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Abstract

Current use of multidimensional computerized adaptive testing (MCAT) has been developed in
conjunction with compensatory multidimensional item response theory (MIRT) models rather
than with non-compensatory ones. In recognition of the usefulness of MCAT and the complica-
tions associated with non-compensatory data, this study aimed to develop MCAT algorithms
using non-compensatory MIRT models and to evaluate their performance. For the purpose of
the study, three item selection methods were adapted and compared, namely, the Fisher infor-
mation method, the mutual information method, and the Kullback–Leibler information method.
The results of a series of simulations showed that the Fisher information and mutual information
methods performed similarly, and both outperformed the Kullback–Leibler information method.
In addition, it was found that the more stringent the termination criterion and the higher the
correlation between the latent traits, the higher the resulting measurement precision and test
reliability. Test reliability was very similar across the dimensions, regardless of the correlation
between the latent traits and termination criterion. On average, the difficulties of the adminis-
tered items were found to be at a lower level than the examinees’ abilities, which shed light on
item bank construction for non-compensatory items.
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Over the past decades, multidimensional item response theory (MIRT) models in conjunction

with computerized adaptive testing (CAT) (referred to as MCAT) has developed gradually as

practitioners have recognized its advantages of increasing the precision and reliability for the

latent traits or reducing test length through borrowing information between each latent trait

when compared with unidimensional CAT (Mulder & van der Linden, 2009, 2010; Segall,

1996; van der Linden, 1999; Veldkamp & van der Linden, 2002; C. Wang & Chang, 2011; W.-

C. Wang & Chen, 2004). In general, there are two types of MIRT models—compensatory and

non-compensatory, denoted as MIRT-C and MIRT-N, respectively. In compensatory models, a
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high level of one latent trait can compensate for a low level of another latent trait. In contrast,

such compensation between latent traits is not feasible in non-compensatory models. In past

studies, however, MCAT has comprised only MIRT-C (denoted as MCAT-C), leaving MCAT

for MIRT-N (denoted as MCAT-N) undeveloped. The main purpose of this study was to

develop algorithms for MCAT-N and to conduct simulations to evaluate their performance.

Different cognitive strategies or processes may not compensate each other in solving an

item. Take arithmetic word problems as an example. To solve arithmetic word problems, two

latent traits may be involved. One is reading proficiency, which enables examinees to under-

stand the problems, and the other is arithmetic proficiency, which enables examinees to estab-

lish the appropriate equations and to solve them. Apparently, these two kinds of proficiency

cannot compensate for each other because a low level of either proficiency will lead to incor-

rect answers. Several MIRT-N models have been developed for non-compensatory items.

Whitely (1980) proposed a one-parameter logistic MIRT-N model to analyze the verbal apti-

tude test of the American College Testing (ACT) Program Examination, which involved three

dimensions, image construction, event recovery, and response evaluation, in solving a verbal

aptitude item. Maris (1995) fitted the same model to typical verbal intelligence test items that

asked for one or more synonyms of a given word and found two dimensions were involved:

generation and evaluation (Janssen, Hoskens, & De Boeck, 1993). Embretson and Yang (2013)

generalized Whitely’s model for cognitive diagnosis to high-stakes multiple-choice mathe-

matics items, which involved four dimensions (components): number/computation, algebra,

geometry, and data analysis. A few items involved only one dimension, whereas the others

involved two or more dimensions. It was found that Whitely’s model was not only more theore-

tically sound but also had a better fit than MIRT-C models.

Violations of the assumption of unidimensionality have a serious effect on parameter estima-

tion under non-compensatory multidimensional structures (Ackerman, 1989; Ansley & Forsyth,

1985; Way, Ansley, & Forsyth, 1988). Ackerman (1989) simulated data according to the two-

dimensional MIRT-C and MIRT-N models, and fitted both models to the simulated data. He

observed that the difference in the probability of success between the two models was small

when items discriminated mainly in one dimension, but large when items discriminated simi-

larly in both dimensions. In addition, it appeared as if more information was provided by the

compensatory items than by the non-compensatory items; thus, mistakenly fitting MIRT-C to

non-compensatory data overestimates measurement precision, which, in turn, may lead to incor-

rect hypothesis testing and conclusions. All of these studies suggest that MIRT-N models are

very different from MIRT-C models, which implies that the findings obtained from MCAT-C

may not directly apply to MCAT-N.

This study aimed to fill the research gap through the development of MCAT-N algorithms.

Specifically, item selection and ability estimation methods for non-compensatory items were

derived, simulation studies to evaluate their performance were conducted, and some insights on

operational MCAT-N were provided. In the rest of the article, MIRT-C and MIRT-N were

briefly introduced, and item selection methods and ability estimation that have been developed

in MCAT-C to MCAT-N were adapted. The difference in item response surfaces and item

information functions between MIRT-C and MIRT-N was demonstrated, and the results of a

series of simulation studies that were conducted to evaluate the performance of the new algo-

rithms were summarized. Based on these findings, information on constructing MCAT-N can

be offered to practitioners. Finally, conclusions were drawn and potential directions for future

studies were provided. In many CAT simulation studies, the unidimensional or multidimen-

sional two-parameter logistic model is generally used for demonstration, while the one- or two-

logistic model is used for inference. This common practice in this study was followed.
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Models

As in MCAT-C, there are four major components in MCAT-N, including a MIRT-N model to

calibrate items, an item selection method, an ability estimation method, and a termination criter-

ion. Of these components, the focus in this study is on item selection methods. As this is a CAT

study, item parameters are assumed to be known a priori. In practice, both item and person para-

meters must be calibrated when item banks are being constructed. For the accuracy of item

parameter estimation, when items are loaded mainly on only one dimension, the parameter esti-

mation bias is close to zero, the root mean squared error is small, and the correlation between

the true and estimated parameters is nearly 1, regardless of the correlation between dimensions.

When items are loaded on more than one dimension, the parameter estimation becomes less

accurate as the correlation between dimensions becomes higher, especially in a short test with

small sample size (Bolt & Lall, 2003; C. Wang & Nydick, 2015). The problem in producing

less accurate parameter estimates can be lessened by increasing the number of items and sample

size (i.e., the amount of data). In other words, the dimensions must be divergent or the amount

of data must be large to obtain well-estimated non-compensatory parameters. The reader is

referred to Bolt and Lall (2003) and C. Wang and Nydick (2015) for item parameter estimation

in MIRT-N.

The three-parameter logistic compensatory MIRT model for dichotomous items (Hattie,

1981; Reckase, 1985), including the two- and one-parameter logistic compensatory MIRT mod-

els as special cases (McKinley & Reckase, 1983), can be defined as follows:

P Xij = 1jaj, bj, cj, ui

� �
= cj + 1� cj

� � 1

1 + exp �
PK
k = 1

ajk uik � bj

� �� � , ð1Þ

where Xij is the score of person i on item j; u0i = (ui1, ui2, . . . uiK) is a vector of K-dimensional

latent traits for examinee i; a0j = (aj1, aj2, . . . , ajK) is a vector of K-dimensional discrimination

parameters for item j with elements of ajk as the discrimination parameter of item j on dimen-

sion k, and bj and cj are the difficulty and pseudo-guessing parameters of item j, respectively.

Because the K-dimensional latent traits are linked by a summation (weighed by the discrimina-

tion parameters), a low level on one latent trait can be compensated for by a high level on

another.

In contrast, the three-parameter logistic non-compensatory MIRT model (Sympson, 1978) is

defined as follows:

P Xij = 1jaj, bj, cj, ui

� �
= cj + 1� cj

� �YK
k = 1

1

1 + exp �ajk uik � bjk

� �h i, ð2Þ

where, Xij, aj, cj, and ui have been defined previously, and b0j = (bj1, bj2, . . . , bjK) represents the

vector of difficulty parameters for item j, with elements of bjk as the difficulty parameter of

item j on dimension k. Because the K-dimensional latent traits are connected by a product, com-

pensation between the latent traits is not possible. Equation 2 can be reduced to the two- or

one-parameter logistic non-compensatory MIRT model. The one-parameter logistic non-

compensatory MIRT model can be regarded as a relaxation of Whitely’s multicomponent latent

trait model (Whitely, 1980). Note that there is a single difficulty for an item in MIRT-C

(Equation 1), but there are K difficulties for an item in MIRT-N, with one difficulty for each

dimension (Equation 2).
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Ability Estimation

As with MCAT-C, latent traits in MCAT-N can be estimated by the maximum likelihood esti-

mator (MLE) or a Bayesian estimator, such as the maximum a posteriori (MAP) or expected a

posteriori (EAP) estimator. The EAP computation time increases exponentially with the number

of dimensions and the MLE can only be obtained until both correct and incorrect responses are

observed. The authors focused on the MAP estimator in this study. Let us assume that L(x|u) is

the likelihood of the observed response vector x, given latent trait u, that f(u) is the prior distri-

bution of u, and that f(x) is the marginal probability of x. In the Bayes’s theorem, the posterior

density function of u is (Segall, 1996) as follows:

f ujxð Þ = L xjuð Þ f uð Þ
f xð Þ : ð3Þ

Let us assume that the prior distribution of u is a multivariate normal distribution with a mean

vector of m and a variance–covariance matrix of S:

f uð Þ= 2pð Þ�
K
2 Sj j�

1
2exp � 1

2
u� mð Þ0S�1 u� mð Þ

� �
: ð4Þ

The MAP estimator of u can then be obtained by maximizing the natural logarithm of the pos-

terior distribution ∂=∂u ln f (ujx).

Under the three-parameter logistic non-compensatory MIRT model (Equation 2), it can be

shown that

∂

∂uk

ln f ujxð Þ=
X

j2n

ajk 1� pjk

� �
Pj uð Þ � cj

� 	
xj � Pj uð Þ
� 	

Pj uð ÞQj uð Þ

� �
� ∂

∂u
m� uð Þ0

� �
S
�1 m� uð Þ,

ð5Þ

where pjk = 1


1 + exp½�ajk(uk � bjk)�; Pj(u) is defined in Equation 2; Qj(u) is 1 –Pj(u); xj is the

response to item j; the other symbols were defined previously.

Let us assume that H(u) is the Hessian matrix of u, whose diagonal elements can be

expressed as follows:

∂2

∂u2
k

ln f ujxð Þ=
X

j2n

a2
jk 1� pjk

� �
Pj uð Þ � cj

� 	
Pj uð ÞQj uð Þ
� 	2

1� pjk

� �
xjcj Qj uð Þ � Pj uð Þ
� 	

� P2
j uð Þ 1� xj � cj

� �h i
+ Pj uð ÞQj uð Þpjk Pj uð Þ � xj

� 	n o
� fkk ,

ð6Þ

and the off-diagonal elements as follows:

∂2

∂uk∂ul

ln f ujxð Þ =
X
j2n

ajkajl 1� pjk

� �
1� pjl

� �
Pj uð Þ � cj

� 	
Pj uð ÞQj uð Þ
� 	2

xjcj Qj uð Þ � Pj uð Þ
� 	

� P2
j uð Þ 1� xj � cj

� �n o
� fkl, ð7Þ

where fkk and fkl are the kth–kth and kth–lth elements of S–1. An iterative numerical proce-

dure, such as the Newton–Raphson procedure, can be used to approximate the values of u,

because there are no closed-form solutions for maximizing the natural logarithm of the posterior
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distribution. Let us assume that u(m) is the mth approximation to the value of u that maximizes

ln f(u|x). The m + 1th approximation with an even higher likelihood is û
(m + 1)

= û
(m) � d̂

(m)
,

where

d̂
mð Þ

= H u mð Þ
� �h i�1

3
∂

∂u
ln f u mð Þjx

� �
: ð8Þ

Item Selection

Item selection methods in MCAT-C cannot be completely transplanted to MCAT-N without

any adaptation, including methods such as the maximum determinant of the Fisher information

matrix (denoted as the FI method) (Segall, 1996), the maximum Kullback–Leibler (KL) infor-

mation index (denoted as the KL method) (Veldkamp & van der Linden, 2002), the minimum

trace of the inverse FI matrix (van der Linden, 1999), the minimum KL distance between two

subsequent posteriors (Mulder & van der Linden, 2010), the maximum mutual information

(denoted as the MI method) (Mulder & van der Linden, 2010), and the minimum Shannon

entropy (C. Wang & Chang, 2011). C. Wang and Chang (2011) theoretically connected the FI,

KL, and MI and Shannon entropy methods in the MCAT-C context, and observed that the FI

and MI methods performed similarly and both outperformed the Shannon entropy and KL meth-

ods. In addition, the FI and MI methods yielded a high overlap rate in item selection, while the

FI and KL methods yielded a moderate overlap rate.

This study focuses on the FI, KL, and MI methods, and other methods have been left for

future studies. The FI method is chosen because it is the most widely used in CAT. The KL

method is also widely used. In addition, it considers global information on the latent estimates,

so it may outperform the FI method at the early stage of CAT (Chang & Ying, 1999). The MI

and Shannon entropy methods have received much attention in recent years and can be viewed

as variants of the KL method. The MI method, which includes the Shannon entropy method as a

special case, outperforms the Shannon entropy method because the methods use different base-

lines to calculate the KL information (C. Wang & Chang, 2011). In addition to these three item

selection methods, the random selection (RS) method is used as a baseline for comparison.

In the FI method, the amount of item information about the unknown parameter u for item j

is defined as follows:

I uj

� �
= � E

∂2

∂u∂u0
ln f Xj = xju

� �
ju

� �
: ð9Þ

When the three-parameter logistic non-compensatory MIRT model (Equation 2) is used, the

item information matrix can be shown as follows:

Pj uð Þ � cj

� 	2
Pj uð ÞQj uð Þ

a2
j1 1� pj1

� �2
aj1aj2 1� pj1

� �
1� pj2

� �
� � � aj1ajK 1� pj1

� �
1� pjK

� �
aj1aj2 1� pj1

� �
1� pj2

� �
a2

j2 1� pj2

� �2
. . . ..

.

..

. ..
.

. . . ..
.

aj1ajK 1� pj1

� �
1� pjK

� �
aj2ajK 1� pj2

� �
1� pjK

� �
� � � a2

jK 1� pjK

� �2

2
666664

3
777775:

ð10Þ

Thus, the information matrix given in Equation 10 consists of two factors: (a) a function of u,
½Pj(u)�cj�2
Pj(u)Qj(u)

, which is the factor common to all components of the information matrix, and (b) a

468 Applied Psychological Measurement 43(6)



matrix aj(1� pj)½aj(1� pj)�
T

. It is clear that
½Pj(u)�cj�2
Pj(u)Qj(u)

forms a dependency on u through the

response function Pj(u) in Equation 2. Because Pj(u) is the product of the K-dimensional prob-

abilities, which means that the values of Pj(u) are unique, Pj(u) is produced by a specific combi-

nation of dimensions. When an examinee with u1 = 0 and u2 = 3, for instance, a two-dimension

item with Pj(u) = 0.5 may be found by (a1 = 1, a2 = 1, b1 = 0, b2 = 23, c = 0) or (a1 = 1, a2 = 1,

b1 = 23, b2 = 3, c = 0); nonetheless, they have distinct depictions even though the same values

of Pj(u) are obtained. Item (a1 = 1, a2 = 1, b1 = 0, b2 = 23, c = 0) portrays that Dimension 1

dominates the value of Pj(u) is 0.5, and item (a1 = 1, a2 = 1, b1 = 23, b2 = 3, c = 0) vice versa.

Specially, an item can be selected to differentiate a set of specific latent traits due to its unique

Pj(u). Likewise, there are two factors in the information matrix of MCAT-C (Segall, 1996), and

one is a function of u and the other is matrix ajaj
T . In this situation, however, the values of

Pj(u) do not depend on the latent traits as long as aju is constant. In other words, it is proble-

matic to discriminate which dimension governs the Pj(u) value inasmuch as the combination of

the latent traits is equal to the item difficulty. That is to say, any fixed constant of the latent

traits would yield the identical Pj(u); consequently, it is difficult to distinguish between the

dimensions.

Let us assume that û
(t)

is the interim estimate of u obtained by responses to t items, and that

I(û
(t)

) and I(û
(t)

, Xj) are the Fisher information elements acquired by the previously administered

t items and after administering item j, respectively. The FI method adaptively selects item j to

maximize the determinant of the provisional FI method, as follows:

FI ¼ I û
tð Þ� �

+ I û
tð Þ

, Xj

� ���� ���: ð11Þ

The KL method is derived from the KL distance, which measures the discrepancy between

two density functions, f(x) and g(x), as follows (Cover & Thomas, 1991):

KL f jjgð Þ= Ef log
f xð Þ
g xð Þ

� �
: ð12Þ

Equation 12 is a distance-like measure between two distributions but it is asymmetric because

KL(f jjg) 6¼ KL(gjjf ). Equation 12 is always nonnegative, is zero only if the two distributions

are the same, and becomes larger when the two distributions are more divergent. In MCAT, the

KL method is defined as how sensitive item j is in terms of differentiating the true u from its

interim estimate û, as follows:

KLj û
� �

=
X1

x = 0

ð
u

f Xj = xjû
� �

log
f Xj = xjû
� �

f Xj = xju
� � ∂u, ð13Þ

where f (Xj = xjû) and f (Xj = xju) are response functions and defined as in Equation 2.

The MI measures how an item discriminates the actual joint distribution of two random vari-

ables from what the two variables would potentially be like if independent. Let us suppose X

and Y are two continuous random variables, the MI would be defined as follows:

MI ¼
ð

y2Y

ð
x2X

f x, yð Þ log
f x, yð Þ

f xð Þf yð Þ ∂x∂y: ð14Þ
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For discrete variables, the integrals are substituted by sums. The MI indicates the amount of

information that X has about Y, which is 0 if and only if X and Y are independent. Therefore,

the MI in MCAT can be defined as follows:

X1

x = 0

P Xj = xjxt
� � ð

u

p ujxt, Xj = x
� �

log
p ujxt, Xj = x
� �

p ujxtð Þ

� �
∂u, ð15Þ

where P(Xj = xjxt) is the posterior predictive probability, given the responses to t items; p(ujxt)

is the posterior probability of u, given the responses to t items; and p(ujxt, Xj = x) is the poster-

ior probability of u, given the responses to t items and item j.

Difference in Response Surface and Item Information
Between MIRT-C and MIRT-N

To reveal the difference in item surfaces between MIRT-C and MIRT-N models, the equiprob-

ability contours for the two-parameter logistic parameter compensatory and non-compensatory

items were plotted in Figure 1. For the compensatory item, the probability of success is the same

for any fixed value of the latent traits, so the contour probability lines are parallel. In contrast,

the contour probabilities in the non-compensatory item are curvilinear, indicating that the (over-

all) probability of success is lower than the probability of success in each dimension. In this

example, when u1 = 1 and u2 = 21, the probability of success in each of the dimensions is .5 but

the overall probability of success for the item is .25.

In addition, it is important to note the difference in the item information functions between

MIRT-C and MIRT-N. In MIRT-C (Segall, 1996) and considering the above example, the max-

imum value of the item information was around .80 regardless of k is 1 or 2, when Pj(u) = .5,

and it is symmetric. The item information is identical across dimensions because the same prob-

ability of success is obtained for any fixed combination of latent traits in MIRT-C. The first

panel of Figure 2 shows, for compensatory items, that the maximum item information is located

at the point where the combination of the two dimensions is equal to the single item difficulty

(i.e., u1 + u2 = 0.5) and the item information function is systematic.

In MIRT-N, according to Equation 10, the task is to maximize the function
a2

k
(1�pjk )2½Pj uð Þ�cj�2
fPj(u)½1�Pj uð Þ�g ,

subject to the constraint pjk � Pj(u). Let us assume that both
a2

k
(1�pjk)2½Pj(u)�cj�2
fPj(u)½1�Pj(u)�g and pjk � Pj(u)

have continuous first partial derivatives. When l is allowed to denote a Lagrange multiplier, the

Lagrange multiplier function is as follows:

L=
a2

k 1� pkð Þ2 Pj uð Þ � cj

� 	2
Pj uð Þ 1� Pj uð Þ

� 	 � l pk � Pj uð Þ
� 	

: ð16Þ

The gradient is as follows:

rpk , Pj uð Þ, lL pk , Pj uð Þ, l
� �

=

�2a2
k 1� pkð Þ Pj uð Þ � cj

� 	2
Pj uð Þ 1� Pj uð Þ

� 	 � l,
a2

k 1� pkð Þ2 Pj uð Þ � cj

� 	
Pj uð Þ+ cj � 2Pj uð Þcj

� 	
Pj uð Þ 1� Pj uð Þ

� 	� 2
+ l, � pk + Pj uð Þ

( )
:

ð17Þ

470 Applied Psychological Measurement 43(6)



When rpjk , Pj uð Þ, lL(pjk , Pj(u), l) = 0 is set, taking the aforementioned illustration as the example

(a1 = 1.8, a2 = 0.9, b1 = 1.0, b2 = 21.0), the maximum value of
a2

k
(1�pjk )2½Pj(u)�cj�2
fPj(u)½1�Pj(u)�g located approx-

imately at .80 and .20 for k is 1 and 2, respectively, when Pj(u) = pjk = .5. Therefore, the maxi-

mum value of the item information is located at pjk = bjk, when Pj(u) = .5 subject to pjk�Pj(u),

but the information is asymmetric. In addition, the item information functions are different for

different dimensions.

Specifically, the maximum information in MIRT-N is obtained when the following two con-

ditions are met: (a) the level of a dimension is equal to the corresponding item difficulty, so the

probability of success on that dimension is .5; (b) the levels on the other dimensions are far

above their corresponding item difficulties, so the probability of success on the other dimen-

sions approaches 1. When the discrimination and pseudo-guessing parameters are not equal to

1 and 0, respectively, the probability of success and the location of maximum item information

will change accordingly, but the basic principle remains.

The second and third panels of Figure 2 show the item information for the above mentioned

example (a1 = 1.8, a2 = 0.9, b1 = 1.0, b2 = 21.0), the maximum item information is located at

the point where the level on one dimension is equal to its corresponding item difficulty (e.g.,

u1 = b1), whereas the level on the other dimension far exceeds its corresponding item difficulty

(e.g., u2–b2 . 2). In other words, the most informative non-compensatory item for an examinee

is an item that is ‘‘essentially’’ unidimensional to him or her (because the probability of success

is determined by only one dimension). That is to say, when a test consists of non-compensatory

two-dimensional items, selecting items that are very easy on one dimension makes the test

Figure 1. Item response surfaces and contour plots for compensatory (a1 = 1.8, a2 = 0.9, b = 0.5) and
non-compensatory (a1 = 1.8, a2 = 0.9, b1 = 1.0, b2 = 21.0) items.
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essentially measure the other dimension because any difference in item responses between per-

sons can be attributed to the ability difference in the other dimension. The item information

function is asymmetric in non-compensatory items.

Simulation Studies

It has been found in the literature of MCAT-C (e.g., Segall, 1996; W.-C. Wang & Chen, 2004;

Yao, 2013) that fixed length test termination rule, a longer test or a higher correlation between

latent traits leads to a higher measurement precision and test reliability; conversely, for the

fixed-precision rule, a more stringent criterion (a smaller standard error [SE]) leads to a higher

measurement precision and test reliability, and a longer test that the examinees must go through

to terminate the CAT. Accordingly, one would expect that these two factors—the correlation

between dimensions and the termination criterion—would affect MCAT-C’s efficiency. In this

study, these two factors were manipulated to check whether similar or different results would be

generated in MCAT-N. Consequently, using a series of simulations, the performance of the FI,

KL, MI, and RS methods was compared in each of the combinations of the correlation between

dimensions and termination criterion. For simplicity, the authors focused on the two-parameter

two-dimensional logistic MIRT-N model, and left higher dimensions and the one- and three-

parameter logistic MIRT-N models for future study.

Item Bank Construction and Examinee Generation

For all simulation conditions, an item bank consisting of 400 items with a ~ U(0.5, 2.0) and b ~

N(21.0, 1.5) was generated with all items were loaded on both dimensions. Because difficulty

Figure 2. Item information surfaces and contours for compensatory (a1 = 1.8, a2 = 0.9, b = 0.5) and
non-compensatory (a1 = 1.8, a2 = 0.9, b1 = 1.0, b2 = 21.0) items.
Note. MCAT-C = compensatory multidimensional computerized adaptive testing; MCAT-N = non-compensatory

multidimensional computerized adaptive testing.

472 Applied Psychological Measurement 43(6)



parameters take the major role in determining the probability of success in each dimension and

the overall probability of an item (Equation 2), the generation of the b values was of concern

and similar to Bolt and Lall (2003) and C. Wang and Nydick (2015) for the purpose of the gen-

eralization. Meanwhile, the generation of a values was not of focus and therefore was similar

to that in the MCAT-C literature. Bolt and Lall (2003) found that the b values generated from

such distributions were similar to those observed in Embretson (1984), and C. Wang and

Nydick (2015) used similar procedures to generate non-compensatory data. Four levels of the

latent trait correlation were manipulated to represent the correlation between dimensions as

zero, low, medium, and high. It is, therefore, that the examinees were simulated from a multi-

variate normal distribution with a mean vector of zero, and four variance–covariance matrices,

namely, S =
1 0

0 1

� �
,

1 :3
:3 1

� �
,

1 :6
:6 1

� �
, and

1 :9
:9 1

� �
, to indicate four levels of correlation

between the latent traits (ru1u2
= 0, .3, .6, and .9), and 10,000 examinees were generated for each

condition.

Ability Estimation, Item Selection, and Termination Criterion

The MAP estimator defined in Equation 5 was utilized for latent trait estimation. The item

selection methods included the FI, KL, MI, and RS methods. Fixed-length and fixed-precision

rules were adopted to terminate the CAT. The terms ‘‘fixed-precision’’ and ‘‘variable-length’’

are used interchangeably in the CAT literature because variable test lengths are required for dif-

ferent examinees to achieve a common fixed precision on latent traits. For the fixed-length rule,

the test length was set at 20, 40, and 60 items. For the fixed-precision rule, the SE of each latent

trait was computed and the cutoff point of the SE was set using prespecified test reliability,

which is defined as the squared correlation between the true and the estimated latent trait.

When the MAP estimator is used, the test reliability can be computed as follows (Nicewander

& Thomasson, 1999):

1� I ukð Þ+ s�2 ukð Þ½ ��1

s2 ukð Þ
, ð18Þ

where I(uk) is test information about uk, and s–2(uk) is the variance of the prior distribution of

uk. For instance, a test reliability of .90 is equivalent to an average posterior error variance

½I(uk) + s�2(uk)��1
of 0.10 if s–2(uk) = 1 for dimension k. Consequently, the SE of each latent

trait was set at 0.55, 0.45, and 0.32 to represent the three levels of test reliability: .70, .80, and

.90, respectively. If the SE of an examinee did not reach the prespecified levels, he or she would

keep taking the test until all 400 items were completed. The maximum test length constraint

was not considered here because this study aimed to demonstrate the developed MCAT-N util-

ity and evaluate its performance. Certainly, the maximum test length constraint would affect the

performance and it has to be done when the fixed-precision rule is used in practice. However,

the application of the developed MCAT-N is identical with that of without maximum test length

constraint.

Evaluation Criterion

To examine the performance of the item selection methods, each method was evaluated with

respect to measurement precision and test reliability, as defined in Equation 18. The measure-

ment precision on the kth dimension was appraised by the mean squared error (MSE) as follows:
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MSEk =
XN

i = 1

ûik � uik

� �2

N
, k = 1, 2, ð19Þ

and the bias on the kth dimension was appraised as

Biask =
XN

i = 1

ûik � uik

� �
N

, k = 1, 2, ð20Þ

where N is the sample size, ûik is the final MAP estimate of examinee i on dimension k, and uik

is the corresponding true value. Furthermore, for the fixed-precision rule, in addition to the

indices of measurement precision and test reliability, the descriptive statistics (mean, standard

deviation [SD], minimum, and maximum) of the test lengths that examinees required to stop

the CAT when their latent traits’ precision met the requirement (denoted as TLS) as well as the

percentage of examinees taking all items in the item bank (denoted as %ETA) were recorded.

The FI and MI methods performed similarly, and both outperformed the KL method in the

MCAT-C context (C. Wang & Chang, 2011). The similarity between the FI and MI methods

was due to the fact that maximizing the expected KL distance between posterior and prior dis-

tributions in the MI method (Equation 16) is equivalent to maximizing Bayesian D-optimality

in the FI method (Equation 11) in the case of linear models (Chaloner & Verdinelli, 1995), and

nearly equivalent to this in the case of nonlinear models (C. Wang & Chang, 2011). It was

anticipated that similar results would be obtained from the FI, MI, and KL methods for MCAT-

N. As shown in Figure 2, in addition, under MIRT-N, an item provides the maximum informa-

tion when the ability level in one dimension matches the difficulty of the same dimension, and

the ability level of the other dimension far exceeds that same dimension’s difficulty. It was thus

anticipated that, on average, the difficulty distribution of the administered items in MCAT-N

would be lower than the ability distribution of the examinees.

Results

The Fixed-Length Rule

Table 1 displays the bias and MSE for the latent trait estimates, as well as the test reliability for

the FI, KL, MI, and RS methods using the fixed-length rule when test length was 40 (as the

results of test lengths were 20 and 60 were highly similar to that of 40 and therefore they are

provided in the online supplement) All of the adaptive item selection methods substantially out-

performed the RS method, regardless of test length or the correlation between the dimensions.

Let us assume a test reliability of .90 as the benchmark. When the correlation between the

dimensions was .9, the FI, KL, MI, and RS methods required approximately 20, 20, 20, and 60

items, respectively, to reach a test reliability of .90. As anticipated, the bias, MSE, and test relia-

bility on both dimensions were generally influenced by the correlation between the dimensions

and test lengths, in that the higher the correlation or the longer the test, the higher the measure-

ment precision and test reliability. Furthermore, the improvements in measurement precision

and test reliability became smaller as the test became longer or as the correlation between the

dimensions became higher, indicating a nonlinear and ceiling effect. Consistent with the find-

ings in the MCAT-C literature, the FI and MI methods performed similarly, with both outper-

forming the KL method. The test reliability for the two dimensions was similar, irrespective of

the test length and correlation between the dimensions.

474 Applied Psychological Measurement 43(6)



The Fixed-Precision Rule

Table 2 summarizes the bias and MSE for the latent trait estimates, test reliability, TLS, and

%ETA of the item selection methods using the fixed-precision rule with SE = 0.45 (the results

of SE = 0.55 and 0.32 can be found in the online supplement). As with the fixed-length rule,

the adaptive selection methods outperformed the RS method. Let us assume a test reliability of

.80 (SE = 0.45) as the benchmark. When the correlation between dimensions was .9, the mean

TLS across examinees was approximately 7, 7.6, and 7 items for the FI, KL, and MI methods,

respectively, with approximately 21 items for the RS method. In general, a smaller prespecified

SE led to a higher measurement precision, higher test reliability, a longer TLS, a smaller MSE,

a smaller bias (due to scale shrinkage in Bayesian estimators), and a larger %ETA. Moreover,

the higher the correlation between dimensions, the more efficient the MCAT-N, in that there

would be a decreased TLS in such a case. The FI and MI methods performed similarly, and

both outperformed the KL method. The test reliability for each dimension was greater than

the prespecified test reliability because the examinees finished the CAT when their SEs were

equal to or smaller than the prespecified SE. In other words, when the CAT was stopped, the

SE of the examinees’ each latent trait should be no greater than 0.45 and the test reliability

should be higher than the prespecified value. The test reliability was also similar between

dimensions.

As noted above, under MIRT-N, an item provides the maximum information about an exam-

inee when the examinee’s ability level of one dimension is equal to the difficulty of that dimen-

sion and the ability level of the other dimension is higher than the corresponding difficulty.

That is to say that there was high correspondence between the ability level and the difficulty in

the same dimension. To verify the correspondence, û1 and û2 on the mean difficulties of both

dimensions of the administered items, �b1 and �b2, were regressed. The regression coefficients

are shown in Table 3. R2 ranged from .89 to .97. Moreover, �b1 was a good predictor of û1, with

Table 1. Bias and MSE for the Latent Trait Estimates, and Test Reliability of the Various Item Selection
Methods Using the Fixed-Length Termination Rule (Length = 40).

Bias MSE Reliability

ru1u2
Method u1 u2 u1 u2 u1 u2

0 RS 20.067 20.056 0.314 0.284 0.74 0.75
FI 20.027 20.022 0.123 0.112 0.90 0.90

KL 20.047 20.033 0.164 0.148 0.88 0.88
MI 20.024 20.020 0.120 0.111 0.90 0.90

0.3 RS 20.052 20.050 0.273 0.255 0.76 0.77
FI 20.018 20.021 0.110 0.106 0.90 0.91

KL 20.028 20.033 0.131 0.132 0.89 0.89
MI 20.015 20.018 0.110 0.104 0.90 0.91

0.6 RS 20.042 20.044 0.214 0.207 0.80 0.81
FI 20.013 20.014 0.098 0.094 0.91 0.91

KL 20.020 20.025 0.108 0.105 0.91 0.91
MI 20.012 20.014 0.099 0.094 0.91 0.91

0.9 RS 20.022 20.024 0.127 0.129 0.88 0.88
FI 20.010 20.013 0.068 0.067 0.94 0.94

KL 20.010 20.013 0.068 0.067 0.94 0.94
MI 20.011 20.013 0.068 0.067 0.94 0.94

Note. ru1u2
= correlation between u1 and u2; MSE = mean squared error; RS = random selection; FI = Fisher

information matrix; KL = Kullback–Leibler information; MI = mutual information.
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regression coefficients ranging from 0.67 to 1.04, whereas �b2 was a good predictor of û2, with

regression coefficients ranging from 0.92 to 1.13. The intercepts were zero because the mean of

û1 and û2 was zero.

To further investigate the relationship between the administered items and the examinees’

distribution, we also computed the item exposure rates for the FI method using the fixed-length

rule. Figure 3 shows the result of 40-item tests contour lines of the item exposure rates when

the correlation between dimensions was .6. The contour lines when the correlation was .0, .3,

Table 2. Bias and MSE for Latent Trait Estimates, Test Reliability, TLS, and %ETA of Various Item
Selection Methods Using the Fixed-Precision Termination Rule (SE = 0.45).

Bias MSE Reliability TLS %ETA

ru1u2
Method u1 u2 u1 u2 u1 u2 M SD Minimum Maximum

0 RS 20.048 20.043 0.184 0.176 0.85 0.86 92.4 55.9 27 399 1.7
FI 20.033 20.026 0.206 0.200 0.83 0.84 21.9 22.1 12 363 1.6

KL 20.043 20.042 0.185 0.176 0.86 0.87 45.1 48.3 12 395 1.6
MI 20.027 20.023 0.202 0.230 0.83 0.84 22.6 22.3 12 399 1.6

0.3 RS 20.048 20.037 0.194 0.177 0.84 0.85 79.1 45.9 23 397 0.2
FI 20.027 20.029 0.200 0.203 0.83 0.83 18.3 15.4 11 343 0.2

KL 20.033 20.040 0.179 0.174 0.86 0.86 35.0 36.6 12 379 0.2
MI 20.023 20.021 0.197 0.211 0.83 0.83 18.8 14.9 11 243 0.4

0.6 RS 20.036 20.035 0.190 0.182 0.83 0.83 52.9 25.2 21 375 0.0
FI 20.020 20.023 0.206 0.209 0.82 0.82 13.1 6.6 10 311 0.0

KL 20.032 20.035 0.185 0.181 0.84 0.85 20.0 13.8 10 278 0.0
MI 20.021 20.020 0.199 0.209 0.82 0.82 13.4 7.7 9 315 0.0

0.9 RS 20.027 20.032 0.196 0.196 0.81 0.82 21.0 9.0 9 183 0.0
FI 20.027 20.031 0.201 0.207 0.82 0.81 7.0 1.2 6 44 0.0

KL 20.028 20.033 0.198 0.197 0.82 0.82 7.6 1.5 6 53 0.0
MI 20.022 20.028 0.204 0.207 0.81 0.81 7.0 1.3 6 42 0.0

Note. MSE = mean squared error; TLS = test length that examinees required to stop the tests when their latent traits’

precision met the requirement; %ETA = percentage of examinees taking all items in the item bank; SE = standard

error of u1 and u2; ru1u2
= correlation between u1 and u2; RS = random selection; FI = Fisher information matrix; KL =

Kullback–Leibler information; MI = mutual information.

Table 3. Regression Coefficients and R2 Under Various Conditions.

Criterion �b1
�b2 R2

ru1u2
= 0

û1 1.04 20.17 .90
û2 20.33 1.09 .89
ru1u2

= .3
û1 1.03 20.11 .91
û2 20.28 1.13 .90
ru1u2

= .6
û1 0.98 20.02 .93
û2 20.21 1.13 .92
ru1u2

= .9
û1 0.67 0.32 .97
û2 0.07 0.92 .97

Note. ru1u2
= correlation between u1 and u2.
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and .9 were similar to the data in Figure 3, meanwhile, the similar exposure rates patterns can

be found for 20- and 60-item tests. Among the 10,000 examinees, there were around 79%

examinees falling into the seven groups: (u1, u2) = (21, 21), (21, 0), (0, 21), (0, 0), (0, 1), (1,

0), and (1,1). For example, an examinee with latent traits (0.86, 0.27) would be classified into

the group of (u1, u2) = (1, 0). The seven groups were chosen here because there were over two

thirds of examinees falling into one of them regardless of the correlation between dimensions.

There were around 68%, 72%, and 86% examinees falling into the seven groups when the cor-

relation between dimensions was 0, .3, and .9, respectively. In the case of the group (u1, u2) =

(0, 0), the polygon had coordinates (23, 24), (3, 23), (24, 21), and (24, 1), and the most fre-

quently administered items had difficulties with (0, 24), (0, 23), and (23, 0). Other groups

had similar exposure patterns. In general, the following two difficulty patterns were highly

administered for examinees with abilities u1 and u2 as follows: (a) b1 = u16 1, b2 = b1– 2; and

(b) b2 = u26 1, b1 = b2– 2.

Constructing an item bank for a specific population is the first step to implement a CAT pro-

gram. In MCAT-C, an item bank could provide higher information about examinees’ latent

traits when the distributions of the difficulty parameters more closely match the examinees’ dis-

tributions. Along this logic, let the examinees follow a K-dimensional multivariate normal dis-

tribution with means m1, . . ., mK, and variances s2
1, . . ., s2

K . It is therefore to establish an item

bank that provides a large amount of test information about the examinees in MCAT-N; based

on the simulation results, the relationship between the administered items and population distri-

bution can be found as follows:

1. b1 ~ N(m1, s2
1) or b1 ~ U(m12 2, m1 + 2), together with the corresponding b2 . . . bK in

the same item being equal approximately to b12 2;

Figure 3. Conditional distributions of item exposure rates for the fixed-length rule with 40 items when
ru1u2

= 0:6.
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2. b2 ~ N(m2, s2
2) or b2 ~ U(m22 2, m2 + 2), together with the corresponding b1, b3,. . . bK

in the same item being equal approximately to b2 2 2;

3. and so on for bp.

It is apparent that the b values have lower means compared with the examinees’ latent traits

because this can make the probability of success to be sufficiently high by the non-

compensatory feature of MIRT-N (see Equation 2). Although test developers often create test

items based on concepts regarding the level of the examinees, all the items are required to go

through various test validations. These results can provide information for item bank construc-

tion and test assembly. It is worth noting that the results are drawn from specific conditions in

this simulation (i.e., the specific population distribution and item bank); therefore, they should

be used with caution in practice.

Conclusion and Discussion

This study is the first to develop CAT algorithms for non-compensatory items (MCAT-N). The

FI, MI, and KL methods, together with fixed-length and fixed-precision termination rules, were

adapted to MCAT-N, and their performance was evaluated using simulations. When the fixed-

length rule was implemented, it was found that the longer the test length and the higher the cor-

relation between dimensions, the higher the measurement precision and test reliability. When

the fixed-precision rule was implemented, it was found that the smaller the prespecified SE or

the lower the correlation between dimensions, the longer the TLS and the larger the %ETA. The

FI, KL, and MI methods outperformed the RS method; the FI and MI methods performed simi-

larly and both outperformed the KL method. All of these findings were consistent with those for

MCAT-C.

Unlike in MCAT-C, where the difficulties of the administered items tend to match the sum

of the ability levels across the dimensions, it was found that the difficulties of the administered

MCAT-N items tended to be located below the ability levels. For example, an item with diffi-

culties of (0, 22) or (22, 0) on the two dimensions provides a lot of information about the

examinees with ability levels of (0, 0). Consequently, the ‘‘mean’’ difficulties across the

selected items (21 for both dimensions in this case) would be located lower than the exami-

nees’ ability level (0 for both dimensions in this case). This phenomenon happens in the light

of the non-compensatory nature of MIRT-N. low mean difficulties can produce the probability

of success to be sufficiently high compared with the examinees’ latent traits.

This study has some limitations. First, this study focused on two-dimension situations where

all items were loaded on both dimensions. However, it would be straightforward to include in

the study higher dimensions (more than two dimensions) or use items that are not loaded on all

dimensions. The MCAT-N algorithms were demonstrated under the two-parameter logistic

non-compensatory MIRT model. They can be directly adapted to other MIRT-N models, such

as the multicomponent latent trait model (Embretson, 1984; Whitely, 1980). The item selection

methods in this study were based on maximizing the FI, KL, and MI in terms of latent traits in

one item bank. Future studies should investigate other item selection methods, item banks, abil-

ity estimation methods, as well as population distribution, to offer a better understanding of

MCAT-N. All latent traits in this study were treated as intentional, but in practice, some latent

traits may be nuisances (Mulder & van der Linden, 2009). Further study is required on how

MCAT-N can be adapted to such cases. In addition, it would be of great value to investigate

how MCAT-N will perform when practical constraints (e.g., item exposure control, test overlap

control, content balancing) are enforced (Su, 2016; Yao, 2014).
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The fixed-precision rule in this study was based on fixed SEs. Other fixed-precision termina-

tion rules, such as the minimum information and the predicted standard error reduction termina-

tion rules (Yao, 2013), can be adapted to MCAT-N. When the fixed-precision rule is adopted, a

maximum test length constraint is often imposed to prevent examinees unnecessarily taking

additional items (or even administering all of the items in the item bank) for whom a prespeci-

fied precision criterion cannot be met. Further studies can be conducted to adapt other fixed-

precision rules with a view to setting an appropriate maximum test length for the fixed-

precision MCAT-N and explore multidimensional computerized classification testing for non-

compensatory data (van Groen, Eggen, & Veldkamp, 2016). Furthermore, future study can be

done as Segall (1996) to evaluate how does MCAT-N work compared with fitting multiple uni-

dimensional item response theory (IRT) models. The relationship between the administered

items and examinees’ distribution provided some insights on item bank construction in the case

of non-compensatory items. Yet, it is drawn by limited simulations; based on these information,

broader simulation studies can be conducted for better understanding the relationship, and

furthermore to give practitioners guidelines or rules of thumb on the item bank construction.

Finally, it is worth to investigate the performance of MCAT-N with real data.
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