D + 6(1G)2F 138982 139819 163 1.170
(1D)y2D 3/2 57 + 17(3P)4P + 9(1D)2P 138988 139077 −89 1.044
5/2 77 + 14(3P)4P 139757 139823 −66 1.240
(1D)z2P 1/2 62 + 26(3P)2P + 9(3P)4P 139261 139189 72 0.865
3/2 59 + 23(1D)2D + 10(3P)2P 140201 140177 24 1.220
(3P)y4D 1/2 93 142550 142492 58 0.019
3/2 87 + 5(3F)4D + 4(3P)2D 142512 142443 69 1.186
5/2 77 + 13(3P)2D + 4(1D)2F 142426 142397 29 1.326
7/2 86 + 8(1D)2F 142820 142737 83 1.397
(3P)x2D 3/2 60 + 26(3P)2P + 7(1D)2P (3P)y2P 145353 145214 139 1.005
5/2 81 + 15(1P)4D 144194 144262 −68 1.219
(3P)y2P 1/2 68 + 26(1D)2P + 5(3P)2S 146676 146409 267 0.721
3/2 52 + 34(3P)2D + 11(1D)2P (3P)x2D 144875 144764 111 1.139
(1G)z2H 9/2 99 146534 146430 104 0.911
11/2 100 147647 147437 210 1.091
(3P)z2S 1/2 94 147652 147970 −318 1.922
(3P)z4S 3/2 98 147816 147975 −159 1.988
(1G)x2F 5/2 92 + 6(1D)2F 148663 148649 14 0.860
7/2 88 + 9(1D)2F 147806 147893 −87 1.144
(1G)y2G 7/2 99 153609 153743 −134 0.891
9/2 99 153808 153942 −134 1.110
(1S)2P 1/2 99 183398 0.667
3/2 99 184608 1.333

Table 20.

Observed and calculated levels of Zn iii 3d94p

Name J Percentage AEL Observed Calculated O–C Lande
C.
(2D)z3P 0 100 141401 141285 116
1 97 140080 140060 20 1.480
2 98 137876 138023 −147 1.493
(2D)z3F 2 96 142491 142405 86 0.688
3 71 + 26(2D)1F 140664 140726 −62 1.068
4 100 141335 141195 140 1.250
(2D)z1F 3 67 + 18(2D)3F + 12
(2D)3D (2D)3D 144511 144544 −33 1.066
(2D)z1D 2 62 + 34(2D)3D (2D)3D 145252 145451 −199 1.051
(2D)z1P 1 98 147505 147279 226 0.998
(2D)z3D 1 97 147577 147587 −10 0.521
2 61 + 37(2D)1D (2D)1D 147928 148015 −87 1.101
3 82 + 11(2D)3F + 7 (2D)1F
(2D)1F 145974 146023 −49 1.283

Acknowledgments

This paper was supported in part by the National Bureau of Standards, Washington, D.C.

The author wishes to acknowledge with everlasting gratitude and appreciation the unremitting kind interest in this work by the late Professor Giulio Racah.

Footnotes

*

An invited paper. The major part of this paper is based on a chapter of the author’s doctoral dissertation, the Hebrew University of Jerusalem, Israel.

5. References

  • [1].Shadmi Y., Bull. Res. Counc. of Israel, 10F, No. 3 109 (1962). [Google Scholar]
  • [2].Shimoni E., Sc M.. Thesis, The Hebrew University of Jerusalem (1959). [Google Scholar]
  • [3].Hollander S., Sc M.. Thesis, The Hebrew University of Jerusalem (1960). [Google Scholar]
  • [4].Abraham B. Z., Sc M.. Thesis, The Hebrew University of Jerusalem (1961). [Google Scholar]
  • [5].Trees R. E., Phys. Rev. 83, 756 (1951); ibid., 84, 1089 (1951). [Google Scholar]
  • [6].Racah G., Phys. Rev. 85, 381 (1952). [Google Scholar]
  • [7].Racah G., Rydberg Centennial Conference, Lunds Univ. Arsskr. 50, 31 (1955). [Google Scholar]
  • [8].Racah G., Phys. Rev. 63, 367 (1943). [Google Scholar]
  • [9].Racah G., and Shadmi Y., Phys. Rev. 119, 156 (1960). [Google Scholar]
  • [10].Trees R. E., and Jorgensen C. K., Phys. Rev. 123, 1278 (1961). [Google Scholar]
  • [11].Trees R. E., Phys. Rev. 129, 1220 (1963). [Google Scholar]
  • [12].Rajnak K., and Wybourne B. G., Phys. Rev. 132, 280 (1963). [Google Scholar]
  • [13].Racah G., and Stein J., Phys. Rev. 156, 58 (1967). [Google Scholar]
  • [14].Racah G., Bull. Res. Counc. of Israel 8F, No. 1, 1 (1959). [Google Scholar]
  • [15].Moore C. E., “Atomic Energy Levels”, NBS Circular 467, Vol. I (1949), ibid., Vol. II (1952). [Google Scholar]
  • [16].Iglesias L., An. Real. Soc. Espan. Fis. Quim. (Spain), 58 (A), No. 7–8, 191 (1962). [Google Scholar]
  • [17].Racah G., J. Quant. Spectrosc. Radiat. Transfer 4, 617 (1964). Pergamon Press Ltd. [Google Scholar]
  • [18].Shenstone A. G., J. Opt. Soc. Am. 44, 749 (1954). [Google Scholar]

Articles from Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry are provided here courtesy of National Institute of Standards and Technology

RESOURCES