Abstract
Experimental levels of the configurations 3dn4p in the third spectra of the iron group were compared with corresponding calculated values. Besides the electrostatic and spin-orbit interactions the αL(L + 1), βQ and T corrections were considered in the individual and general treatments. The insertion of the parameters β and T improved the results by about 25 percent. The root-mean-square (rms) error on fitting 581 experimental levels by means of 21 free interaction parameters was 138 cm−1. Altogether 912 energy levels were predicted.
Keywords: βQ and T corrections, configurations 3dn4p, energy levels, iron group, interaction parameters, third spectra
1. Introduction
Individual and general treatments of the configurations 3dn + 3dn−14s in the third spectra of the iron group were considered by Y. Shadmi [1]. Preliminary investigations of some configurations 3dn4p in the third spectra of the iron group were performed by Shimoni, Hollander and Abraham [2–4].
Racah and Trees [5–7] have shown that second order effects caused by perturbations on the configuration ln by configurations differing from ln by two electrons can be described by a model interaction of the form
where q12 is the seniority operator [8]. For the configuration dn this becomes
where Q is the total seniority operator [8]. If the constant −6nα is incorporated into the height of the configuration the above correction reduces to
The αL(L + 1) correction was first introduced by Trees [5]. The effect of the βQ correction was studied by Racah and Shadmi [9] in the even configurations (3d + 4s)n of the second spectra of V, Cr, and Fe.
Trees and Jorgenson [10] have shown that the main perturbing configuration on 3s23p63dn is the configuration 3s23p43dn+2. Trees [11] also remarked that the configuration 3s3p63dn+1 should give a perturbation of the same magnitude as 3s23p43dn+2. This perturbation is not included in 2α(11 · 12) + βq12, since now the configurations differ by only one electron. By second-order perturbation theory this effect depends upon the ratio , where H is the interaction parameter that appears in the nondiagonal term,
and ΔE is the energy difference between the two configurations. The parameter is denoted by T. When calculating the model interaction one uses second-order perturbation theory of degenerate configurations which permits the introduction of these interactions before diagonalizing the energy matrices of the separate configurations. Hence the algebraic matrices of T are not diagonal. It should be noted that T represents a three-body interaction whereas α and β represent two-body interactions.
Rajnak and Wybourne [12], by using second-order perturbation theory obtained expressions for the matrix elements of the electrostatic interaction between the configuration and the different species of perturbing configurations differing from by one or two electrons or electron-holes. Effective three-body interactions were considered to account for the perturbation due to one-electron excitations. Racah and Stein [13] developed an elegant method which considerably simplified the calculations of Rajnak and Wybourne.
The electrostatic and spin-orbit interaction matrices for the configurations dnp were available from the matrix library at the Hebrew University. To these matrices the author added the algebraic matrices of the parameters β and T using the program ADDCONF of Racah.
In the first part (the individual treatment, ILS), the algebraic matrices multiplied by radial parameters are diagonalized using the program of Racah [14]. Besides the eigenvalues, the diagonalization routine also yields the derivatives of the eigenvalues with respect to the parameters, the squares of the eigenvectors (percentage compositions) and the calculated Lande g values. The appropriate experimental levels are then fitted to the eigenvalues and using the derivatives obtained in the diagonalization, a least squares optimization of the parameters is performed. In these calculations the improved values of the theoretical energy levels, the corrected values of the parameters including their statistical deviations and the sum of the squares of the differences between the observed and calculated levels are obtained.
Where the Δi are the differences between the observed and calculated levels, n is the number of known levels, and m is the number of free parameters, the rms error Δ defined as
is also given by the least squares routine. The same derivatives can be used for several variations in the least squares either imposing different conditions on the parameters or inserting the experimental levels with different assignments. These latter variations are particularly important since they help to determine whether certain experimental levels may be inserted with changed assignments, or in some cases even rejected. The parameters of that variation which yields the best results are used to perform a new diagonalization. This iterative process is continued until mathematical convergence is attained.
If the parameters obtained from the individual treatments can be expressed in terms of simple interpolation formulas a general diagonalization is performed. Then in the general least squares (GLS) all the configurations 3dn4p are considered as one problem by forcing the interaction parameter to vary linearly, or perhaps linearly with small quadratic corrections.
2. Parameters
For the d − d interaction the Slater parameters F2 and F4 were replaced by
For the d – p interaction the parameters F2, G1, and G3 are given by
The parameters of the spin-orbit interactions for the electrons d and the electron p are denoted by ζd and ζp, respectively. The three correction parameters mentioned previously are denoted by α, β, and T. Finally, the additive parameter chosen to normalize to zero the lowest energy value for a particular configuration, is denoted by A.
3. Discussion and Results
By extrapolating and intrapolating the results of Shimoni, Hollander and Abraham [2–4], approximate initial values for the parameters of the individual treatment were obtained. Since the effects of the parameters β and T had not been considered previously for the third spectra, they were inserted initially here with a value of zero. However, since derivatives with respect to these two parameters were obtained it was possible to study the effects of β and T by letting them vary freely in the least-squares. After two iterations in the individual treatments of all the configurations mathematical convergence was attained for all the parameters. Then on the basis of the results from the individual treatments a general diagonalization was performed in which the parameters B, C, F2, G1 G3, α, and ζp varied linearly, whereas ζd had in addition a small quadratic correction. The parameters β and T again had an initial value of zero.
The configurations dnp consist of 372 theoretical terms splitting into 912 levels. In the general least-squares 225 experimental terms splitting into 581 levels were inserted. The rms error with β and T eliminated was 180.3 cm−1 (28 free parameters) whereas when β and T were allowed to vary linearly the rms error was reduced to 138.4 cm−1 (32 free parameters). The values of β and T in the latter variation were
the uncertainties in these parameters and those following in the text and tables are the rms deviations obtained in the least squares optimization of their values.
Since α and β take into account second order effects by two-body interactions we would expect that if β be allowed to vary the value of α should drop. That is indeed the case as in the variation with β and T eliminated α had values (in units of cm−1)
whereas by letting β and T vary linearly in the GLS we obtained
In addition C increases when β is inserted. With β and T eliminated the value of C in the GLS was
whereas by letting β and T vary linearly in the GLS we had
This result also is as expected since if we consider the basis configuration d2 the only term affected by β is 1S, which contains 7C.
In figures (1–8) we give values of the parameters versus atomic number obtained from the individual least squares (the vertical lines indicate the rms errors in the values of the parameters). The straight lines (and the parabola for ζd) give the values of the parameters from the general least squares. From the graphs it is apparent that the assumption of linearity (with a small quadratic correction for ζd) is valid here.
Figure 1.
Parameter B(dd) versus n for 3dn4p configurations (V iii to Cu iii).
Figure 8.
Parameter ζp versus n for 3dn4p configurations (Ti iii to Zn iii).
Unless specified otherwise the source of the experimental data is “Atomic Energy Levels,” Vols. I and II by C. E. Moore [15], henceforth referred to as AEL.
The numerical values of all levels and parameters are in cm−1.
We now wish to discuss briefly the results for each configuration.
Sc iii – 4p. This configuration consists of only 1 term splitting into 2 levels. It is useful in providing a value for the parameter ζp.
Ti iii – 3d4p. In the configuration dp there are 6 terms splitting into 12 levels, all of which are known experimentally for Ti iii.
In the individual least squares we fitted the 12 experimental levels to the theoretical levels with the same assignments as in AEL. The 4 electrostatic parameters A, F2, G1, and G3 were used to determine the 6 terms. The rms error obtained was 162. Furthermore, all the 12 levels fitted very nicely in the GLS. This result is significant and indicates that the interaction with the configuration sp is not strong here.
V iii – 3d24p. In the configuration d2p, there are 19 terms splitting into 45 levels. In the paper by Iglesias [16], 18 observed terms splitting into 43 levels are given – the only term missing is (1S)2P.
The only change in assignment was
Without the exchange, the deviations of these two levels were −680 for and 410 for . With the exchange the deviations were reduced to −152 and −128 respectively. In addition, the eigenfunctions of the two levels are strongly mixed.
Since there are no levels based on the core d2 1S, we can only have a maximum of 4 electrostatic parameters of d2 to satisfy the 4 terms 3P, 1D, 3F, and 1G. These 4 parameters are A, B, C, and α. If we give either T or β freedom then the problem is overdefined. In the individual least squares the mean error in fitting 43 levels with β and T eliminated was 135.
Cr iii – 3d34p. In the configuration d3p there are 48 theoretical terms splitting into 110 levels. In AEL, there are 27 observed terms splitting into 74 levels. We found it necessary to reject 7 experimental levels.
The following is a list of the 7 levels neglected with their approximate deviations had they been inserted into the last GLS
| Name | Value | Deviation |
| (4F)z5D0 | 95779 | −810 |
| (2G)z1G4 | 114355 | 1160 |
| (2H)y1G4 | 117099 | −2090 |
| (2G)z1H5 | 117187 | 3840 |
| (2F)v3D2 | 138362 | 5740 |
| (2F)v3D3 | 138976 | 6710 |
| (b2D)v3F3 | 150972 | 1680 |
In the individual least squares, the deviation obtained for the level (4F)z5D0 was −625, whereas the other levels of z5D fitted with deviations of less than 50. Thus we felt justified in neglecting the level z5D0. The levels (2G)z1G4, (2H)y1G4, (2G)z1H5 and (2F)v3D2 had deviations higher than 1000 in the individual least squares, and were thus rejected. In the individual least squares we considered the variation of assigning the level (b2D)v3F3 to (b2D)1F3. However, this required that β have a value of −590, whereas the value of β from the GLS is −195. With the latter value of β, the deviation obtained on assigning v3F3 to (b2F)1F is −1056, and thus too high to be considered.
The following changes in assignment were performed
In the first three cases the eigenfunctions of all the levels concerned are mixed considerably. The term (4P)3D is definitely higher than the term (2P)3D.
By neglecting the level (2D)v3F3 at 150972, it was found that β and T did not suffer any appreciable change. Thus, the best result in the individual least squares was obtained on fitting 22 terms splitting into 67 levels with 7 electrostatic and 2 spin-orbit parameters, to yield a mean error of 136.
Mn iii – 3d44p. The configuration d4p comprises 68 terms splitting into 180 levels. In AEL there are only 6 observed terms, all based on d4 5D, which split into 25 levels. No individual least squares were performed as then we would have to keep the parameters α, B, and C fixed. The 25 observed levels fit very well in the GLS with the same assignments as in AEL.
Fe iii – 3d54p. In the configuration d5p there are 88 terms splitting into 214 levels, of which 75 terms splitting into 189 levels are known experimentally for Fe iii. All the observed levels fit well with the following changes in assignment:
It should be emphasized that in each of the changed levels the composition is never pure, but contains a contribution of that level which has the same assignment as that given in AEL. In general the mixing in this configuration is very strong. Racah [17] has shown that for d5, or equivalently for d5p, all diagonal second-order effects are well represented by two-body interactions. Thus, the parameter T has little if any significance here. In the individual least squares the mean error was 186 with β eliminated, and 144 when β was allowed to vary freely. Then β assumed a value of −292 ± 23.
Co iii – 3d64p. From 68 theoretical terms splitting into 180 levels there are 33 experimental terms splitting into 95 levels.
The two levels and are given with question marks in AEL. As they would yield deviations of around −800 and −600 respectively, if inserted into the GLS, they were neglected.
The following changes in assignment were performed:
In each of the first three exchanges there was considerable mixing of the eigenfunctions involved.
The calculated values of the levels and are 161611 and 164334, respectively. Thus, the two levels and cannot be fitted to the theoretical levels with the same assignments. The only possible assignment for the level (3P′)z4S is the theoretical level consisting of a mixture of and . In the GLS the deviation for this level is −282. Similarly the level was assigned to the same theoretical term as z4S with J equal to giving a deviation of 120 in the GLS.
In the individual least squares β and T have a marked effect. On fitting 93 levels using 7 electrostatic parameters and 2 spin-orbit parameters (β and T eliminated) the mean error was 176. When β and T were allowed to vary freely, the mean error was reduced to 130. The values of β and T in that variation were
Ni iii – 3d74p. From 48 predicted terms splitting into 110 levels, Shenstone [18] gives 43 experimental terms which split into 95 levels. The following 3 levels were rejected:
The calculated level (2P)3P2 is at 133902, and since for J equal to 2 all the theoretical levels in the vicinity of 141000 have corresponding experimental levels, the level (2P)3P2 was rejected. Similarly the calculated levels (b2D)u3D2, 3 are at 183976 and 184740, respectively, and since there are no theoretical levels in the vicinity of 173000, the levels u3D2, 3 could not be inserted into the least-squares calculations.
Shenstone [18] mentions that two strong lines should be due to transitions between the odd levels z3I7, z3H6 and the even levels a3H6, a3G5. Shenstone then attributes these two lines as being due to a3G5 − z3H6 (56304.2 cm−1) and a3H6 − z3I7 (57044.7 cm−1). Thus, he obtains the levels (2G)z3H6 at 131428 and (2H)z3I7 at 138731. However, from our initial diagonalization the level (2H)z3I7 was at 137842 and the level (2G)z3H6 was at 131901. This shows that the transitions to which Shenstone attributes these two lines should be interchanged. Then one obtains the experimental levels (2H)z3I7 at 137990.6 and (2G)z3H6 at 132168.9. In the GLS these fitted with deviations of 154 and 263, respectively.
As suggested by Professor Racah the two strong lines given by Shenstone at 147723 cm−1 and 145094 cm−1 correspond to the transitions (2F)1F3 − alD2 and (2F)1F3 − a3P2′, respectively. Then it follows that the experimental level (2F)1F should have a value of 161755. In the GLS this level fitted with a deviation of only 20. The following changes in assignment were performed:
In the first case there is considerable mixing between the eigenfunctions of (4P)y3D and (4P)z5P. The predicted level (4P)3P0 is at 135695 cm−1, and thus the experimental level z3P0 at 138147 cm−1 cannot be assigned to the theoretical level with the same term designation. This level fits quite well to the theoretical level (2P)1S as indicated by change 2. It should be noted that the eigenfunction of (2P)1S contains 39 percent of (4P)3P.
A variation was considered to fit the level (2P)z1P to the theoretical level with the same term designation and perform the change (2P)y3P1 → (2P)3S1. However, the deviations for both levels were much larger than the deviations with changes 3 and 4 (−167 for the level (2P)3S and 22 for the level (2P)z1P).
When the levels of the term (2F)w3F were assigned to the theoretical levels of the same term designation, the deviations were almost 1000. Since such high deviations are completely incompatible with the other results obtained, we performed the changes 5, 6, and 7, thus completely splitting the term (2F)w3F. It should be noted, however, that in all these changes the parent, 2F, remains the same.
In the individual least squares, on inserting 93 experimental levels with β and T eliminated, the mean error was 169. When β and T were allowed to vary freely the mean error was reduced to 136. In that variation the values of β and T were
Cu iii – 3d84p. Of the 19 predicted terms of d8p, the only experimental term missing in Cu iii is (1S)2P.
The only change in assignment was
The eigenfunctions of these two levels are strongly mixed.
As for d2p, since there are no levels based on the parent (d2)1S, it is not possible to let either β or T change freely.
In the individual least squares, the mean error on fitting 43 levels with β and T eliminated was 126. For the values of β and T fixed at −427 and −4.9 respectively (the values obtained for those parameters in the first GLS) the mean error dropped only to 125.
This result is as expected since the inclusion of β affects only the term d8(lS), which is not known experimentally, and T reduces in this case to a two-body interaction, the effect of which is absorbed by the other d8 parameters.
Zn iii – 3d94p. In this configuration all 12 predicted levels are known. The following changes in assignment were performed:
In both cases there was mixing between the eigenfunctions of the levels involved.
In the individual least squares using the 4 electrostatic parameters A, F2, G1, and G3 as well as the 2 spin-orbit parameters ζd and ζp, the mean error was 105.
Ga iii – 3d104p. Like Sc iii – p this configuration consists of only 1 term splitting into 2 levels, and is useful in providing a value for ζp.
4. Table Entries
The numerical values of all levels and parameters given in the following tables are in units of cm−1
1. Parameters: Tables 1–10
Table 1.
Parameters of Ti iii – 3d4p
| Parameter | GDIAG 1 | ILS 1 | GLS 1 | GLS’ 1 | GLS’ 2 |
|---|---|---|---|---|---|
| A | 79440 | 78917 ± 52 | 78938 | 79016 | 78999 |
| F2 | 460 | 437 ± 10 | 443 | 442 | 441 |
| G1 | 410 | 423 ± 13 | 409 | 408 | 407 |
| G3 | 50 | 48 ± 4 | 48 | 49 | 50 |
| 84 | Fix 84 | 78 | 66 | 68 | |
| ζd | 115 | 154 ± 58 | 136 | 135 | 139 |
| ζp | 359 | 379 ± 206 | 334 | 336 | 328 |
| Δ | 162 |
Table 10.
General parameters of the third spectra of the iron group
| Parameter | GDIAG 1 | GLS 1 | GLS’ 1 | GLS’ 2 |
|---|---|---|---|---|
| B | 1076 | 1071.4± 1.5 | 1070.0± 1.3 | 1068.5± 1.3 |
| ΔB | 55 | 55.8± 1.1 | 50.6± 0.9 | 50.9± 0.9 |
| C | 3926 | 3920.8± 6.3 | 4068.8± 10.0 | 4062.2± 9.9 |
| ΔC | 288 | 287.1± 5.5 | 326.0± 8.5 | 327.8± 8.6 |
| F2 | 484 | 479.3± 2.2 | 477.5± 1.8 | 477.0± 1.8 |
| ΔF2 | 6 | 9.3± 1.1 | 8.8± 0.9 | 8.9± 0.9 |
| G1 | 410 | 404.8± 2.1 | 403.4± 1.7 | 402.7± 1.7 |
| ΔG1 | 0 | −0.9± 1.1 | −1.3± 0.9 | −1.0± 0.9 |
| G3 | 58 | 55.6± 0.7 | 56.0± 0.6 | 56.0± 0.6 |
| ΔG3 | 2 | 1.5± 0.5 | 1.6± 0.4 | 1.6± 0.4 |
| α | 84 | 82.2± 1.1 | 55.9± 1.8 | 57.4± 1.7 |
| Δα | 0 | 1.2± 0.9 | −2.5± 1.4 | −2.9± 1.4 |
| β | 0 | Fix 0 | −323.5 ± 23.6 | −285.0 ± 21.7 |
| Δβ | 0 | Fix 0 | −34.5 ± 20.2 | −45.1 ± 20.5 |
| T | 0 | Fix 0 | −3.3± 0.2 | −3.2± 0.2 |
| ΔT | 0 | Fix 0 | −0.5± 0.2 | −0.6± 0.2 |
| ζd | 561 | 558.0 ± 17.5 | 560.9 ± 13.8 | 560.3 ± 13.5 |
| Δ1ζd | 125 | 115.2± 5.1 | 115.9± 4.1 | 115.4± 4.0 |
| Δ2ζd |
9 | 6.4± 2.5 | 6.3± 2.0 | 6.5± 2.0 |
| ζp | 691 | 648.2 ± 22.6 | 648.4 ± 17.9 | 639.5 ± 17.7 |
| Δζp | 83 | 76.3 ± 11.0 | 78.1 ± 8.7 | 78.1 ± 8.6 |
| Δ | 180.3 | 140.1 | 138.4 |
In the general diagonalization all the parameters with the exception of ζd had approximate expressions of the form
In the general least squares then only P and ΔP were the independent parameters.
For ζd we had
Here ζd, Δ1ζd and Δ2ζd were the independent parameters in the general least squares.
The numerical values of the parameters for the initial general diagonalization are given in the column GDIAG 1.
The columns ILS1 and GLS1 give the values of the parameters of the initial iteration with β and T eliminated, in the individual and general least squares, respectively. The columns ILS’1 and GLS’1 give the values of the parameters of the initial iteration with β and T free to change in the individual and general least squares respectively.
The parameters as given in GLS’1 were taken for the general diagonalization of the final iteration. The column GLS’2 gives the values of the parameters in the general least squares of the final iteration.
2. Levels: Tables 11–21
Table 11.
Observed and calculated levels of SC iii 4p
| Name | J | Percentage | AEL | Observed | Calculated | O–C | Lande C. |
|---|---|---|---|---|---|---|---|
| 4p | 1/2; 3/2 |
100 100 |
62102 62576 |
62152 62526 |
−50 50 |
0.667 1.333 |
Table 21.
Observed and calculated levels of Ga iii 3d104p
| Name | J | Percentage | AEL | Observed | Calculated | O–C | Lande C. |
|---|---|---|---|---|---|---|---|
| (1S)p2P | 1/2 3/2 |
100 100 |
65167 66885 |
65254 66798 |
−87 87 |
0.667 1.333 |
In the column “NAME” the calculated designation of the term is given. Whenever terms of the parent dn have different seniorities these are denoted by the letters A and B (for d5 2D by A, B, and C), the higher calculated term being designated by A. Whenever a calculated term has a corresponding experimental term, the small letters z, y, x … are used as in AEL [13].
The entries in the columns “J”, “OBSERVED”, and “CALCULATED” are self-evident. In the column “PERCENTAGE”, for each calculated level either the three highest contributions or all those contributions exceeding 7 percent are given.
Whenever the experimental and calculated term designations differ, the experimental designation is entered in the column “AEL” using the notation of C. Moore [13]. In many instances the exchanges involve complete terms rather than isolated levels. Unless specified otherwise the entries in the column “AEL” pertain to exchanges in terms. The column “O—C” gives the difference between the observed and calculated values of the levels. The column “LANDE C”, gives the calculated Lande g-values.
The entries are in ascending order of magnitude of the calculated terms.
Figure 2.
Parameter C(dd) versus n for 3dn4p configurations (V iii to Cu iii).
Figure 3.
Parameter F2(dp) versus n for 3dn4p configurations (Ti iii to Zn iii).
Figure 4.
Parameter G1(dp) versus n for 3dn4p configurations (Ti iii to Zn iii).
Figure 5.
Parameter G3(dp) versus n for 3dn4p configurations (Ti iii to Zn iii).
Figure 6.
Parameter α versus n for 3dn4p configurations (V iii to Cu iii).
Figure 7.
Parameter ζd versus n for 3dn4p configurations (Ti iii to Zn iii).
Table 2.
Parameters of V iii – 3d24p
| Parameter | GDIAG 1 | ILS 1 | GLS 1 | GLS’ 1 | GLS’ 2 |
|---|---|---|---|---|---|
| A | 95958 | 95900 ± 43 | 95992 | 96387 | 96313 |
| B | 911 | 880 ± 4 | 903 | 918 | 915 |
| C | 3062 | 3183 ± 33 | 3060 | 3091 | 3078 |
| F2 | 466 | 454 ± 4 | 452 | 451 | 450 |
| G1 | 410 | 416 ± 5 | 408 | 407 | 405 |
| G3 | 52 | 49 ± 2 | 51 | 51 | 51 |
| α | 84 | 72 ± 5 | 79 | 63 | 62 |
| β | 0 | Fix 0 | Fix 0 | −220 | −150 |
| T | 0 | Fix 0 | Fix 0 | −1.7 | −1.3 |
| ζd | 177 | 220 ± 24 | 206 | 207 | 208 |
| ζp | 442 | 371 ± 64 | 420 | 414 | 406 |
| Δ | 135 |
Table 3.
Parameters of Cr iii – 3d34p
| Parameter | GDIAG 1 | ILS 1 | GLS 1 | GLS’ 1 | GLS’ 2 |
|---|---|---|---|---|---|
| A | 113164 | 113160 ± 70 | 113142 | 113633 | 113559 |
| B | 966 | 962 ± 4 | 960 | 969 | 966 |
| C | 3350 | 3354 ± 21 | 3347 | 3417 | 3406 |
| F2 | 472 | 458 ± 7 | 461 | 460 | 459 |
| G1 | 410 | 403 ± 6 | 407 | 406 | 405 |
| G3 | 54 | 57 ± 2 | 53 | 53 | 53 |
| α | 84 | 81 ± 3 | 80 | 61 | 63 |
| β | 0 | Fix 0 | Fix 0 | −254 | −195 |
| T | 0 | Fix 0 | Fix 0 | −2.2 | −1.9 |
| ζd | 257 | 272 ± 28 | 290 | 292 | 291 |
| ζp | 525 | 496 ± 58 | 496 | 492 | 486 |
| Δ | 136 |
Table 4.
Parameters of Mn iii – 3d44p
| Parameter | GDIAG 1 | GLS 1 | GLS’ 1 | GLS’ 2 |
| A | 138047 | 137848 | 138256 | 138187 |
| B | 1021 | 1015 | 1019 | 1017 |
| C | 3638 | 3634 | 3743 | 3734 |
| F2 | 478 | 470 | 469 | 468 |
| G1 | 410 | 406 | 405 | 404 |
| G3 | 56 | 54 | 54 | 54 |
| α | 84 | 81 | 58 | 60 |
| β | 0 | Fix 0 | −289 | −240 |
| T | 0 | Fix 0 | −2.8 | −2.5 |
| ζd | 355 | 385 | 389 | 387 |
| ζp | 608 | 572 | 570 | 562 |
Table 5.
Parameters of Fe iii – 3d54p
| Parameter | GDIAG 1 | ILS 1 | ILS’ 1 | GLS 1 | GLS’ 1 | GLS’ 2 |
|---|---|---|---|---|---|---|
| A | 126350 | 125832 ± 91 | 125710 ± 74 | 125843 | 125781 | 125725 |
| B | 1076 | 1071 ± 2 | 1068 ± 2 | 1071 | 1070 | 1068 |
| C | 3926 | 3920 ± 9 | 4071 ± 9 | 3921 | 4069 | 4062 |
| F2 | 484 | 477 ± 4 | 474 ± 3 | 479 | 478 | 477 |
| G1 | 410 | 404 ± 4 | 397 ± 3 | 405 | 403 | 403 |
| G3 | 58 | 55 ± 1 | 57 ± 1 | 56 | 56 | 56 |
| α | 84 | 82 ± 1 | 55 ± 1 | 82 | 56 | 57 |
| β | 0 | Fix 0 | −292 ± 23 | Fix 0 | −323 | −285 |
| T | 0 | Fix 0 | Fix 0 | Fix 0 | −3.3 | −3.2 |
| ζd | 471 | 484 ± 30 | 521 ± 23 | 494 | 498 | 494 |
| ζp | 691 | 730 ± 43 | 692 ± 34 | 648 | 648 | 640 |
| Δ | 186 | 144 |
Table 6.
Parameters of Co iii – 3d64p
| Parameter | GDIAG 1 | ILS 1 | ILS’ 1 | GLS 1 | GLS’ 1 | GLS’ 2 |
|---|---|---|---|---|---|---|
| A | 131330 | 131748 ± 131 | 131593 ± 106 | 131512 | 131544 | 131507 |
| B | 1131 | 1139 ± 6 | 1120 ± 5 | 1127 | 1121 | 1119 |
| C | 4214 | 4177 ± 15 | 4426 ± 32 | 4208 | 4395 | 4390 |
| F2 | 490 | 506 ± 5 | 497 ± 4 | 488 | 486 | 486 |
| G1 | 410 | 412 ± 6 | 403 ± 5 | 403 | 402 | 402 |
| G3 | 60 | 55 ± 2 | 57 ± 1 | 57 | 58 | 58 |
| α | 84 | 88 ± 3 | 47 ± 6 | 83 | 53 | 55 |
| β | 0 | Fix 0 | −424 ± 86 | Fix 0 | −358 | −330 |
| T | 0 | Fix 0 | −4.8 ± 0.6 | Fix 0 | −3.8 | −3.8 |
| ζd | 605 | 641 ± 30 | 672 ± 30 | 615 | 621 | 617 |
| ζp | 774 | 662 ± 56 | 672 ± 43 | 724 | 727 | 718 |
| Δ | 176 | 130 |
Table 7.
Parameters of Ni iii – 3d74p
| Parameter | GDIAG 1 | ILS 1 | ILS’ 1 | GLS 1 | GLS’ 1 | GLS’ 2 |
|---|---|---|---|---|---|---|
| A | 129516 | 129509 ± 52 | 129715 ± 47 | 129556 | 129751 | 129733 |
| B | 1186 | 1176 ± 4 | 1166 ±3 | 1182 | 1171 | 1170 |
| C | 4502 | 4530 ± 18 | 4762 ± 32 | 4495 | 4721 | 4718 |
| F2 | 496 | 499 ± 5 | 499 ± 4 | 497 | 495 | 495 |
| G1 | 410 | 395 ± 5 | 398 ± 4 | 403 | 401 | 401 |
| G3 | 62 | 59 ± 2 | 58 ± 2 | 59 | 59 | 59 |
| α | 84 | 83 ± 3 | 49 ± 5 | 84 | 51 | 52 |
| β | 0 | Fix 0 | −413 ± 63 | Fix 0 | −393 | −375 |
| T | 0 | Fix 0 | −4.9 ± 0.6 | Fix 0 | −4.4 | −4.2 |
| ζd | 757 | 703 ± 26 | 726 ± 18 | 750 | 755 | 751 |
| ζp | 857 | 772 ± 54 | 755 ± 38 | 800 | 805 | 796 |
| Δ | 169 | 136 |
Table 8.
Parameters of Cu iii – 3d84p
| Parameter | GDIAG 1 | ILS 1 | GLS 1 | GLS’ 1 | GLS’ 2 |
|---|---|---|---|---|---|
| A | 131863 | 131864 ± 45 | 131847 | 132122 | 132123 |
| B | 1241 | 1247 ± 5 | 1238 | 1222 | 1221 |
| C | 4790 | 4764 ± 35 | 4782 | 5047 | 5046 |
| F2 | 502 | 498 ± 4 | 507 | 504 | 503 |
| G1 | 410 | 402 ± 5 | 402 | 400 | 401 |
| G3 | 64 | 64 ± 3 | 60 | 61 | 61 |
| α | 84 | 84 ± 5 | 86 | 48 | 49 |
| β | 0 | Fix 0 | Fix 0 | −427 | −420 |
| T | 0 | Fix 0 | Fix 0 | −4.9 | −5.0 |
| ζd | 927 | 890 ± 5 | 897 | 902 | 898 |
| ζp | 940 | 862 ± 49 | 877 | 883 | 874 |
| Δ | 126 |
Table 9.
Parameters of Zn iii – 3d94p
| Parameter | GDIAG 1 | ILS 1 | GLS 1 | GLS’ 1 | GLS’ 2 |
|---|---|---|---|---|---|
| A | 142734 | 142277 ± 39 | 142285 | 142529 | 142531 |
| F2 | 508 | 504 ± 6 | 516 | 513 | 512 |
| G1 | 410 | 408 ± 6 | 401 | 398 | 399 |
| G3 | 66 | 60 ± 6 | 62 | 63 | 62 |
| α | 84 | Fix 84 | 87 | 46 | 46 |
| ζd | 1215 | 1095 ± 39 | 1056 | 1062 | 1059 |
| ζp | 1023 | 1013 ± 72 | 953 | 961 | 952 |
| Δ | 105 |
Table 12.
Observed and calculated levels of Ti iii 3d4p
| Name | J | Percentage | AEL | Observed | Calculated | O–C | Lande C. |
|---|---|---|---|---|---|---|---|
| (2D)z1D | 2 | 98 | 75197 | 75413 | −216 | 0.997 | |
| (2D)z3D | 1 | 100 | 77000 | 76926 | 74 | 0.501 | |
| 2 | 95 + 4(2D)3F | 77167 | 77096 | 71 | 1.144 | ||
| 3 | 93 + 6(2D)3F | 77424 | 77334 | 90 | 1.317 | ||
| (2D)z3F | 2 | 94 + 5(2D)3D | 77421 | 77444 | −23 | 0.693 | |
| 3 | 94 + 6(2D)3D | 77746 | 77728 | 18 | 1.100 | ||
| 4 | 100 | 78159 | 78107 | 52 | 1.250 | ||
| (2D)z3P | 0 | 100 | 80944 | 81010 | −66 | ||
| 1 | 99 | 80938 | 81011 | −73 | 1.496 | ||
| 2 | 100 | 81024 | 81086 | −62 | 1.499 | ||
| (2D)z1F | 3 | 100 | 83117 | 82791 | 326 | 1.000 | |
| (2D)z1P | 1 | 99 | 83796 | 83987 | −191 | 1.003 |
Table 13.
Observed and calculated levels of V iii 3d24p
| Name | J | Percentage | AEL | Observed | Calculated | O–C | Lande C. |
|---|---|---|---|---|---|---|---|
| (3F)z4G | 5/2 | 98 | 85524 | 85539 | −15 | 0.579 | |
| 7/2 | 99 | 85876 | 85871 | 5 | 0.986 | ||
| 9/2 | 100 | 86306 | 86279 | 27 | 1.172 | ||
| 11/2 | 100 | 86809 | 86753 | 56 | 1.273 | ||
| (3F)z4F | 3/2 | 98 | 86717 | 86651 | 66 | 0.407 | |
| 5/2 | 99 | 86938 | 86866 | 72 | 1.028 | ||
| 7/2 | 99 | 87219 | 87147 | 72 | 1.236 | ||
| 9/2 | 99 | 87544 | 87490 | 54 | 1.332 | ||
| (3F)z2F | 5/2 | 85 + 6(1D)2F + 4(3F)2D | 87881 | 87952 | −71 | 0.878 | |
| 7/2 | 88 + 5(1D)2F + 5(3F)4D | 88328 | 88424 | −96 | 1.156 | ||
| (3F)z2D | 3/2 | 59 + 29(3F)4D + 9(3P)2D | 88559 | 88720 | −161 | 0.913 | |
| 5/2 | 52 + 35(3F)4D + 9(3P)2D | (3F)z4D | 89458 | 89610 | −152 | 1.260 | |
| (3F)z4D | 1/2 | 96 + 4(:3F)4D | 89006 | 89026 | −20 | 0.001 | |
| 3/2 | 67 + 25(3F)2D + 4(3P)2D | 89193 | 89264 | −71 | 1.080 | ||
| 5/2 | 59 + 28(3F)2D + 5(3F)2F | (3F)z2D | 88944 | 89072 | −128 | 1.285 | |
| 7/2 | 91 + 4(3F)2F + 4(3F)4D | 89418 | 89520 | −102 | 1.414 | ||
| (3F)z2G | 7/2 | 96 | 91710 | 91483 | 227 | 0.890 | |
| 9/2 | 96 | 92053 | 91871 | 182 | 1.112 | ||
| (3P)z2S | 1/2 | 99 | 94714 | 94906 | −192 | 1.992 | |
| (3P)z4S | 3/2 | 74 + 25(1D)2P | 97512 | 97509 | 5 | 1.826 | |
| (1D)z2P | 1/2 | 97 | 98399 | 98300 | 99 | 0.674 | |
| 3/2 | 70 + 26(3P)4S | 98062 | 98063 | −1 | 1.490 | ||
| (1D)y2F | 5/2 | 88 + 7(3F)2F | 98384 | 98240 | 144 | 0.872 | |
| 7/2 | 86 + 6(3F)2F + 5(3P)4D | 98825 | 98598 | 227 | 1.157 | ||
| (3P)y4D | 1/2 | 95 + 4(3F)4D | 99073 | 99044 | 29 | 0.004 | |
| 3/2 | 91 + 4(3F)4D + 4(1D)2D | 99182 | 99170 | 12 | 1.184 | ||
| 5/2 | 88 + 5(1D)2D | 99440 | 99421 | 19 | 1.349 | ||
| 7/2 | 91 +5(1D)2F | 99941 | 99846 | 95 | 1.413 | ||
| (1D)y2D | 3/2 | 81 + 6(3P)2D + 6(3F)2D | 99508 | 99765 | −257 | 0.836 | |
| 5/2 | 80 + 7(3P)4D + 6(3F)2D | 99805 | 100046 | −241 | 1.217 | ||
| (3P)z4P | 1/2 | 99 | 101646 | 101618 | 28 | 2.662 | |
| 3/2 | 99 | 101786 | 101757 | 29 | 1.729 | ||
| 5/2 | 98 | 102075 | 102040 | 35 | 1.590 | ||
| (1G)y2G | 7/2 | 96 + 4(3F)2G | 102961 | 102970 | −9 | 0.890 | |
| 9/2 | 96 + 4(3F)2G | 103035 | 103032 | 3 | 1.110 | ||
| (3P)x2D | 3/2 | 80 + 10(1D)2D + 9(3F)2D | 105320 | 105269 | 51 | 0.807 | |
| 5/2 | 82 + 10(3F)2D + 8(1D)2D | 105283 | 105267 | 16 | 1.200 | ||
| (1G)z2H | 9/2 | 99 | 106441 | 106288 | 153 | 0.910 | |
| 11/2 | 100 | 106903 | 106682 | 221 | 1.091 | ||
| (3P)y2P | 1/2 | 99 | 107060 | 107049 | 11 | 0.667 | |
| 3/2 | 97 | 107166 | 107184 | −18 | 1.327 | ||
| (1G)x2F | 5/2 | 97 | 110181 | 110364 | −183 | 0.857 | |
| 7/2 | 97 | 109855 | 110075 | −220 | 1.143 | ||
| (1S)2P | 1/2 | 98 | 129512 | 0.667 | |||
| 3/2 | 98 | 130003 | 1.333 |
Table 14.
Observed and calculated levels of Cr iii 3d34p
| Name | J | Percentage | AEL | Observed | Calculated | O–C | Lande C. |
|
|---|---|---|---|---|---|---|---|---|
| (4F)z3G | 2 | 100 | 93766 | 93780 | −14 | 0.335 | ||
| 3 | 100 | 94029 | 94045 | −16 | 0.917 | |||
| 4 | 100 | 94375 | 94394 | −19 | 1.150 | |||
| 5 | 100 | 94800 | 94823 | −23 | 1.267 | |||
| 6 | 100 | 95304 | 95330 | −26 | 1.333 | |||
| (4F)z5D | 0 | 97 | 96592 | |||||
| 1 | 78 + 19(4F)5F | (a4F)z5F | 96774 | 96686 | 88 | 1.207 | ||
| 2 | 35 + 37(4F)5F + 26(4F)3D | (a4F)z5D | 96386 | 96451 | −65 | 1.224 | ||
| 3 | 60 + 26(4F)5F + 12(4F)3D | 96713 | 96750 | −37 | 1.413 | |||
| 4 | 83 + 15(4F)5F | 97097 | 97124 | −27 | 1.476 | |||
| (4F)z3F | 1 | 46 + 38(4F)3D + 13(4F)5D | (a4F)z5D | 96148 | 96244 | −96 | 0.404 | |
| 2 | 47 + 51(4F)5D | (a4F)z5F | 96921 | 96857 | 64 | 1.263 | ||
| 3 | 70 + 29(4F)5D | 97120 | 97083 | 37 | 1.323 | |||
| 4 | 84 + 14(4F)5D | 97359 | 97357 | 2 | 1.369 | |||
| 5 | 98 | 97618 | 97670 | −52 | 1.395 | |||
| (4F)z3D | 1 | 53 + 35(4F)5F + 6(4F)5D | 97077 | 97150 | −73 | 0.389 | ||
| 2 | 65 + 16(4F)5F + 11(4F)5D | 97306 | 97431 | −125 | 1.178 | |||
| 3 | 79 + 9(4F)5D + 6(4P)3D | 97683 | 97885 | −202 | 1.344 | |||
| (4F)z3G | 3 | 93 + 5(2G)3G | 99841 | 99697 | 144 | 0.753 | ||
| 4 | 93 + 5(2G)3G | 100100 | 99981 | 119 | 1.053 | |||
| 5 | 92 + 5(2G)3G | 100421 | 100344 | 77 | 1.204 | |||
| (4F)z3F | 2 | 96 | 101444 | 101476 | −32 | 0.668 | ||
| 3 | 95 | 101745 | 101801 | −56 | 1.083 | |||
| 4 | 96 | 102100 | 102187 | −87 | 1.250 | |||
| (4P)z3P | 1 | 99 | 108248 | 108192 | 56 | 2.488 | ||
| 2 | 98 | 108459 | 108404 | 55 | 1.826 | |||
| 3 | 99 | 108793 | 108708 | 85 | 1.665 | |||
| (4P)z3P | 0 | 45 + 44(4P)5D + 5(A2D)3P | (a4P)y5P | 109146 | 108985 | 161 | ||
| 1 | 46 + 46(4P)5D + 6(A2D)3P | 109807 | 1.505 | |||||
| 2 | 61 + 28(4P)5D + 6(A2D)3P | 109434 | 109250 | 184 | 1.500 | |||
| (2G)z3H | 4 | 85 + 14(2H)3H | 109534 | 109614 | −80 | 0.804 | ||
| 5 | 83 + 14(2H)3H | 109944 | 110017 | −73 | 1.036 | |||
| 6 | 84 + 15(2H)3H | 110505 | 110560 | −55 | 1.166 | |||
| (4P)y5D | 0 | 52 + 36(4P)3P + 4(2P)1S | 109686 | |||||
| 1 | 45 + 42(4P)3P | 109237 | 109147 | 90 | 1.497 | |||
| 2 | 69 + 25(4P)3P | (a4P)z3P | 109570 | 109806 | −236 | 1.502 | ||
| 3 | 96 | 109721 | 109936 | −215 | 1.499 | |||
| 4 | 97 | 110154 | 110350 | −196 | 1.500 | |||
| (2G)y3G | 3 | 86 + 5(4F)3G | 111375 | 111399 | −24 | 0.770 | ||
| 4 | 89 + 5(4F)3G | 111643 | 111663 | −20 | 1.051 | |||
| 5 | 87 + 5(4F)3G | 111854 | 111877 | −23 | 1.189 | |||
| (2P)z1S | 0 | 90 + 8(4P)3P | 111843 | |||||
| (2G)y3F | 2 | 70 + 22(A2D)3F | 112398 | 112522 | −124 | 0.688 | ||
| 3 | 71 + 14(A2D)3F + 6(2G)1F | 112466 | 112599 | −133 | 1.061 | |||
| 4 | 52 + 37(2G)1G + 8(A2D)3F | 112371 | 112492 | −121 | 1.151 | |||
| (2G)1G | 4 | 59 + 30(2G)3F + 5(A2D)3F | 113199 | 1.086 | ||||
| (2G)1H | 5 | 77 + 18(2H)1H | 113346 | 1.005 | ||||
| (2P)3P | 0 | 64 + 32(A2D)3P | 113292 | |||||
| 1 | 59 + 33(A2D)3P | 113380 | 1.489 | |||||
| 2 | 40 + 25(A2D)3P + 18(4P)5S | 114207 | 1.521 | |||||
| (2G)z1F | 3 | 74 + 15(A2D)1F + 7(2G)3F | 113539 | 1.005 | ||||
| (2P)1D | 2 | 32 + 17(2P)3P + 17(A2D)1D | 113602 | 1.225 | ||||
| (4P)z5S | 2 | 71 + 12(2P)1D + 10(A2D)1D | 113356 | 113768 | −412 | 1.728 | ||
| (2P)y3D | 1 2 3 |
80 + 12(4P)3D + 5(4F)3D 73 + 10(4P)3D + 5(2P)1D 70 + 12(4P)3D + 5(4F)3D |
(a4P)y3D | 114716 115182 115553 |
114441 114927 115315 |
275 255 238 |
0.515 1.145 1.312 |
|
| (2H)y3H | 4 5 6 |
82 + 14(2G)3H 85 + 14(2G)3H 84 + 15(2G)3H |
115570 115669 115844 |
115362 115460 115643 |
208 209 201 |
0.809 1.034 1.165 |
||
| (2P)3S | 1 | 50 + 32(A2D)1P + 8(2P)1P | 116127 | 1.534 | ||||
| (A2D)1P | 1 | 36 + 42(2P)3S + 15(2P)1P | 116202 | 1.385 | ||||
| (A2D)x3F | 2 3 4 |
63 + 16(2G)3F + 13(4P)3D 51 + 20(2P)3D + 17(4P)3D 84 + 12(2G)3F |
116392 116532 116967 |
116348 116724 117017 |
44 −192 −50 |
0.759 1.176 1.250 |
||
| (4P)3D | 1 2 3 |
59 + 16(2P)3D + 9(A2D)3D 57 + 19(2P)3D + 10(A2D)3F 55 + 23(A2D)3F + 7(A2D)3D |
116665 116625 116490 |
0.583 1.105 1.259 |
||||
| (2H)z3I | 5 6 7 |
98 99 100 |
117145 117488 117922 |
116957 117297 117727 |
188 191 195 |
0.837 1.025 1.143 |
||
| (A2D)x3D | 1 2 3 |
85 + 9(4P)3D 88 + 9(4P)3D 84 + 6(4P)3D |
118055 118423 118598 |
118006 118322 118580 |
49 101 18 |
0.520 1.169 1.313 |
||
| (2H)1G | 4 | 81 + 15(2F)1G | 119191 | 1.002 | ||||
| (2H)y1H | 5 | 79 + 19(2G)1H | 119040 | 119224 | 184 | 1.005 | ||
| (A2D)3P | 0 1 2 |
57 + 33(2P)3P + 10(4P)3P 53 + 31(2P)3P + 10(4P)3P 52 + 36(2P)3P + 11(4P)3P |
119575 119457 119334 |
1.495 1.494 |
||||
| (A2D)1F | 3 | 79 + 11(2G)1F + 5(A2D)3D | 119682 | 1.017 | ||||
| (2H)1I | 6 | 99 | 120120 | 1.001 | ||||
| (2H)x3G | 3 4 5 |
90 + 5(2F)3G 89 + 5(2F)3G 90 + 4(2F)3G |
120765 120748 120700 |
120795 120808 120755 |
−30 −60 −55 |
0.756 1.048 1.194 |
||
| (4P)3S | 1 | 63 + 22(2P)1P + 7(A2D)1P | 121744 | 1.676 | ||||
| (2P)1P | 1 | 50 + 32(4P)3S + 17(A2D)1P | 122192 | 1.312 | ||||
| (A2D)1D | 2 | 59 + 39(2P)1D | 122689 | 1.003 | ||||
| (2F)w3F | 2 3 4 |
95 94 94 |
128754 128782 128849 |
128943 128981 129055 |
−189 −199 −206 |
0.671 1.080 1.246 |
||
| (2F)w3G | 3 4 5 |
93 + 6(2H)3G 92 + 5(2H)3G 95 + 5(2H)3G |
131118 131267 131449 |
131009 131160 131337 |
109 107 112 |
0.756 1.054 1.200 |
||
| (2F)1D | 2 | 79 + 19(B2D)1D | 132294 | 0.998 | ||||
| (2F)3D | 1 2 3 |
93 + 6(B2D)3D 92 + 6(B2D3D 91 + 7(B2D)3D |
132846 132624 132261 |
0.500 1.164 1.329 |
||||
| (2F)1G | 4 | 83 + 16(2H)1G | 133967 | 1.001 | ||||
| (2F)1F | 3 | 94 | 134899 | 1.002 | ||||
| (B2D)3D | 1 2 3 |
95 + 4(2F)3D 94 + 4(2F)3D 94 + 4(2F)3D |
146918 146939 147030 |
0.504 1.166 1.330 |
||||
| (B2D)1D | 2 | 74 + 12(2F)1D + 12(B2D)3F | 148648 | 0.955 | ||||
| (B2D)3F | 2 3 4 |
84 + 12(B2D)1D 94 98 |
149279 149289 149495 |
0.714 1.084 1.250 |
||||
| (B2D)3P | 0 1 2 |
99 99 99 |
151996 151828 151493 |
1.496 1.497 |
||||
| (B2D)1F | 3 | 97 | 152028 | 1.002 | ||||
| (B2D)1P | 1 | 100 | 156958 | 1.000 | ||||
Table 15.
Observed and calculated levels of Mn iii 3d44p
| Name | J | Percentage | AEL | Observed | Calculated | O–C | Lande C. |
|---|---|---|---|---|---|---|---|
| (5D)z6F | 1/2 3/2 5/2 7/2 9/2 11/2 |
100 100 100 100 100 100 |
110037 110174 110400 110713 111113 111603 |
109996 110136 110366 110684 111090 111583 |
41 38 34 29 23 20 |
−0.664 1.067 1.314 1.397 1.434 1.454 |
|
| (5D)z6P | 3/2 5/2 7/2 |
98 98 100 |
111778 111885 112060 |
111553 111700 111926 |
225 185 134 |
2.388 1.881 1.713 |
|
| (5D)z4P | 1/2 3/2 5/2 |
73 + 24(5D)6D 66 + 30(5D)6D 51 + 48(5D)6D |
112816 113080 113678 |
112716 113150 113772 |
100 −70 −94 |
2.828 1.784 1.626 |
|
| (5D)z6D | 1/2 3/2 5/2 7/2 9/2 |
75 + 24(5D)4P 69 + 30(5D)4P 52 + 46(5D)4P 99 97 |
113993 114097 114290 114211 114503 |
114055 114169 114382 114337 114661 |
−62 −72 −92 −126 −158 |
3.169 1.825 1.632 1.583 1.548 |
|
| (5D)z4F | 3/2 5/2 7/2 9/2 |
96 96 95 94 |
116582 116694 116853 117064 |
116438 116567 116754 117007 |
144 127 99 57 |
0.403 1.032 1.243 1.340 |
|
| (5D)z4D | 1/2 3/2 5/2 7/2 |
98 98 98 98 |
120977 121094 121270 121484 |
121090 121223 121425 121669 |
−113 −129 −155 −185 |
0.002 1.200 1.371 1.428 |
|
| (3H)z4H | 7/2 9/2 11/2 13/2 |
80 + 18(3G)4H 79 + 17(3G)4H 79 + 16(3G)4H 82 + 14(3G)4H |
130903 131077 131322 131645 |
0.672 0.967 1.128 1.226 |
|||
| (A3P)4D | 1/2 3/2 5/2 7/2 |
83 + 14(A3F)4D 82 + 16(A3F)4D 78 + 20(A3F)4D 69 + 29(A3F)4D |
130981 131401 132018 132746 |
0.025 1.202 1.370 1.424 |
|||
| (3H)4I | 9/2 11/2 13/2 15/2 |
94 95 96 100 |
132880 133244 133604 133950 |
0.743 0.973 1.112 1.200 |
|||
| (A3F)4G | 5/2 7/2 9/2 11/2 |
72 + 18(3G)4G + 9(3H)4G 59 + 15(3G)4G + 11(3H)4G 45 + 13(3G)4G + 12(3H)4G 55 + 22(3H)4G + 20(3G)4G |
133037 133207 133423 133918 |
0.577 0.974 1.152 1.267 |
|||
| (A3P)2S | 1/2 | 50 + 42(A3P)4P | 133423 | 2.205 | |||
| (3H)2G | 7/2 9/2 |
49 + 28(A3F)2G + 7(3G)2G 39 + 27(A3F)2G + 18(A3F)4G |
133868 134085 |
0.903 1.124 |
|||
| (A3P)4P | 1/2 3/2 5/2 |
52 + 32(A3P)2S + 13(A3P)2P 91 90 |
134548 134369 135057 |
2.180 1.724 1.570 |
|||
| (A3F)4F | 3/2 5/2 7/2 9/2 |
50 + 30(A3F)2D + 6(3D)2D 50 + 25(3H)4G + 6(3G)4G 84 + 8(3H)4G 86 + 4(3H)4G |
135191 135572 135754 135853 |
0.620 0.889 1.215 1.322 |
|||
| (3H)4G | 5/2 7/2 9/2 11/2 |
34 + 24(A3F)4F + 19(A3F)4G 52 + 28(A3F)4G + 12(3G)4G 54 + 31(A3F)4G + 10(3G)4G 51 + 40(A3F)4G + 8(3G)4G |
135382 135466 135517 135570 |
0.763 1.004 1.175 1.268 |
|||
| (A3P)2P | 1/2 3/2 |
71 + 17(A3P)2S + 7(A3F)4D 44 + 28(A3P)4S + 15(A3F)4F |
136005 135666 |
0.870 1.352 |
|||
| (A3F)2D | 3/2 5/2 |
33 + 26(A3F)4F + 25(A3P)4S 54 + 18(A3F)4F + 12(3D)2D |
136101 136199 |
1.001 1.170 |
|||
| (3H)2I | 11/2 13/2 |
92 + 4(1I)2I 93 |
136218 136350 |
0.932 1.082 |
|||
| (A3P)4S | 3/2 | 39 + 30(A3P)2P + 16(A3F)4D |
136593 | 1.508 | |||
| (A3F)4D | 1/2 3/2 5/2 |
78 + 15(A3P)4D 61 + 15(A3P)4D + 13(A3P)2P 62 + 18(A3P)4D |
136897 136927 136823 |
0.051 1.217 1.301 |
|||
| 7/2 | 51 + 27(A3P)4D + 7(A3F)2F | 136851 | 1.372 | ||||
| (3H)2H | 9/2 11/2 |
71 + 14(A1G)2H + 6(3G)2H 72 + 11(A1G)2H + 9(3G)4H |
137452 137936 |
0.915 1.096 |
|||
| (A3F)2F | 5/2 7/2 |
35 + 28(3G)2F + 15(3D)2F 38 + 23(3G)2F + 14(3D)2F |
137521 137828 |
0.918 1.175 |
|||
| (3G)4H | 7/2 9/2 11/2 13/2 |
80 + 17(3H)4H 76 + 15(3H)4H + 5(3H)2H 73 + 13(3H)4H + 12(3H)2H 83 + 14(3H)4H |
137669 137961 138285 138650 |
0.674 0.970 1.127 1.226 |
|||
| (A3P)2D | 3/2 5/2 |
70 + 13(A3F)2D + 7(3G)4F 55 + 21(3G)4F + 9(A3F)2D |
137890 138811 |
0.780 1.146 |
|||
| (3G)4F | 3/2 5/2 7/2 9/2 |
68 + 14(3D)4F + 8(A3P)2D 50 + 25(A3P)2D + 11(3D)4F 69 + 14(3D)4F + 10(A3F)4F 71 + 13(3D)4F + 6(A3F)4F |
138607 138435 138540 138501 |
0.462 1.074 1.227 1.312 |
|||
| (A3F)2G | 7/2 9/2 |
53 + 24(3H)2G + 9(A1G)2G 44 + 24(3H)2G + 12(3G)2H |
139649 139893 |
0.903 1.096 |
|||
| (3G)2F | 5/2 7/2 |
42 + 41(A3F)2F + 7(3G)4G 48 + 40(A3F)2F |
139903 140385 |
0.835 1.138 |
|||
| (3G)2H | 9/2 11/2 |
48 + 18(3G)4G + 9(3H)2H 53 + 23(3G)4G + 10(3H)4G |
140092 140069 |
0.999 1.149 |
|||
| (3G)4G | 5/2 7/2 9/2 11/2 |
57 + 25(3H)4G + 8(A3F)2F 62 + 24(3H)4G 46 + 17(3G)2H + 17(3H)4G 47 + 27(3G)2H + 16(3H)4G |
140169 140310 140611 140880 |
0.616 0.996 1.113 1.212 |
|||
| (3G)2G | 7/2 9/2 |
74 + 15(3H)2G + 6(A1G)2G 67 + 17(3H)2G + 12(A1G)2G |
143210 143338 |
0.897 1.111 |
|||
| (3D)4D | 1/2 3/2 5/2 7/2 |
92 87 79 + 12(3D)4P 88 |
143618 143625 143659 143821 |
0.047 1.198 1.383 1.413 |
|||
| (1I)2I | 11/2 13/2 |
90 + 7(A1G)2H 74 + 23(1I)2K |
144109 144067 |
0.935 1.045 |
|||
| (A1G)2H | 9/2 11/2 |
80 + 10(3H)2H 76 + 10(3H)2H |
144414 144756 |
0.914 1.082 |
|||
| (1I)2K | 13/2 15/2 |
77 + 23(1I)2I 100 |
144789 145221 |
0.966 1.067 |
|||
| (3D)4F | 3/2 5/2 7/2 9/2 |
70 + 16(3G)4F + 8(3D)4P 72 + 16(3G)4F + 6(3D)4D 77 + 16(3G)4F + 6(3D)4D 83 + 16(3G)4F |
144791 144912 145044 145161 |
0.552 1.050 1.248 1.332 |
|||
| (3D)4P | 1/2 3/2 5/2 |
93 82 + 8(3D)4F 81 + 10(3D)4D |
144897 144635 144220 |
2.630 1.584 1.557 |
|||
| (A1G)2F | 5/2 7/2 |
81 + 5(3G)2F 82 + 4(3G)2F |
144986 144427 |
0.864 1.138 |
|||
| (3D)2P | 1/2 3/2 |
45 + 47(A1S)2P 56 + 38(A1S)2P |
145317 145564 |
0.658 1.333 |
|||
| (A1G)2G | 7/2 9/2 |
80 + 10(3G)2G 78 + 15(3G)2G |
146744 146939 |
0.895 1.111 |
|||
| (1I)2H | 9/2 11/2 |
87 + 9(3G)2H 85 + 9(3G)2H + 6(A1G)2H |
148625 148261 |
0.910 1.089 |
|||
| (3D)2F | 5/2 7/2 |
73 + 11(3G)2F + 5(1F)2F 73 + 9(3G)2F |
148837 148611 |
0.858 1.142 |
|||
| (A1S)2P | 1/2 3/2 |
41 + 42(3D)2P + 12(A1D)2P 43 + 24(3D)2P + 13(A1D)2P |
148942 148779 |
0.666 1.264 |
|||
| (3D)2D | 3/2 5/2 |
64 + 15(A1D)2D + 9(B3F)2D 58 + 30(A1D)2D |
149769 149334 |
0.859 1.200 |
|||
| (A1D)2D | 3/2 5/2 |
67 + 15(3D)2D 58 + 23(3D)2D |
151050 151384 |
0.815 1.187 |
|||
| (A1D)2F | 5/2 7/2 |
81 + 5(1F)2F 83 + 10(1F)2F |
152281 152678 |
0.872 1.143 |
|||
| (A1D)2P | 1/2 3/2 |
86 + 6(3D)2P 81 + 8(3D)2P |
155354 155436 |
0.668 1.331 |
|||
| (1F)2F | 5/2 7/2 |
81 + 7(A1D)2F + 6(A1G)2F 78 + 10(A1D)2F + 6(A1G)2F |
156247 156404 |
0.860 1.139 |
|||
| (1F)2G | 7/2 9/2 |
94 95 |
158193 158795 |
0.894 1.112 |
|||
| (1F)2D | 3/2 5/2 |
70 + 16(B3P)2D + 10(B3F)2D 66 + 18(B3P)2D + 11(B3F)2D |
160897 160156 |
0.797 1.199 |
|||
| (B3F)4F | 3/2 5/2 7/2 9/2 |
96 92 92 98 |
163001 163010 163054 163169 |
0.422 1.048 1.247 1.331 |
|||
| (B3P)4P | 1/2 3/2 5/2 |
82 + 11(B3P)4D 69 + 18(B3P)4D 49 + 30(B3P)4D + 10(B3F)4D |
163878 163655 163647 |
2.268 1.592 1.469 |
|||
| (B3P)4D | 1/2 3/2 5/2 7/2 |
58 + 26(B3F)4D + 14(B3P)4P 47 + 22(B3F)4D + 22(B3P)4P 34 + 45(B1P)4P + 15(B3F)4D 63 + 28(B3F)4D |
164305 164266 164249 163950 |
0.394 1.311 1.461 1.412 |
|||
| (B3F)4G | 5/2 7/2 9/2 11/2 |
79 + 16(B3F)2F 80 + 15(B3F)2F 97 99 |
165162 165369 165617 165794 |
0.636 1.015 1.172 1.272 |
|||
| (B3F)2F | 5/2 7/2 |
73 + 16(B3F)4G 73 + 17(B3F)4G |
166018 165864 |
0.823 1.118 |
|||
| (B3P)2D | 3/2 5/2 |
47 + 23(1F)2D + 22(B3F)2D 45 + 24(1F)2D + 16(B3F)2D |
165686 165463 |
0.819 1.191 |
|||
| (B3P)4S | 3/2 | 97 | 168114 | 1.991 | |||
| (B3F)2G | 7/2 9/2 |
97 97 |
169691 169375 |
0.890 1.111 |
|||
| (B3F)4D | 1/2 3/2 5/2 7/2 |
70 + 29(B3P)4D 69 + 30(B3P)4D 69 + 30(B3P)4D 68 + 31(B3P)4D |
170024 169959 169810 169537 |
0.007 1.201 1.370 1.426 |
|||
| (B3P)2P | 1/2 3/2 |
90 93 |
170434 170053 |
0.688 1.333 |
|||
| (B3P)2S | 1/2 | 98 | 172395 | 1.975 | |||
| (B1G)2H | 9/2 11/2 |
68 + 29(B1G)2G 98 |
173087 173889 |
0.970 1.091 |
|||
| (B1G)2G | 7/2 9/2 |
95 68 + 29(B1G)2H |
173425 173870 |
0.896 1.051 |
|||
| (B3F)2D | 3/2 5/2 |
66 + 33(B3P)2D 41 + 36(B1G)2F + 17(B3P)2D |
175759 175377 |
0.801 1.058 |
|||
| (B1G)2F | 5/2 7/2 |
50 + 30(B3F)2D + 11(B3P)2D 83 + 6(B3F)2F |
175850 175345 |
0.999 1.137 |
|||
| (B1D)2P | 1/2 3/2 |
94 94 |
190177 189762 |
0.667 1.331 |
|||
| (B1D)2F | 5/2 7/2 |
93 94 |
192652 193245 |
0.860 1.143 |
|||
| (B1D)2D | 3/2 5/2 |
98 99 |
196243 196498 |
0.802 1.197 |
|||
| (B1S)2P | 1/2 3/2 |
95 96 |
216022 216787 |
0.667 1.333 |
Table 16.
Observed and calculated levels of Fe iii 3d54p
| Name | J | Percentage | AEL | Observed | Calculated | O–C | Lande C. |
|---|---|---|---|---|---|---|---|
| (6S)z7P | 2 | 100 | 82002 | 81854 | 148 | 2.331 | |
| 3 | 99 | 82334 | 82159 | 175 | 1.915 | ||
| 4 | 100 | 82847 | 82626 | 221 | 1.750 | ||
| (6S)z5P | 1 | 98 | 89491 | 89343 | 148 | 2.499 | |
| 2 | 98 | 89335 | 89177 | 158 | 1.835 | ||
| 3 | 98 | 89085 | 88916 | 169 | 1.668 | ||
| (4G)z5G | 2 | 96 | 113584 | 113807 | −223 | 0.341 | |
| 3 | 91 + 5(4G)5G | 113605 | 113832 | −227 | 0.897 | ||
| 1 | 89 + 8(4G)5H | 113635 | 113873 | −238 | 1.130 | ||
| 5 | 88 + 9(4G)5H | 113677 | 113932 | −255 | 1.251 | ||
| 6 | 90 + 7(4G)SH | 113740 | 114020 | −280 | 1.323 | ||
| (4G)z5H | 3 | 94 + 5(4G)5G | 114949 | 114731 | 218 | 0.525 | |
| 4 | 90 + 8(4G)5G | 115111 | 114913 | 198 | 0.923 | ||
| 5 | 90 + 9(4G)5G | 115290 | 115106 | 184 | 1.116 | ||
| 6 | 92 + 7(4G)5G | 115474 | 115295 | 179 | 1.223 | ||
| 7 | 100 | 115642 | 115455 | 187 | 1.286 | ||
| (4G)z5F | 1 | 76 + 12(4P)5D + 6(4D)5F | 116938 | 116890 | 48 | 0.222 | |
| 2 | 57 + 28(4P)5D + 6(4D)SD | 116975 | 116960 | 15 | 1.197 | ||
| 3 | 55 + 22(4P)5D + 9(4D)5F | (a4P)z5D | 116475 | 116467 | 8 | 1.326 | |
| 4 | 81 + 7(4D)5F | (a4G)z5F | 116467 | 116451 | 16 | 1.355 | |
| 5 | 90 + 5(4D)5F | 116317 | 116328 | 11 | 1.397 | ||
| (4P)z5D | 0 | 80 + 16(4D)5D | 116365 | 116485 | −120 | ||
| 1 | 67 + 16(4D)5D + 11(4G)5F | 116380 | 116466 | −86 | 1.279 | ||
| 2 | 46 + 29(4G)5F + 11(4D)5D | 116419 | 116458 | −39 | 1.310 | ||
| 3 | 49 + 32(4G)5F + 10(4D)5D | (a4G)z5F | 117069 | 117110 | 41 | 1.425 | |
| 4 | 75 + 14(4D)5D + 8(4G)5F | (a4P)z5D | 117522 | 117597 | −75 | 1.484 | |
| (4P)z5S | 2 | 92 | 116898 | 117246 | −348 | 1.961 | |
| (4G)z5F | 2 | 90 | 118164 | 118310 | − 146 | 0.671 | |
| 3 | 75 + 10(4P)5P | 118247 | 118433 | −186 | 1.174 | ||
| 4 | 89 | 118350 | 118543 | −193 | 1.242 | ||
| (4G)z3H | 4 | 95 | 118686 | 118562 | 124 | 0.810 | |
| 5 | 97 | 118557 | 118469 | 88 | 1.035 | ||
| 6 | 96 | 118355 | 118310 | 45 | 1.168 | ||
| (4P)y5P | 1 | 78 + 14(4D)5P | 118868 | 118825 | 43 | 2.433 | |
| 2 | 69 + 19(4D)5P | 118722 | 118678 | 44 | 1.801 | ||
| 3 | 53 + 22(4D)5P + 14(4G)3F | 118443 | 118385 | 58 | 1.559 | ||
| (4P)z3P | 0 | 76 + 17(4D)3P | 120180 | 120299 | −119 | ||
| 1 | 71 + 18(4D)3P | 119982 | 120089 | −107 | 1.534 | ||
| 2 | 66 + 18(4D)3P + 5(4P)5P | 119698 | 119801 | −103 | 1.528 | ||
| (4D)y5F | 1 | 85 + 11(4G)5F | 120697 | 120731 | −34 | 0.025 | |
| 2 | 84 + 10(4G)5F | 120826 | 120867 | −41 | 1.012 | ||
| 3 | 84 + 8(4G)5F | 121009 | 121055 | −46 | 1.258 | ||
| 4 | 87 + 7(4G)5F | 121242 | 121285 | −43 | 1.353 | ||
| 5 | 92 + 6(4G)5F | 121469 | 121480 | −11 | 1.399 | ||
| (4G)z3G | 3 | 94 | 121920 | 121931 | −11 | 0.751 | |
| 4 | 95 | 121941 | 121986 | −45 | 1.051 | ||
| 5 | 95 | 121950 | 122030 | −80 | 1.201 | ||
| (4D)y5D | 0 | 75 + 19(4P)5D | 123456 | 123106 | 350 | ||
| 1 | 35 + 46(4P)3D + 8(4P)5D | (a4P)z3D | 122843 | 122812 | 31 | 1.044 | |
| 2 | 36 + 46(4P)3D + 7(4P)5D | 122628 | 122571 | 57 | 1.330 | ||
| 3 | 36 + 31(4P)3D + 14(4D)5P | (a4D)y5D | 122830 | 122761 | 69 | 1.459 | |
| 4 | 78 + 16(4P)5D | 122944 | 122552 | 392 | 1.495 | ||
| (4P)z3D | 1 | 41 + 22(4D)5P + 21(4D)5D | (a4D)y5D | 122921 | 123066 | −145 | 1.303 |
| 2 | 40 + 25(4D)5D + 18(4D)5P | 122899 | 122953 | −54 | 1.410 | ||
| 3 | 53 + 29(4D)5D + 5(4P)5D | (a4P)z3D | 122347 | 122310 | 37 | 1.389 | |
| (4D)x5P | 1 | 56 + 20(4D)5D + 12(4P)5P | 123553 | 123473 | 80 | 2.141 | |
| 2 | 55 + 18(4P)5P+ 16(4D)5D | 123697 | 123749 | −52 | 1.728 | ||
| 3 | 45 + 23(4P)5P + 13(4D)5D | 123750 | 123857 | −107 | 1.583 | ||
| (4D)y3D | 1 | 84 + 8(4F)3D | 124955 | 124817 | 138 | 0.515 | |
| 2 | 84 + 7(4F)3D | 124904 | 124747 | 157 | 1.183 | ||
| 3 | 71 + 12(4D)SP | 124854 | 124704 | 150 | 1.380 | ||
| (4D)y3F | 2 | 88 + 6(A2G)3F | 125673 | 125735 | −62 | 0.687 | |
| 3 | 86 + 6(A2G)3F | 125638 | 125714 | −76 | 1.100 | ||
| 4 | 90 + 6(A2G)3F | 125444 | 125510 | −66 | 1.254 | ||
| (4P)z3S | 1 | 95 | 126391 | 126437 | −46 | 1.981 | |
| (4D)y3P | 0 | 77 + 18(4P)3P | 128372 | 128649 | −277 | ||
| 1 | 74 + 19(4P)3P | 128606 | 128904 | −298 | 1.513 | ||
| 2 | 72 + 2l(4P)3P | 128918 | 129237 | −319 | 1.499 | ||
| (2I)z3K | 6 | 83 + 15(2I)3I | (a2I)z3I | 129855 | 129757 | 98 | 0.886 |
| 7 | 76 + 17(2I)3I + 6(2I)1K | 130041 | 130111 | −70 | 1.038 | ||
| 8 | 100 | 130852 | 130705 | 147 | 1.125 | ||
| (2I)z3I | 5 | 82 + 9(2I)1H | 130256 | 130362 | −106 | 0.859 | |
| 6 | 78 + 16(2I)3K | (a2I)z3K | 130757 | 130793 | −36 | 1.003 | |
| 7 | 71 + 21(2I)3K | 131035 | 130791 | 244 | 1.110 | ||
| (A2D)z1D | 2 | 32 + 26(A2F)3F + 24(A2D)3F | 131445 | 131665 | −220 | 0.858 | |
| (2I)z1H | 5 | 69 + 13(2I)3I + 9(A2G)1H | 131711 | 131986 | −275 | 0.982 | |
| (2I)z1K | 7 | 89 + 9(2I)3I | 131992 | 131987 | 5 | 1.013 | |
| (A2D)x3F | 2 | 42 + 26(A2D)’D + 17(A2F)1D | 132105 | 132331 | −226 | 0.832 | |
| 3 | 58 + 25(A2F)3F | 132080 | 132183 | −103 | 1.058 | ||
| 4 | 58 + 22(A2F)3F + 10(A2F)3G | 132785 | 132847 | −62 | 1.198 | ||
| (2I)y3H | 4 | 84 | 132659 | 132797 | −138 | 0.832 | |
| 5 | 86 + 6(2I)1H | 132565 | 132743 | −178 | 1.031 | ||
| 6 | 90 | 132263 | 132442 | −179 | 1.160 | ||
| (A2F)z1G | 4 | 57 + 17(A2F)3G + 10(2F)1G | 134360 | 134247 | 113 | 1.014 | |
| (A2F)y3G | 3 | 53 + 25(A2D)1F + 13(A2F)3F | 134549 | 134476 | 73 | 0.881 | |
| 4 | 54 + 36(A2F)3F + 5(4F)5G | 135554 | 135461 | 93 | 1.127 | ||
| 5 | 55 + 35(4F)5G | (a4F)y5G | 135316 | 135120 | 196 | 1.225 | |
| (A2D)x3P | 0 | 90 + 6(4F)5D) | 135088 | 134978 | 110 | ||
| 1 | 59 + 20(A2D)3D + 11(A2F)3D | 134549 | 134467 | 82 | 1.139 | ||
| 2 | 67 + 25(A2F)3D | 134265 | 134149 | 116 | 1.385 | ||
| (A2D)x3D | 1 | 60 + 22(A2D)3P + 8(4F)5F | 135217 | 135197 | 20 | 0.708 | |
| 2 | 62 + 12(4F)5G + 9(4F)5F | 135279 | 135283 | −4 | 1.040 | ||
| 3 | 32 + 25(A2F)3D + 24(4F)5G | 134976 | 135047 | −71 | 1.182 | ||
| (4F)y5G | 2 | 75 + 10(A2F)3F + 7(A2D)3D | 134938 | 134888 | 50 | 0.477 | |
| 3 | 54 + 27(A2D)3D | 135097 | 134996 | 101 | 1.065 | ||
| 4 | 81 + 8(A2F)1G | 135240 | 135158 | 82 | 1.134 | ||
| 5 | 58 + 39(A2F)3G | (a2F)y3G | 135735 | 135548 | 187 | 1.239 | |
| 6 | 50 + 44(2I)1I | (a2I)z1I | 135582 | 135552 | 30 | 1.176 | |
| (2I)z1I | 6 | 50 + 46(4F)5G | (a4F)y5G | 135739 | 135635 | 104 | 1.159 |
| (A2d)w3D | 1 | 66 + 19(A2D)1P | 136465 | 136194 | 271 | 0.687 | |
| 2 | 36 + 37(4F)5F + 10(A2D)3D | 136794 | 136487 | 307 | 1.097 | ||
| 3 | 65 + 11(A2D)3D | 135706 | 135411 | 295 | 1.264 | ||
| (A2D)z1F | 3 | 31 + 24(A2F)3G + 10(4F)5F | 136200 | 136174 | 26 | 0.994 | |
| (4F)x5F | 1 | 76 + 10(A2D)3D | 136236 | 136305 | −69 | 0.155 | |
| 2 | 38 + 36(A2F)3D + 13(4F)3D | 136118 | 136172 | −54 | 1.103 | ||
| 3 | 65 + 13(4F)5D + 6(A2F)3G | 136009 | 136150 | −141 | 1.229 | ||
| 4 | 74 + 17(4F)5D | 135991 | 136121 | −130 | 1.368 | ||
| 5 | 88 | 136185 | 136310 | −125 | 1.386 | ||
| (A2F)w3F | 2 | 46 + 19(A2D)3F + 10(A2F)3D | 136532 | 136675 | −143 | 0.790 | |
| 3 | 41 + 14(A2D)3F + 14(A2D)1F | 136797 | 136846 | −49 | 1.105 | ||
| 4 | 42 + 28(A2D)3F + 15(A2F)3G | 136613 | 136555 | 58 | 1.194 | ||
| (2H)x3H | 4 | 46 + 44(A2G)3H | (a2G)x3H | 137528 | 137500 | 28 | 0.821 |
| 5 | 43 + 42(A2G)3H + 6(2H)3I | 137764 | 137731 | 33 | 1.035 | ||
| 6 | 46 + 41(A2G)3H + 6(2H)3I | 138264 | 138248 | 16 | 1.154 | ||
| (4F)x5D | 0 | 91 + 6(A2D)3P | 137573 | 137608 | −35 | ||
| 1 | 85 + 6(A2D)3P | 137561 | 137605 | −44 | 1.404 | ||
| 2 | 77 + 9(4F)5F | 137545 | 137610 | −65 | 1.425 | ||
| 3 | 74 + 14(4F)5F | 137423 | 137509 | −86 | 1.443 | ||
| 4 | 75 + 16(4F)5F | 137210 | 137297 | −87 | 1.464 | ||
| (2H)x3G | 3 | 41 + 28(4F)3G + 16(A2F)3G | 138188 | 138313 | −125 | 0.768 | |
| 4 | 43 + 30(4F)3G + 13(A2F)3G | 138103 | 138228 | −125 | 1.051 | ||
| 5 | 47 + 29(4F)3G + 10(A2F)3G | 138055 | 138214 | −159 | 1.141 | ||
| (A2D)z1P | 1 | 71 + 17(A2F)3D | 138692 | 138498 | 194 | 0.905 | |
| (4F)w3G | 3 | 42 + 41(A2G)3G + 7(2H)3G | 139680 | 139539 | 141 | 0.767 | |
| 4 | 42 + 36(A2G)3G + 10(2H)3G | 139625 | 139477 | 148 | 1.044 | ||
| 5 | 43 + 25(A2G)3G + 16(2H)3I | 139461 | 139350 | 113 | 1.141 | ||
| (2H)y3I | 5 | 79 + 8(2H)3H + 7(4F)3G | 139509 | 139410 | 99 | 0.904 | |
| 6 | 87 + 5(2H)3H | 139846 | 139762 | 84 | 1.033 | ||
| 7 | 96 | 140196 | 140165 | 31 | 1.142 | ||
| (A2G)y1G | 4 | 40 + 19(A2F)1G + 17(2H)1G | 139827 | 139749 | 78 | 1.037 | |
| (A2F)y1D | 2 | 56 + 38(A2D)1D | 139764 | 139779 | −15 | 0.991 | |
| (A2F)y1F | 3 | 72 + 8(A2D)1F + 6(A2G)1F | 140453 | 140468 | −15 | 1.001 | |
| (A2G)v3F | 2 | 42 + 31(4F)3F + 13(4F)3D | 140751 | 140998 | −247 | 0.749 | |
| 3 | 42 + 26(4F)3F + 15(4F)3D | 140693 | 140901 | −208 | 1.120 | ||
| 4 | 45 + 26(4F)3F + 9(A2G)1G | 141003 | 141195 | −192 | 1.205 | ||
| (2H)y1I | 6 | 88 + 5(2H)3H | 141540 | 141442 | 98 | 1.013 | |
| (4F)v3D | 1 | 84 + 6(4D)3D | 141469 | 141576 | −107 | 0.512 | |
| 2 | 68 + 8(A2G)3F + 6(4D)3D | 141399 | 141571 | −172 | 1.081 | ||
| 3 | 64 + 7(A2G)3F + 7(4D)3D | 141467 | 141663 | −196 | 1.278 | ||
| (4F)u3F | 2 | 48 + 24(A2G)3F + 22(A2F)3F | 142535 | 142682 | −147 | 0.679 | |
| 3 | 50 + 24(A2G)3F + 20(A2F)3F | 142313 | 142460 | −147 | 1.080 | ||
| 4 | 50 + 25(A2G)3F + 21(A2F)3F | 142047 | 142197 | −150 | 1.246 | ||
| (A2G)w3H | 4 | 45 + 47(2H)3H | (a2H)w3H | 142856 | 142754 | 102 | 0.819 |
| 5 | 46 + 38(2H)3H + 9(A2G)3G | 142908 | 142783 | 125 | 1.052 | ||
| 6 | 50 + 40(2H)3H + 7(2H)1I | 143321 | 143253 | 68 | 1.155 | ||
| (A2G)v3G | 3 | 43 + 24(A2F)3G + 18(4F)3G | 144117 | 143854 | 263 | 0.766 | |
| 4 | 42 + 23(A2F)3G + 14(4F)3G | 144086 | 143844 | 242 | 1.048 | ||
| 5 | 40 + 20(A2F)3G + 12(2H)3G | 143884 | 143657 | 227 | 1.172 | ||
| (B2F)x1G | 4 | 35 + 30(A2F)3F + 14(A2G)1G | (b2F)t3F | 144332 | 144445 | −113 | 1.090 |
| (A2G)y1H | 5 | 66 + 18(2H)1H + 12(2I)1H | 144587 | 144462 | 125 | 1.005 | |
| (B2F)t3F | 2 | 66 + 19(A2G)3F + 7(4F)3F | 144502 | 144598 | −96 | 0.694 | |
| 3 | 73 + 11 (A2G)3F + 6(4F)3F | 144571 | 144697 | −126 | 1.076 | ||
| 4 | 48 + 20(B2F)1G + 8(2H)1G | (a2H)x1G | 144968 | 145120 | −152 | 1.156 | |
| (2H)x1H | 5 | 70 + 23(A2G)1H | 144843 | 144729 | 114 | 1.007 | |
| (A2G)x1F | 3 | 76 + 5(B2F)1F + 5(B2D)1F | 145039 | 145227 | −188 | 1.006 | |
| (B2F)x1D | 2 | 82 + 7(B2F)3F + 7(B2D)1D | 145618 | 145658 | −40 | 0.979 | |
| (B2F)u3G | 3 4 5 |
55 + 36(2H)3G + 6(A2G)3G 59 + 32(2H)3G + 6(A2G)3G 66 + 28(2H)3G + 5(A2G)3G |
146891 147161 147406 |
146938 147217 147490 |
−47 −56 −84 |
0.759 1.052 1.200 |
|
| (B2F)u3D | 1 2 3 |
90 89 86 + 7(4F)3D |
147556 147615 147636 |
147602 147700 147761 |
−46 −85 −125 |
0.533 1.171 1.326 |
|
| (2S)w3P | 0 1 2 |
85 + 12(B2D)1P 82 + 13(B2D)3P 82 + 14(B2D)1P |
148655 148915 149526 |
148596 148854 149441 |
59 61 85 |
1.466 1.492 |
|
| (2H)w1G | 4 | 34 + 44(B2F)1G+ 21(A2G)1G | (b2F)w1G | 149013 | 149063 | −50 | 1.001 |
| (B2F)w1F | 3 | 93 | 150655 | 150566 | 89 | 1.005 | |
| (2S)y1P | 1 | 78 + 19(B2D)1P | 151637 | 151652 | −15 | 1.004 | |
| (B2D)s3F | 2 3 4 |
75 + 18(B2D)3D 61 + 27(B2D)3D + 6(B2D)1F 94 |
157684 157982 158563 |
157737 157940 158559 |
−53 42 4 |
0.765 1.149 1.249 |
|
| (B2D)t3D | 1 2 3 |
95 76 + 18(B2D)3F 67 + 29(B2D)3F |
158257 158417 158729 |
157919 158123 158447 |
338 294 282 |
0.520 1.080 1.256 |
|
| (B2F)v1G | 3 | 82 + 12(B2G)1F | 159493 | 159453 | 40 | 1.010 | |
| (B2D)v3P | 0 1 2 |
87 + 13(2S)3P 82 + 13(2S)3P 81 + 14(2S)3P |
160038 | 160319 160307 160291 |
−253 | 1.468 1.483 |
|
| (B2D)1P | 1 | 80 + 15(2S)1P | 161258 | 1.010 | |||
| (B2D)w1D | 2 | 92 + 6(B2F)1D | 16285? | 161749 | 336 | 1.003 | |
| (B2G)v3H | 4 5 6 |
93 + 5(B2G)3G 90 + 6(B2G)3G 98 |
165719 165940 166187? |
165640 165834 166287 |
79 106 −100 |
0.814 1.043 1.167 |
|
| (B2G)r3F | 2 3 4 |
93 + 5(C2D)3F 50 + 46(B2G)2G 81 + 11(B2G)3F |
167002 166498 166222 |
167059 166531 166268 |
−57 −33 −46 |
0.667 0.928 1.220 |
|
| (B2G)t3G | 3 4 5 |
53 + 44(B2G)3F 85 + 11(B2G)3F 91 + 7(B2G)3H |
167085 167207 167299 |
167065 167154 167242 |
20 53 57 |
0.907 1.064 1.185 |
|
| (B2G)w1H | 5 | 95 | 168780 | 168674 | 106 | 1.006 | |
| (B2G)v1G | 4 | 96 | 169278? | 169202 | 76 | 1.003 | |
| (B2G)u1F | 3 | 87 + 12(C2D)1F | 170311? | 170439 | −128 | 0.998 | |
| (2P)3P | 0 1 2 |
77 + 22(C2D)3P 76 + 23(C2D)3P 76 + 24(C2D)3P |
178674 178823 179241 |
1.502 1.497 |
|||
| (2P)1S | 0 | 99 | 181398 | ||||
| (2P)3D | 1 2 3 |
93 66 + 22(2P)1D + 5(C2D)1D 92 + 7(C2D)3D |
182519 182490 183099 |
0.504 1.121 1.333 |
|||
| (2P)1D | 2 | 57 + 26(2P)3D + 14(C2D)1D | 183519 | 1.047 | |||
| (2P)3S | 1 | 98 | 184869 | 1.979 | |||
| (2P)1P | 1 | 78 + 19(C2D)1P | 185970 | 1.013 | |||
| (C2D)3F | 2 3 4 |
91 + 5(B2G)3F 89 + 5(C2D)3D 96 |
191071 191235 191700 |
0.690 1.096 1.250 |
|||
| (C2D)3F | 1 2 3 |
94 89 + 6(2P)3D 89 + 7(2P)3D |
192255 192579 192934 |
0.505 1.147 1.318 |
|||
| (C2D)1D | 2 | 69 + 16(2P)1D + 11(C2D)3P | 193395 | 1.067 | |||
| (C2D)1F | 3 | 94 | 194617 | 1.003 | |||
| (C2D)3P | 0 1 2 |
77 + 22(2P)3P 77 + 23(2P)3P 66 + 20(2P)3P + 12(C2D)1D |
194973 194703 194332 |
1.498 1.430 |
|||
| (C2D)1P | 1 | 81 + 18(2P)1P | 198959 | 0.999 |
Table 17.
Observed and calculated levels of Co iii 3d64p
| Name | J | Percentage | AEL | Observed | Calculated | O-C | Lande C. |
|---|---|---|---|---|---|---|---|
| (5D)z6D | 1/2 | 99 | 99182 | 99357 | ‒175 | 3.324 | |
| 3/2 | 99 | 99044 | 99207 | ‒163 | 1.863 | ||
| 5/2 | 98 | 98823 | 98971 | ‒148 | 1.654 | ||
| 7/2 | 97 | 98546 | 98671 | ‒125 | 1.585 | ||
| 9/2 | 99 | 98290 | 98386 | ‒96 | 1.553 | ||
| (5D)z6F | 1/2 | 98 | 103691 | 103488 | 203 | ‒0.650 | |
| 3/2 | 98 | 103656 | 103446 | 210 | 1.069 | ||
| 5/2 | 97 | 103594 | 103372 | 222 | 1.315 | ||
| 7/2 | 96 | 103502 | 103264 | 238 | 1.397 | ||
| 9/2 | 96 | 103387 | 103124 | 263 | 1.433 | ||
| 11/2 | 100 | 103245 | 102950 | 295 | 1.454 | ||
| (5D)z6P | 3/2 | 98 | 106592 | 106534 | 58 | 2.380 | |
| 5/2 | 94 | 105965 | 105912 | 53 | 1.860 | ||
| 7/2 | 91 + 7(5D)4D | 105009 | 104964 | 45 | 1.691 | ||
| (5D)z4D | 1/2 | 95 | 107508 | 107468 | 40 | ‒0.006 | |
| 3/2 | 94 | 107297 | 107250 | 47 | 1.213 | ||
| 5/2 | 91 + 5(5D)6P | 106955 | 106897 | 58 | 1.392 | ||
| 7/2 | 89 + 7(5D)6P | 106489 | 106415 | 74 | 1.447 | ||
| (5D)z4F | 3/2 | 98 | 108403 | 108435 | ‒32 | 0.407 | |
| 5/2 | 97 | 108053 | 108073 | ‒20 | 1.035 | ||
| 7/2 | 96 | 107530 | 107536 | ‒6 | 1.244 | ||
| 9/2 | 96 | 106765 | 106760 | 5 | 1.336 | ||
| (5D)z4P | 1/2 | 98 | 111283 | 111318 | ‒35 | 2.665 | |
| 3/2 | 98 | 110962 | 110993 | ‒31 | 1.733 | ||
| 5/2 | 98 | 110371 | 110401 | ‒30 | 1.599 | ||
| (A3P)z4S | 3/2 | 61 + 36(A3P)4P | 124189 | 1.881 | |||
| (3H)z4G | 5/2 | 44 + 44(A3F)4G + 6(3G)4G | 125369 | 125406 | ‒37 | 0.608 | |
| 7/2 | 46 + 40(A3F)4G + 7(3G)4G | 125227 | 125264 | ‒37 | 0.987 | ||
| 9/2 | 47 + 33(A3F)4G + 7(3C)4G | 125012 | 125053 | ‒41 | 1.151 | ||
| 11/2 | 64 + 27(A3F)4G + 7(3G)4G | 124766 | 124861 | ‒95 | 1.269 | ||
| (3H)z4I | 9/2 | 57 + 26(3H)4H + 7(3H)4G | (3H)z4H | 125422 | 125418 | 4 | 0.852 |
| 11/2 | 59 + 30(3H)4H + 7(3G)4H | 125296 | 125286 | 10 | 1.030 | ||
| 13/2 | 58 + 31(3H)4H + 6(3H)2I | 125276 | 125308 | ‒32 | 1.150 | ||
| 15/2 | 100 | 126119 | 125945 | 174 | 1.199 | ||
| (3H)z4H | 7/2 | 60 + 14(3H)2G + 8(3G)4H | 125690 | 125839 | ‒149 | 0.761 | |
| 9/2 | 41 + 35(3H)4I + 10(3H)2G | (3H)z4I | 126239 | 126246 | ‒7 | 0.921 | |
| 11/2 | 55 + 36(3H)4I + 6(3G)4H | 126501 | 126505 | ‒4 | 1.073 | ||
| 13/2 | 59 + 34(3H)4I + 5(3G)4H | 126475 | 126507 | ‒32 | 1.185 | ||
| (A3P)y4P | 1/2 | 90 + 6(A3P)4D | 126373 | 2.465 | |||
| 3/2 | 30 + 29(A3P)4S + 28(A3P)4D) | 126631 | 1.562 | ||||
| 5/2 | 60 + 25(A3P)4D + 9(A3P)2D | 125343 | 1.472 | ||||
| (A3F)y4F | 3/2 | 86 + 7(3D)4F | 126987 | 127217 | ‒230 | 0.425 | |
| 5/2 | 78 + 6(3D)4F | 126871 | 127096 | ‒225 | 1.034 | ||
| 7/2 | 48 + 16(A3P)4D + 9(3H)4H | 126892 | 127048 | −156 | 1.192 | ||
| 9/2 | 82 | 126998 | 127160 | −162 | 1.305 | ||
| (3H)z2G | 7/2 | 43 + 18(A3F)4F + 11(3G)2G | 127318 | 127499 | −181 | 0.953 | |
| 9/2 | 59 + 15(3G)2G + 12(3H)4H | 127051 | 127272 | −221 | 1.086 | ||
| (A3P)z2D | 3/2 | 32 + 23(A3P)4P + 23(A3P)4D | 127793 | 1.251 | |||
| 5/2 | 58 + 25(A3P)4P + 8(A3F)2D | 126336 | 1.309 | ||||
| (A3P)y4D | 1/2 | 90 + 6(A3P)4P | 128536 | 128152 | 384 | 0.168 | |
| 3/2 | 42 + 31(A3P)2D + 12(A3F)2D | 128423 | 128681 | −258 | 1.034 | ||
| 5/2 | 60 + 15(A3P)2D + 10(A3P)4P | 128085 | 128242 | −157 | 1.345 | ||
| 7/2 | 80 + 7(A3F)4F | 126549 | 126588 | −39 | 1.388 | ||
| (3H)z2I | 11/2 | 92 | 128259 | 128200 | 59 | 0.935 | |
| 13/2 | 90 + 7(3H)4I | 127673 | 127650 | 23 | 1.082 | ||
| (A3F)x4D | 1/2 | 84 + 11(3D)4D | 128937 | 129158 | −221 | 0.015 | |
| 3/2 | 80 + 10(3D)4D | 128805 | 129036 | −231 | 1.179 | ||
| 5/2 | 73 + 9(3D)4D | 128525 | 128755 | −230 | 1.343 | ||
| 7/2 | 69 + 8(3D)4D | 128018 | 128257 | −239 | 1.353 | ||
| (A3F)y4G | 5/2 | 35 + 27(3H)4G + 24(A3F)2F | 129747 | 129740 | 7 | 0.672 | |
| 7/2 | 44 + 26(3H)4G + 12(A3F)2F | 129707 | 129680 | 27 | 1.009 | ||
| 9/2 | 52 + 25(3H)4G + 9(A3F)2G | 129592 | 129534 | 58 | 1.162 | ||
| 11/2 | 68 + 22(3H)4G | 129556 | 129505 | 51 | 1.261 | ||
| (A3F)z2F | 5/2 | 41 + 19(3H)4G + 9(3G)2F | 130407 | 130400 | 7 | 0.752 | |
| 7/2 | 49 + 12(3G)2F + 8(3H)4G | 130184 | 130233 | −49 | 1.095 | ||
| (A3P)2P | 1/2 | 55 + 34(A3P)2S | 130940 | 1.149 | |||
| 3/2 | 87 + 6(A1D)2P | 131328 | 1.322 | ||||
| (A3F)y2G | 7/2 | 62 + 17(3G)4G | 131279 | 131283 | −4 | 0.941 | |
| 9/2 | 60 + 13(3G)2H + 9(A3F)4G | 130802 | 130782 | 20 | 1.073 | ||
| (3H)z2H | 9/2 | 37 + 23(3G)2H + 21 (A3F)2G | 131538 | 131606 | −68 | 0.978 | |
| 11/2 | 23 + 34(3G)2H + 22(3G)4G | 131054 | 131109 | −55 | 1.137 | ||
| (3G)x4G | 5/2 | 63 + 17(3G)4F + 8(A3F)2F | 131884 | 131773 | 111 | 0.709 | |
| 7/2 | 38 + 24(3G)4F + 20(A3F)2G | 131582 | 131491 | 91 | 1.040 | ||
| 9/2 | 49 + 24(3G)4F + 8(3G)4G | (3G)x4F | 131887 | 131857 | 30 | 1.194 | |
| 11/2 | 59 + 19(3H)2H + 10(3H)4G | 131098 | 131311 | −213 | 1.218 | ||
| (A3P)2S | 1/2 | 65 + 29(A3P)2P | 132300 | 1.540 | |||
| (3G)y4H | 7/2 9/2 11/2 13/2 |
74 + 11(3H)4H + 6(A3F)2G 76 + 9(3H)4H 74 + 10(3H)2H + 7(3H)4H 88 + 10(3H)4H |
132624 132587 132507 132377 |
132433 132392 132322 132144 |
191 195 185 233 |
0.715 0.987 1.135 1.228 |
|
| (3G)x4F | 3/2 5/2 7/2 9/2 |
71 + 14(3D)4F 56 + 18(3G)4G+ 11(3D)4F 44 + 28(3G)4G + 9(3D)4F 52 + 32(3G)4G + 5(3D)4F |
(3G)x4G | 132592 132489 132277 131098 |
132454 132392 132219 131011 |
138 97 58 87 |
0.437 0.934 1.108 1.268 |
| (A3F)2D | 3/2 5/2 |
72 + 19(A3P)2D 78 + 13(A3P)2D |
134195 133837 |
0.776 1.183 |
|||
| (3G)y2H | 9/2 11/2 |
50 + 39(3H)2H 47 + 45(3H)2H |
135404 134696 |
135521 134850 |
−117 − 154 |
0.922 1.094 |
|
| (3G)y2F | 5/2 7/2 |
54 + 18(3D)2F + 10(A3F)2F 57+ 14(A3W + 13(3D)2F | 136129 136290 |
136217 136361 |
−88 −71 |
0.869 1.128 |
|
| (3G)x2G | 7/2 9/2 |
72 + 14(3H)2G 74 + 18(3H)2G |
137812 137661 |
137684 137565 |
128 96 |
0.912 1.103 |
|
| (1I)2K | 13/2 15/2 |
98 100 |
137375 138185 |
0.936 1.067 |
|||
| (A1G)x2H | 9/2 11/2 |
69 + 17(1I)2H 49 + 44(1I)2H |
(1I)x2H | 138921 139138 |
138722 139035 |
199 103 |
0.927 1.090 |
| (3D)4P | 1/2 3/2 5/2 |
82 + 8(3D)4D 82 + 5(3D)4D 90 |
139158 138832 138618 |
2.333 1.668 1.584 |
|||
| (3D)4F | 3/2 5/2 7/2 9/2 |
72 + 19(3G)4F 68 + 16(3G)4F + 6(3D)4D 46 + 14(3D)4D + 10(3G)4F 54 + 30(A1G)2G |
139436 139585 139727 140141 |
0.443 1.050 1.231 1.246 |
|||
| (3D)4D | 1/2 3/2 5/2 7/2 |
53 + 20(3D)2P + 12(3D)4P 55+ 18(3D)2P+ 10(3D)4P 77 + 9(A3F)4D + 8(3D)4F 27 + 22(3D)4F + 17(A1G)2F |
139616 139831 140109 140090 |
0.510 1.252 1.337 1.202 |
|||
| (A1G)w2G | 7/2 9/2 |
61 + 13(3D)4F 54 + 29(3D)4F |
140383 140358 |
140214 140308 |
169 50 |
0.966 1.177 |
|
| (3D)2P | 1/2 3/2 |
54 + 25(3D)4D + 12(A1S)2P 60 + 23(3D)4D + 10(A1S)2P |
140568 140444 |
0.479 1.296 |
|||
| (A1G)x2F | 5/2 7/2 |
48 + 21(3D)2F + 10(A3F)2F 30 + 44(3D)4D + 7(A3F)4D |
140787 140646 |
140734 140582 |
53 64 |
0.875 1.285 |
|
| (1I)w2H | 9/2 11/2 |
68 + 21(A1G)2H 33 + 50(A1G)2H |
(1G)w2H | 141347 141191 |
141443 141140 |
−96 51 |
0.912 1.072 |
| (1I)y2I | 11/2 13/2 |
87 + 9(1I)2H 99 |
141874 141869 |
141926 141925 |
−52 −56 |
0.945 1.076 |
|
| (3D)2D | 3/2 5/2 |
88 90 |
142452 142664 |
0.820 1.200 |
|||
| (3D)2F | 5/2 7/2 |
56 + 23(A1G)2F + 13(A1D)2F 61 + 17(A1G)2F + 14(A1D)2F |
143970 143377 |
0.865 1.145 |
|||
| (A1S)2P (A1D)2F |
1/2 3/2 5/2 7/2 |
51 + 28(A1D)2P + 12(3D)2P 43 + 43(A1D)2P + 10(3D)2P 53 + 18(A1D)2D + 15(A1G)2F 72 + 15(A1G)2F |
144469 143865 146196 147106 |
0.673 1.319 0.935 1.144 |
|||
| (A1D)2D | 3/2 5/2 |
78 + 11(1F)2D 62 + 17(A1D)2F + 14(1F)2D |
146760 147093 |
0.838 1.125 |
|||
| (A1D)2P | 1/2 3/2 |
65 + 27(A1S)2P 43 + 38(A1S)2P |
147373 147994 |
0.671 1.299 |
|||
| (1F)2G | 7/2 9/2 |
92 95 |
151919 152806 |
0.892 1.112 |
|||
| (1F)2D | 3/2 5/2 |
79 + 11(A1D)2D 71 + 15(A1D)2D |
154134 153438 |
0.813 1.198 |
|||
| (B3P)4D | 1/2 3/2 5/2 7/2 |
54 + 44(B3F)4D 50 + 45(B3F)4D 38 + 45(B3F)4D + 14(1F)2F 29 + 35(B3F)4D + 35(1F)2F |
(3P1)z4S (3P1)x4P |
155702 156291 |
155753 155984 156171 156215 |
−282 120 |
0.004 1.188 1.290 1.313 |
| (1F)2F | 5/2 7/2 |
75 + 7(B3F)4D + 7(B3P)4D 54 + 23(B3F)4D + 17(B3P)4D |
156526 156628 |
0.941 1.256 | |||
| (B3P)2S | 1/2 | 93 | 159796 | 2.024 | |||
| (B3F)4G | 5/2 7/2 9/2 11/2 |
97 96 95 98 |
160338 160581 160820 161090 |
0.575 0.984 1.171 1.272 |
|||
| (B3P)4S | 3/2 | 98 | 161611 | 1.989 | |||
| (B3F)2D | 3/2 5/2 |
51 + 37(B3P)2D 49 + 35(B3P)2D + 8(B3P)4P |
163340 163896 |
0.844 1.229 |
|||
| (B3P)4P | 1/2 3/2 5/2 |
91 88 71 + 8(B3F)2D + 8(B3P)4D |
163229 163563 164334 |
2.611 1.667 1.510 |
|||
| (B3F)2G | 7/2 9/2 |
89 88 |
164268 163773 |
0.907 1.125 |
|||
| (B3F)4D | 1/2 3/2 5/2 7/2 |
54 + 42(B3P)4D 40 + 37(B3P)4D + 15(B3F)4F 39 + 42(B3F)4F + 14(B3P)4P 32 + 38(B3P)4D + 29(B3F)4F |
164541 164765 165040 165903 |
0.042 1.091 1.251 1.360 |
|||
| (B3F)4F | 3/2 5/2 7/2 9/2 |
78 + 9(B3F)4D 51 + 23(B3P)4D + 22(B3F)4D 62 + 22(B3P)4D + 11(B3F)4D 93 + 6(B3F)2C |
165215 165546 165234 165624 |
0.557 1.194 1.286 1.318 |
|||
| (B3P)2D | 3/2 5/2 |
41 + 36(B3F)2D + 16(B3P)2P 60 + 34(B3F)2D |
166507 167276 |
0.877 1.210 |
|||
| (B3P)2P | 1/2 3/2 |
92 77 + 12(B3P)2D |
167203 167968 |
0.652 1.240 |
|||
| (B3F)2F | 5/2 7/2 |
94 87 + 12(B1G)2F |
168299 168167 |
0.858 1.142 |
|||
| (B1G)2H | 9/2 11/2 |
95 98 |
170204 171002 |
0.915 1.091 |
|||
| (B1G)2F | 5/2 7/2 |
86 + 6(1F)2F 57 + 27(B1G)2G + 6(B3F)2F |
172252 171679 |
0.858 1.072 |
|||
| (B1G)2G | 7/2 9/2 |
68 + 21(B1G)2F 94 |
173022 172850 |
0.962 1.108 |
|||
| (B1D)2D | 3/2 5/2 |
98 98 |
190563 190826 |
0.805 1.195 |
|||
| (B1D)2F | 5/2 7/2 |
95 96 |
194508 195232 |
0.862 1.143 |
|||
| (B1D)2P | 1/2 3/2 |
93 + 6(B1S)2P 93 + 5(B1S)2P |
196236 195859 |
0.667 1.328 |
|||
| (B1S)2P | 1/2 3/2 |
94 + 6(B1D)2P 95 + 5(B1D)2P |
219596 220550 |
0.667 1.333 |
Table 18.
Observed and calculated levels of Ni iii 3d74p
| Name | J | Percentage | AEL | Observed | Calculated | O–C | Lande C. |
|---|---|---|---|---|---|---|---|
| (4F)z5F | 1 | 96 | 112402 | 112376 | 26 | 0.054 | |
| 2 | 88 + 9(4F)5D | 111914 | 111907 | 7 | 1.031 | ||
| 3 | 78 + 17(4F)5D | 111221 | 111241 | −20 | 1.281 | ||
| 4 | 65 + 29(4F)5D | 110371 | 110431 | −60 | 1.387 | ||
| 5 | 94 + 5(4F)3G | 110212 | 110157 | 55 | 1.391 | ||
| (4F)z5G | 2 | 88 + 5(4F)5D + 5(4F)5F | 114371 | 114162 | 209 | 0.436 | |
| 3 | 86 + 7(4F)5F | 114110 | 113895 | 215 | 0.959 | ||
| 4 | 84 + 8(4F)3F + 6(4F)3G | 113705 | 113482 | 223 | 1.165 | ||
| 5 | 82 + 12(4F)3G + 6(4F)5F | 113141 | 112921 | 220 | 1.266 | ||
| 6 | 100 | 112787 | 112489 | 298 | 1.333 | ||
| (4F)z5D | 0 | 91 + 8(4P)5D | 114295 | 114441 | −146 | ||
| 1 | 88 + 8(4P)3D | 114095 | 114226 | −131 | 1.450 | ||
| 2 | 78 + 8(4F)5G + 7(4P)3D | 113651 | 113746 | −95 | 1.369 | ||
| 3 | 73 + 13(4F)5F + 8(4F)5G | 112935 | 113002 | −67 | 1.420 | ||
| 4 | 63 + 26(4F)3F + 6(4F)5G | 111898 | 111939 | −41 | 1.437 | ||
| (4F)z3G | 3 | 88 + 7(4F)3F | 117606 | 117660 | −54 | 0.786 | |
| 4 | 83 + 9(4F)3F + 7(4F)5G | 116674 | 116706 | −32 | 1.076 | ||
| 5 | 87 + 13(4F)5G | 115272 | 115292 | −20 | 1.208 | ||
| (4F)z3F | 2 | 92 | 118115 | 118082 | 33 | 0.678 | |
| 3 | 83 + 8(4F)3G | 117251 | 117232 | 19 | 1.068 | ||
| 4 | 85 + 10(4F)3G | 116192 | 116167 | 25 | 1.232 | ||
| (4F)z3D | 1 | 93 | 120273 | 120304 | −31 | 0.500 | |
| 2 | 92 | 119670 | 119694 | −24 | 1.155 | ||
| 3 | 90 + 5(4F)3F | 118746 | 118754 | −8 | 1.318 | ||
| (4P)z5S | 2 | 99 | 122282 | 122739 | −457 | 1.994 | |
| (4P)y5D | 0 | 86 + 8(4F)5D + 5(2P)3P | 130190 | 130242 | −52 | ||
| 1 | 75 + 7(4F)5D + 7(2P)3P | 129958 | 130022 | −64 | 1.531 | ||
| 2 | 82 + 7(4F)5D | 129913 | 129937 | −24 | 1.484 | ||
| 3 | 84 + 7(4F)5D | 129954 | 129944 | 10 | 1.490 | ||
| 4 | 93 + 6(4F)5D | 130312 | 130224 | 88 | 1.497 | ||
| (4P)z5S | 1 | 53 + 12(2P)3S + 11(4P)5D | 130863 | 131111 | −248 | 1.908 | |
| (2G)z3H | 4 | 61 + 28(2G)3F + 6(2G)1G | 132157 | 132057 | 100 | 0.953 | |
| 5 | 74 + 15(2G)1H + 7(2G)3G | 131500 | 131367 | 133 | 1.035 | ||
| 6 | 96 | 132169 | 131906 | 263 | 1.163 | ||
| (4P)z5P | 1 | 73 + 20(4P)3S | 133340 | 133446 | −106 | 2.279 | |
| 2 | 45 + 21(2P)3P + 20(4P)3D | (4P)r3D | 132818 | 132919 | −101 | 1.549 | |
| 3 | 71 + 19(4P)3D | 133095 | 133060 | 35 | 1.576 | ||
| (2G)y3F | 2 | 94 | 134233 | 134198 | 35 | 0.676 | |
| 3 | 78 + 11(2G)3G | 133158 | 133174 | −16 | 1.055 | ||
| 4 | 41 + 33(2G)3H + 13(2G)3G | 131792 | 131814 | −22 | 1.051 | ||
| (2G)z1G | 4 | 47 + 24(2G)3F + 14(2H)1G | 133325 | 133415 | −90 | 1.064 | |
| (2P)3P | 0 | 69 + 19(A2D)3P + 6(4P)3P | 133134 | ||||
| 1 | 45 + 19(4P)3D + 12(4P)5P | 133556 | 1.399 | ||||
| 2 | 49 + 10(2P)3D + 9(4P)5P | 133902 | 1.417 | ||||
| (4P)y3D | 1 | 54 + 15(2P)3D + 13(2P)3P | 133840 | 134055 | −215 | 0.806 | |
| 2 | 42 + 37(4P)5P + 6(4P)5D | (4P)r5P | 133500 | 133406 | 94 | 1.432 | |
| 3 | 65 + 20(4P)5P | 133391 | 133434 | −43 | 1.384 | ||
| (2G)z1H | 5 | 62 + 23(2G)3H + 14(2G)3G | 134218 | 134119 | 99 | 1.034 | |
| (2G)y3G | 3 | 70+ 16(2G)1F + 8(2G)3F | 134335 | 134375 | −40 | 0.832 | |
| 4 | 73 + 14(2G)1G + 6(2H)1G | 134415 | 134523 | −108 | 1.028 | ||
| 5 | 78 + 19(2G)1H | 133692 | 133722 | −30 | 1.156 | ||
| (2G)z1F | 3 | 57 + 15(2G)3G + 14(A2D)1F | 135024 | 135062 | −38 | 0.965 | |
| (4P)z3 P | 0 | 52 + 35(2P)1S + 11(2P)3P | 135695 | ||||
| 1 | 78 + 11(2P)3D | 136099 | 136192 | −93 | 1.371 | ||
| 2 | 75 + 10(A2D)3P | 135351 | 135455 | − 104 | 1.470 | ||
| (2P)x3D | 1 | 54 + 15(A2D)3D + 12(4P)3P | 137364 | 137395 | −31 | 0.682 | |
| 2 | 41 + 29(2P)1D + 12(A2D)3D | 136813 | 136950 | −137 | 1.113 | ||
| 3 | 77 + 8(A2D)3F | 136965 | 136964 | 1 | 1.322 | ||
| (2P)1D | 2 | 20 + 24(2P)3D + 20(4P)3D | 137768 | 1.137 | |||
| (2H)3I | 5 | 95 | 138061 | 137997 | 64 | 0.843 | |
| 6 | 74 + 25(2H)1I | 137392 | 137357 | 35 | 1.020 | ||
| 7 | 100 | 137991 | 137837 | 154 | 1.143 | ||
| (2H)x3G | 3 | 85 + 6(2F)3G | 138852 | 138891 | −39 | 0.771 | |
| 4 | 90 + 5(2F)3G | 138031 | 138118 | −87 | 1.052 | ||
| 5 | 94 + 5(2F)3G | 137020 | 137161 | −141 | 1.198 | ||
| (2P)1S | 0 | 61 + 39(4P)3P | (4P)z3P | 138147 | 138618 | −471 | |
| (A2D)w3D | 1 | 50 + 27(2P)1P + 12(2P)3D | 138979 | 138889 | 90 | 0.669 | |
| 2 | 63 + 10(2P)3D + 7(2P)1D | 139254 | 139172 | 82 | 1.121 | ||
| 3 | 79 + 11(A2D)3F | 138487 | 138359 | 128 | 1.307 | ||
| (2H)z1I | 6 | 74 + 24(2H)3I | 139634 | 139600 | 34 | 1.010 | |
| (A2D)x3F | 2 | 73 + 10(A2D)3D + 8(A2D)1D | 140916 | 140871 | 45 | 0.782 | |
| 3 | 71 + 8(2P)3D + 6(2G)1F | 140545 | 140503 | 42 | 1.117 | ||
| 4 | 98 | 140184 | 140117 | 67 | 1.250 | ||
| (2P)3S | 1 | 67 + 8(2P)1P + 8(4P)3S | (2P)z1P | 140885 | 141052 | −167 | 1.780 |
| (2P)z1P | 1 | 49 + 17(A2D)3D + 13(2P)3S | (2P)y3P | 141415 | 141393 | 22 | 1.077 |
| (A2D)z1D | 2 | 46 + 29(A2D)3P + 15(2P)1D | 142434 | 142323 | 111 | 1.155 | |
| (2H)y3H | 4 | 95 | 143004 | 143062 | −58 | 0.810 | |
| 5 | 95 | 142576 | 142642 | −66 | 1.034 | ||
| 6 | 98 | 142188 | 142259 | −71 | 1.165 | ||
| (A2D)y1F | 3 | 73 + 16(2G)1F + 7(A2D)3F | 143865 | 143944 | −79 | 1.014 | |
| (2H)y1G | 4 | 70 + 27(2G)1G | 144154 | 144162 | −8 | 0.997 | |
| (A2D)x3P | 0 | 80 + 15(2P)3P | 145110 | ||||
| 1 | 67 + 11(2P)3P + 9(2P)1P | 144624 | 144667 | −43 | 1.431 | ||
| 2 | 48 + 24(A2D)1D + 11(2P)3P | 143560 | 143476 | 84 | 1.334 | ||
| (A2D)y1P | 1 | 88 | 145950 | 146006 | −56 | 1.062 | |
| (2H)y1H | 5 | 96 | 146326 | 146504 | −178 | 1.001 | |
| (2F)y1D | 2 | 60 + 32(2F)3F | (2F)w3F | 155444 | 155123 | 321 | 0.897 |
| (2F)3G | 3 | 82 + 10(2F)3F + 6(2H)3G | 155392 | 0.787 | |||
| 4 | 73 + 15(2F)3F + 6(2F)1G | (2F)w3F | 155842 | 155842 | 0 | 1.078 | |
| 5 | 94 + 5(2H)3G | 156734 | 1.200 | ||||
| (2F)w3F | 2 | 64 + 29(2F)1D | (2F)y1D | 156524? | 156518 | 6 | 0.786 |
| 3 | 68 + 19(2F)3D + 8(2F)8G | (2F)v3D | 156853 | 156444 | 409 | 1.107 | |
| 4 | 50 + 28(2F)1G + 20(2F)3G | 156906 | 1.138 | ||||
| (2F)v3D | 1 | 93 + 5(B2D)3D | 157235 | 157142 | 93 | 0.502 | |
| 2 | 85 + 8(2F)1D | 157155 | 157121 | 34 | 1.152 | ||
| 3 | 72 + 18(2F)3F | (2F)w3F | 156972 | 156833 | 139 | 1.270 | |
| (2F)x1G | 4 | 65 + 32(2F)3F | 157376 | 157317 | 59 | 1.084 | |
| (2F)1F | 3 | 97 | 161755 | 161735 | 20 | 1.003 | |
| (B2D)w3P | 0 | 99 | 176738 | 176727 | 11 | ||
| 1 | 98 | 176583 | 176601 | −18 | 1.491 | ||
| 2 | 99 | 176488 | 176513 | −25 | 1.497 | ||
| (B2D)v3F | 2 | 96 | 177858 | 0.670 | |||
| 3 | 96 | 178452? | 178440 | 12 | 1.083 | ||
| 4 | 97 | 179196 | 1.250 | ||||
| (B2D)1P | 1 | 95 | 181237 | 0.991 | |||
| (B2D)1F | 3 | 97 | 181516 | 1.007 | |||
| (B2D)3D | 1 | 95 | 183763 | 0.518 | |||
| 2 | 73 + 25(B2D)1D | 183976 | 1.123 | ||||
| 3 | 96 | 184740 | 1.327 | ||||
| (B2D)1D | 2 | 72 + 25(B2D)3D | 184456 | 1.042 |
Table 19.
Observed and calculated levels of Cu iii 3d84p
| Name | J | Percentage | AEL | Observed | Calculated | O–C | Lande C. |
|---|---|---|---|---|---|---|---|
| (3F)z4D | 1/2 | 94 + 6(3P)4D | 122637 | 122764 | −127 | 0.004 | |
| 3/2 | 93 + 5(3P)4D | 121864 | 122012 | −148 | 1.185 | ||
| 5/2 | 91 + 5(3P)4D | 120578 | 120765 | −187 | 1.357 | ||
| 7/2 | 93 + 4(3P)4D | 118864 | 119113 | −249 | 1.421 | ||
| (3F)z4G | 5/2 | 93 + 6(3F)4F | 123440 | 123316 | 124 | 0.604 | |
| 7/2 | 81 + 10(3F)4F + 8(3F)2G | 122504 | 122416 | 88 | 1.008 | ||
| 9/2 | 66 + 22(3F)2G + 12(3F)4F | 121337 | 121318 | 19 | 1.178 | ||
| 11/2 | 100 | 121698 | 121488 | 210 | 1.273 | ||
| (3F)z4F | 3/2 | 90 + 5(3F)2D | 125745 | 125721 | 24 | 0.445 | |
| 5/2 | 84 + 6(3F)4G | 125382 | 125324 | 58 | 1.011 | ||
| 7/2 | 73 + 13(3F)2F + 10(3F)4G | 124558 | 124506 | 52 | 1.202 | ||
| 9/2 | 82 + 14(3F)2G | 123550 | 123516 | 34 | 1.296 | ||
| (3F)z2G | 7/2 | 82 + 10(3F)2F + 6(3F)4G | 126094 | 126175 | −81 | 0.926 | |
| 9/2 | 64 + 31(3F)4G + 5(3F)4F | 124442 | 124432 | 10 | 1.141 | ||
| (3F)z2D | 3/2 | 82 + 8(1 D)2D + 7(3F)4F | 128435 | 128465 | −30 | 0.781 | |
| 5/2 | 77 + 14(3F)2F + 5(1D)2D | 126892 | 126934 | −42 | 1.149 | ||
| (3F)z2F | 5/2 | 79 + 14(3F)2D + 5(3F)4F | 128679 | 128736 | −57 | 0.912 | |
| 7/2 | 75 + 12(3F)4F + 9(3F)2G | 126829 | 126902 | −73 | 1.127 | ||
| (3P)z4P | 1/2 | 90 + 7(1D)2P | 137041 | 137012 | 29 | 2.468 | |
| 3/2 | 76 + 10(1D)2P + 5(1D)2D | 136483 | 136500 | −17 | 1.607 | ||
| 5/2 | 76 + 15(1D)2D | 136607 | 136605 | 2 | 1.497 | ||
| (1D)y2F | 5/2 | 81 + 8(3P)4P | 138084 | 138009 | 75 | 0.939 | |
| 7/2 | 83 + 10(3P)4D + 6(1G)2F | 138982 | 139819 | 163 | 1.170 | ||
| (1D)y2D | 3/2 | 57 + 17(3P)4P + 9(1D)2P | 138988 | 139077 | −89 | 1.044 | |
| 5/2 | 77 + 14(3P)4P | 139757 | 139823 | −66 | 1.240 | ||
| (1D)z2P | 1/2 | 62 + 26(3P)2P + 9(3P)4P | 139261 | 139189 | 72 | 0.865 | |
| 3/2 | 59 + 23(1D)2D + 10(3P)2P | 140201 | 140177 | 24 | 1.220 | ||
| (3P)y4D | 1/2 | 93 | 142550 | 142492 | 58 | 0.019 | |
| 3/2 | 87 + 5(3F)4D + 4(3P)2D | 142512 | 142443 | 69 | 1.186 | ||
| 5/2 | 77 + 13(3P)2D + 4(1D)2F | 142426 | 142397 | 29 | 1.326 | ||
| 7/2 | 86 + 8(1D)2F | 142820 | 142737 | 83 | 1.397 | ||
| (3P)x2D | 3/2 | 60 + 26(3P)2P + 7(1D)2P | (3P)y2P | 145353 | 145214 | 139 | 1.005 |
| 5/2 | 81 + 15(1P)4D | 144194 | 144262 | −68 | 1.219 | ||
| (3P)y2P | 1/2 | 68 + 26(1D)2P + 5(3P)2S | 146676 | 146409 | 267 | 0.721 | |
| 3/2 | 52 + 34(3P)2D + 11(1D)2P | (3P)x2D | 144875 | 144764 | 111 | 1.139 | |
| (1G)z2H | 9/2 | 99 | 146534 | 146430 | 104 | 0.911 | |
| 11/2 | 100 | 147647 | 147437 | 210 | 1.091 | ||
| (3P)z2S | 1/2 | 94 | 147652 | 147970 | −318 | 1.922 | |
| (3P)z4S | 3/2 | 98 | 147816 | 147975 | −159 | 1.988 | |
| (1G)x2F | 5/2 | 92 + 6(1D)2F | 148663 | 148649 | 14 | 0.860 | |
| 7/2 | 88 + 9(1D)2F | 147806 | 147893 | −87 | 1.144 | ||
| (1G)y2G | 7/2 | 99 | 153609 | 153743 | −134 | 0.891 | |
| 9/2 | 99 | 153808 | 153942 | −134 | 1.110 | ||
| (1S)2P | 1/2 | 99 | 183398 | 0.667 | |||
| 3/2 | 99 | 184608 | 1.333 |
Table 20.
Observed and calculated levels of Zn iii 3d94p
| Name | J | Percentage | AEL | Observed | Calculated | O–C | Lande C. |
|---|---|---|---|---|---|---|---|
| (2D)z3P | 0 | 100 | 141401 | 141285 | 116 | ||
| 1 | 97 | 140080 | 140060 | 20 | 1.480 | ||
| 2 | 98 | 137876 | 138023 | −147 | 1.493 | ||
| (2D)z3F | 2 | 96 | 142491 | 142405 | 86 | 0.688 | |
| 3 | 71 + 26(2D)1F | 140664 | 140726 | −62 | 1.068 | ||
| 4 | 100 | 141335 | 141195 | 140 | 1.250 | ||
| (2D)z1F | 3 | 67 + 18(2D)3F + 12 | |||||
| (2D)3D | (2D)3D | 144511 | 144544 | −33 | 1.066 | ||
| (2D)z1D | 2 | 62 + 34(2D)3D | (2D)3D | 145252 | 145451 | −199 | 1.051 |
| (2D)z1P | 1 | 98 | 147505 | 147279 | 226 | 0.998 | |
| (2D)z3D | 1 | 97 | 147577 | 147587 | −10 | 0.521 | |
| 2 | 61 + 37(2D)1D | (2D)1D | 147928 | 148015 | −87 | 1.101 | |
| 3 | 82 + 11(2D)3F + 7 | (2D)1F | |||||
| (2D)1F | 145974 | 146023 | −49 | 1.283 |
Acknowledgments
This paper was supported in part by the National Bureau of Standards, Washington, D.C.
The author wishes to acknowledge with everlasting gratitude and appreciation the unremitting kind interest in this work by the late Professor Giulio Racah.
Footnotes
An invited paper. The major part of this paper is based on a chapter of the author’s doctoral dissertation, the Hebrew University of Jerusalem, Israel.
5. References
- [1].Shadmi Y., Bull. Res. Counc. of Israel, 10F, No. 3 109 (1962). [Google Scholar]
- [2].Shimoni E., Sc M.. Thesis, The Hebrew University of Jerusalem (1959). [Google Scholar]
- [3].Hollander S., Sc M.. Thesis, The Hebrew University of Jerusalem (1960). [Google Scholar]
- [4].Abraham B. Z., Sc M.. Thesis, The Hebrew University of Jerusalem (1961). [Google Scholar]
- [5].Trees R. E., Phys. Rev. 83, 756 (1951); ibid., 84, 1089 (1951). [Google Scholar]
- [6].Racah G., Phys. Rev. 85, 381 (1952). [Google Scholar]
- [7].Racah G., Rydberg Centennial Conference, Lunds Univ. Arsskr. 50, 31 (1955). [Google Scholar]
- [8].Racah G., Phys. Rev. 63, 367 (1943). [Google Scholar]
- [9].Racah G., and Shadmi Y., Phys. Rev. 119, 156 (1960). [Google Scholar]
- [10].Trees R. E., and Jorgensen C. K., Phys. Rev. 123, 1278 (1961). [Google Scholar]
- [11].Trees R. E., Phys. Rev. 129, 1220 (1963). [Google Scholar]
- [12].Rajnak K., and Wybourne B. G., Phys. Rev. 132, 280 (1963). [Google Scholar]
- [13].Racah G., and Stein J., Phys. Rev. 156, 58 (1967). [Google Scholar]
- [14].Racah G., Bull. Res. Counc. of Israel 8F, No. 1, 1 (1959). [Google Scholar]
- [15].Moore C. E., “Atomic Energy Levels”, NBS Circular 467, Vol. I (1949), ibid., Vol. II (1952). [Google Scholar]
- [16].Iglesias L., An. Real. Soc. Espan. Fis. Quim. (Spain), 58 (A), No. 7–8, 191 (1962). [Google Scholar]
- [17].Racah G., J. Quant. Spectrosc. Radiat. Transfer 4, 617 (1964). Pergamon Press Ltd. [Google Scholar]
- [18].Shenstone A. G., J. Opt. Soc. Am. 44, 749 (1954). [Google Scholar]








