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Abstract

Some large-scale testing requires examinees to select and answer a fixed number of items from
given items (e.g., select one out of the three items). Usually, they are constructed-response
items that are marked by human raters. In this examinee-selected item (ESI) design, some exam-
inees may benefit more than others from choosing easier items to answer, and so the missing
data induced by the design become missing not at random (MNAR). Although item response
theory (IRT) models have recently been developed to account for MNAR data in the ESI design,
they do not consider the rater effect; thus, their utility is seriously restricted. In this study, two
methods are developed: the first one is a new IRT model to account for both MNAR data and
rater severity simultaneously, and the second one adapts conditional maximum likelihood esti-
mation and pairwise estimation methods to the ESI design with the rater effect. A series of
simulations was then conducted to compare their performance with those of conventional IRT
models that ignored MNAR data or rater severity. The results indicated a good parameter
recovery for the new model. The conditional maximum likelihood estimation and pairwise esti-
mation methods were applicable when the Rasch models fit the data, but the conventional IRT
models yielded biased parameter estimates. An empirical example was given to illustrate these
new initiatives.
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Introduction

In large-scale testing, it is not uncommon to require examinees to choose and answer a fixed

number of items (e.g., two) from a given set of items (e.g., four), which are referred to as

examinee-selected items (ESIs). For example, several subjects in the 2016 Hong Kong Diploma

of Secondary Education Examination consist of ESIs. The biology test requires examinees to

choose and answer two out of the four constructed-response (CR) items. The chemistry test

requires examinees to select two out of the three given sections and answer all CR items in the

chosen sections. The physics, integrated science, geography, information and communication
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technology, and history tests consist of ESIs as well. Other large-scale tests with ESIs include

the chemistry tests in 1968 and 1969 and the history test in 2010 of the Advanced Placement

Examination in the United States (Lukhele, Thissen, & Wainer, 1994; Wainer & Thissen, 1994)

and the Maryland School Performance Assessment Program in the United States (Fitzpatrick &

Yen, 1995), and the National Higher Education Entrance Examination in China (W. C. Wang,

Jin, Qiu, & Wang, 2012). In these tests, all ESIs are in the CR format and graded by human

raters.

Although several educational advantages of the ESI design have been identified, such as

increasing learner autonomy, reducing test anxiety, and boosting learning (Wainer &

Thissen, 1994), the measurement with the ESI design encounters two challenges—one is the

problem of missing not at random (MNAR) data, and the other is the effect of rater severity

on CR items. The first challenge indicates that the missing data in the ESI design (i.e., those

responses to unselected items) are not ignorable in likelihood inference (Rubin, 1976). For

example, more capable students (on the intended latent ability) tend to choose easier items

more often than less capable students, and such choice effect makes test scores incomparable

across examinees who choose different items (Lukhele et al., 1994; Wainer & Thissen,

1994). The second challenge is that the ESI design usually comprises CR items that require

raters to give scores, and raters often have different degrees of severity (Linacre, 1989).

Although there are attempts to address, avoid, or overcome the first challenge (Allen,

Holland, & Thayer, 2005; Bradlow & Thomas, 1998; Culpepper & Balamuta, 2017;

Fitzpatrick & Yen, 1995; Liu & Wang, 2017a, 2017b; Livingston, 1988; Lukhele et al.,

1994; Pena, Costa, & Braga Oliveira, 2018; Powers & Bennett, 1999; W. C. Wang et al.,

2012), no research has been conducted to address or overcome the second challenge for

ESIs, to the best of our knowledge.

Rater errors may come from consistently giving ratings that are higher or lower than the

examinees should receive (leniency/severity), overusing middle or extreme categories of a rat-

ing scale (centrality/extremity), the rater’s general impression of an examinee (halo effect), or

the interaction between raters (dependency; for a review, see Myford & Wolfe, 2003). Because

ESIs are usually CR items that are marked by human raters, and human raters usually exhibit

very different degrees of severity, it is important to consider both choice effect and rater sever-

ity to increase the feasibility of the ESI design, which is the main purpose of this study.

There are several approaches to the choice effect in the ESI design, including pattern-mixture

models (Wainer & Thissen, 1994), item response theory (IRT) models with prespecified choice

behaviors (Mislevy & Wu, 1996), and bifactor IRT models (W. C. Wang et al., 2012). Wainer

and Thissen’s pattern-mixture models assume that Pr(Y|Q = 0) = Pr(Y|Q = 1), where Y is the

response and Q is a missing datum indicator, in which Q = 1 if the datum is observed, and Q = 0

otherwise. Moreover, Pr(Y|Q = 0) is unknown unless a researcher can acquire the missing data,

so the assumption of Pr(Y|Q = 0) = Pr(Y|Q = 1) cannot be verified empirically. Mislevy and

Wu’s models assume that examinees’ choice behaviors are known prior to data analysis, but

such an assumption is unlikely to hold true in practice. In W. C. Wang et al.’s (2012) study, a

latent propensity is incorporated to account for the choice effect, but the data are assumed miss-

ing completely at random (MCAR), which may not hold true in the ESI design.

In addition to these approaches, two others have been recently proposed to deal with the

choice effect in the ESI design. One is the nonignorable missingness ESI model (NESIM; Liu

& Wang, 2017a); the other is the conditional maximum likelihood estimation (CMLE) and

pairwise estimation for the Rasch models (Liu & Wang, 2017b). The NESIM combines two

IRT models: an ordinary one for substantive measures and the nominal response model (NRM;

Bock, 1972) for the missingness patterns. The CMLE and pairwise estimation methods are fea-

sible for ESIs because of the measurement property of specific objectivity in the family of
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Rasch models, in which the estimations of item and person parameters are mutually indepen-

dent. Unfortunately, both approaches fail to account for rater severity.

The purpose of this study was to advance the previous approaches to accommodate both

choice effect and rater severity in the ESI design. Specifically, the authors propose (a) a new

nonignorable missingness ESI rater model (NESIRM) and adapted (b) CMLE and pairwise esti-

mation methods for ESI items to examine whether MNAR effect or rater effect exists. The for-

mer is a new IRT model for MNAR data, whereas the latter are estimation methods that can be

applied to the Rasch model for MNAR data.

The authors demonstrate simulation results in the subsequent section to explicate the detri-

ments of ignoring the MNAR effect and/or rater effect on item parameter estimators. The new

methods are expected to perform well in recovering the ‘‘true’’ parameters when MNAR effect

and/or rater effect is not ignored. Also, the new methods are expected to perform similarly to

conventional methods if MNAR effect and/or rater effect are ignorable. Details are presented in

the following simulation studies. In addition, the new and conventional methods were applied to

empirical data to compare their difference in item estimates. Significant difference might imply

that there exists MNAR effect or/and rater effect. In such situations, the new methods should

yield more reliable estimates than those by the conventional methods. Details are presented in

the empirical example section.

This study is organized as follows. The NESIRM and its relationship with the NESIM are

introduced. Then, Rasch models for rater severity are outlined. Next that the missingness

mechanism and the substantive latent trait in the ESI design could be eliminated in the CMLE

and pairwise estimation methods when specific objectivity holds true is demonstrated. How to

estimate the parameters of the NESIRM and implement the CMLE and pairwise estimation

methods are described. Then the results of a series of simulations that were conducted to inves-

tigate the parameter recovery of the NESIRM, the effectiveness of the CMLE and pairwise esti-

mation methods, and the consequences of ignoring choice effect and rater severity on parameter

estimation are summarized, using conventional IRT models. An empirical example is provided

online in appendix O to illustrate the implications and applications of the new initiatives.

Finally, conclusions are drawn and suggestions for future studies are given.

The NESIRM for Choice Effect and Rater Severity

First of all, the authors introduced the necessary components of a general framework of missing-

ness modeling for item response models. Generally speaking, an item response model has to be

specified for the observed responses and a missingness model for missing data indicators for the

NESIRM. Conventionally, the missing data indicator is a binary random variable used to indi-

cate whether a response is missing (coded ‘‘0’’) or observed (coded ‘‘1’’). However, such coding

is not appropriate to the ESI. Liu and Wang (2017a) indicated that the missing data indicators

are statistically dependent due to the nature of the ESI design. Take the ‘‘choose one from two

items’’ as an example. The resulting missing data indicators will be (1, 0) or (0, 1) for the two

items. The other patterns such as (1, 1) or (0, 0) are not allowed in such design. Thus, the two

missing data indicators are dependent of each other. A good choice of missing data indicators is

to regard the missing patterns as nominal variables as shown in the following paragraphs.

Let Ycom denote complete data and consist of an observable part Yobs and a missing part Ymis.

Yobs and Ymis are categorical variables in this study. Let Mb2 (1, . . . , k, . . . , Wb) signify the

index of the selection patterns within block b of items, and Wb represent the number of selection

patterns in block b. b denotes the index of the block, and a block means a group of items that

students have to select from. The random variable Mb takes on a set of possible different values.

Take ‘‘choose two out of four items’’ as example. There can be six patterns, so Mb = 6. The
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realized value, mb, of Mb could be one of the six values (1, 2, 3, 4, 5, and 6). As a result, using

Mb avoids the statistical dependence as mentioned previously.

Given that Ycom and Mb are both random variables, the joint probability of Ycom and M,

Pr(Ycom, M) can be factorized as follows:

Pr Ycom, Mbð Þ= Pr MbjYcomð ÞPr Ycomð Þ
= Pr MbjYobs, Ymisð ÞPr Yobs, Ymisð Þ:

ð1Þ

By marginalizing over the unobservable Ymis, the joint probability becomes,

Pr Yobs, Mbð Þ=
X

Ymis2S

Pr MbjYobs, Ymisð ÞPr Yobs, Ymisð Þ, ð2Þ

where S2 (0, 1, . . . , C) and C denotes the total number of rating points minus one. By employ-

ing the parameters of interest, Equation 2 becomes

Pr Yobs, Mb, u, j, g, zð Þ=
X

Ymis2S

Pr MbjYobs, Ymis, g, zð ÞPr Yobs, Ymisju, jð Þ, ð3Þ

where u and g are the target latent trait and some latent propensity (e.g., individual’s tendency,

which can be related to u), respectively, j is the collection of all item parameters, z denotes the

collection of all structural parameters of the missingness model. The prior distributions of item

parameters (j and z) are omitted due to the absence of prior information in this paper. Let r

denote the linear correlation between u and g to account for the MNAR effect, and assume that

u and g follow a bivariate normal distribution; then Equation 3 becomes

Pr Yobs, Mb, u, j, g, z, rð Þ=
X

Ymis2S

Pr MbjYobs, Ymis, g, zð ÞPr Yobs, Ymisju, jð ÞPr u, gjrð Þ: ð4Þ

Furthermore, based on the local independence assumption, the Mb, Yobs, and Ymis are assumed

stochastically independent given g, the Ymis is marginalized and Equation 4 is simplified to,

Pr Yobs, Mb, u, j, g, z, rð Þ=
X

Ymis2S

Pr Mbjg, zð ÞPr Yobs, Ymisju, jð ÞPr u, gjrð Þ

= Pr Mbjg, zð ÞPr Yobsju, jð ÞPr u, gjrð Þ,
ð5Þ

which is the NESIM (Liu & Wang, 2017a). Moreover, Pr(Yobs| u, j) is assumed to follow an

IRT model such as the partial credit model (PCM; Masters, 1982), whereas Pr(Mbjg, z) is

assumed to follow the NRM. If r = 0, it leads to

Pr Yobs, Mb, u, j, g, z, rð Þ= Pr Mbjg, zð ÞPr Yobsju, jð ÞPr u, gjr = 0ð Þ
= Pr Mbjg, zð ÞPr Yobsju, jð ÞPr uð ÞPr gð Þ
}Pr Yobsju, jð ÞPr uð Þ,

ð6Þ

which means the missingness model can be ignored (i.e., missing data are ignorable) and this is

an MCAR mechanism. The missing at random (MAR), Pr(Mb|g, z, Yobs), is not considered in

the NESIM due to the local independence assumption (i.e., Yobs is ignored given g).

Notice that r does not convey the information about whether the choice effect in a specific block

is related to u (i.e., nonignorable). In this study, the authors relax the linear correlation assumption

between u and g by introducing a block-specific parameter to detect the choice effect in each block.
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Thus, g is decomposed as a linear combination of u and a new random effect, e (e.g., individual’s

tendency which is not related to u), in the multidimensional NRM (MNRM; see Equation 8) to

account for the choice effect. Different from the NESIM, Equation 5 is changed as follows:

Pr Yobs, Mb, u, j, e, zð Þ= Pr Mbju, e, zð ÞPr Yobsju, jð ÞPr eð ÞPr uð Þ, ð7Þ

where Pr(u) and Pr(e) are the distributions of u and e, respectively, and assumed stochastically

independent to each other because a relationship of linear addition for u and e is assumed.

Based on our experience, if theta and epsilon are assumed dependent, in addition to the linear

relationship, model identification problems will occur. Moreover, Pr(Mb| u, e, z) for person n

and choice pattern k in block b follows the MNRM):

Pr Mbn = kjun, en, vbk , lbk , tbkð Þ= exp vbkun + lbken + tbkð Þ
PWb

w = 1

exp vbwun + lbwen + tbwð Þ
, ð8Þ

where z2 (v,l, t), vbk is a slope parameter for un, lbk represents a slope parameter for en, tbk

signifies an intercept parameter, and en accounts for the examinee’s comprehensive propensity

and is assumed to be statistically independent of un. The variable vbk is the key indicator of the

choice effect for pattern k in block b for un to determine whether the choice effect is ignorable

(i.e., whether H0: vbk = 0 is true). This information could help test designers to organize the items

in the blocks to reduce the choice effect for preliminary analysis or further test development.

To account for rater severity, Pr(Yobs| u, j) is assumed to follow the facets model (Linacre,

1989):

Pr ynisjun, di, hsð Þ=
exp ynisun �

Pk
c = 0

hs + dicð Þ
� �

PC
w = 0

exp wun �
Pw
c = 0

hs + dicð Þ
� �� � , ð9Þ

where dic is the threshold c of item i, C denotes the total number of rating points minus one (c

= 0, . . . , k, . . . , C), ynis2 (0, 1, . . . , C), hs indicates the severity of rater s, and di0[ 0.

Combining Equations 7 to 9 creates the NESIRM.

The NESIRM is a new model for ESIs, which subsumes the old NESIM as a special case in

two aspects. First, the old NESIM assumes that all raters have the same level of severity (i.e.,

no rater effect), whereas the NESIRM recognizes that different raters may have varying degrees

of severity. Second, the r parameter in the NESIM indicates a universal choice effect across

blocks, whereas the v parameter in the NESIRM describes the choice effect on each block. The

r cannot inform which block of ESIs have none, weak, or strong choice effect. In the prelimi-

nary study, the v could help practitioners to rearrange the items in the blocks to reduce the

choice effect for preliminary or further study. The NESIRM is a generalized MNAR model,

which can be simplified to the NESIM when vbk = lbkr and s2
e = (1� r2)s2

u, given that g =

ru + e and hs = 0 (see online Appendix A). By further constraining vbk = 0 and hs = 0, the

NESIRM is simplified to the PCM.

Parameter Estimation for the NESIRM

The NESIRM is basically a two-dimensional IRT model because it includes two latent variables

(u and e). For parameter estimation, a researcher can use the marginal maximum likelihood with
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expectation-maximization (MML-EM) algorithm to integrate the u and g distributions in the

likelihood function. Given a specific selection pattern vector mn = (mn1, mn2, . . . , mnB)T and a

specific set of rater s, the marginal likelihood can be written as follows:

LM j, z; y, mð Þ=
YS

s = 1

YN
n = 1

ðð YB

b

Pr mnbju, e, zð Þ
Y

i2umnb

Pr yniksju, jð Þ

2
4

3
5f uð Þf eð Þdude, ð10Þ

where N is the number of examinees. The random variable Mnb takes on a set of possible differ-

ent values. Take ‘‘choose two out of four items’’ for illustration purposes. The realized value,

mnb, of Mnb could be one of the six values (1, 2, 3, 4, 5, and 6), and the corresponding random

variable of the selected item index is Umnb
, which takes on a set of six possible item indexes:

umn1
= (1, 2), umn2

= (1, 3), umn3
= (1, 4), umn4

= (2, 3), umn5
= (2, 4), and umn6

= (3, 4):
In addition to the MML-EM, a researcher can adopt the Markov chain Monte Carlo

(MCMC) method, which is available for various IRT models and has been implemented in free-

ware, similar to the Just Another Gibbs Sampler (JAGS; Plummer, 2003). In this study, the

MCMC method was adopted via JAGS because it is easy to set up model constraints.

Specifically, NESIRM is identified by constraining vb1 = lb1 = tb1 = 0 for the first category

(alternatively,
PWb

w = 1 vbw =
PWb

w = 1 lbw =
PWb

w = 1 tbw = 0, Bock, 1972),
PI

i

PC
w = 1 dic = 0, andPS

s = 1 hs = 0. Thus, the mean and the variance of u can be freely estimated. The sum-to-zero

constraints are adopted to agree with the CMLE and pairwise estimation, which also use the

same constraints (see the next section), so the scales are comparable between the estimation

methods. In addition, based on the experience with JAGS, the authors constrain lbk to be equal

across blocks (i.e., lbk = lk) and positive, that is, lk� 0 because le = (2l) (2e), to yield a sta-

ble estimation for l. At first glance, Equation 8 seems like an over-parameterized MNRM, but

actually, it is not—because u is largely measured by item response yobs, and only v is measured

by item selection m.

Apart from model constraints, the ESI design must meet the following requirements to estab-

lish a common scale (Liu & Wang, 2017a). First, at least two blocks of ESIs are needed, and

there are some overlaps among examinees between blocks. Second, if there is only one block of

ESIs, at least two items must be chosen (e.g., choose two out of the three items). Third, if there

is only one block of two ESIs, at least one compulsory item (all examinees must answer) should

be included. Fourth, if there is only one block of two ESIs but no compulsory item, at least some

examinees must answer both ESIs. These requirements are not too harsh to meet in practice

because multiple blocks or compulsory items are usually included in the ESI design. In addition

to these requirements, the rating design should be implemented well to ensure linkage among

raters for parameter estimation (Linacre, 1989).

Conditional Estimation of Rasch Models for Choice Effect and Rater
Severity

In this section, the aim is not to develop a new MNAR model for choice effect and add a rater

severity to the NESIRM. Instead, it is shown that, by specifying an IRT model from the Rasch

family for the item responses and appropriate estimation methods, one does not need to expli-

citly specify the missingness model. The idea is that a researcher may find an estimator that

does not involve u and the missingness mechanism so that the item parameter estimation is

independent of u and the missingness mechanism.

Liu and Wang (2017b) showed that CMLE for the Rasch models leveraged the property of

sufficient statistics for u, so the item parameter estimation was independent of u and the
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missingness mechanism in the ESI design (Fischer, 1973; Mair & Hatzinger, 2007). In this

study, CMLE is adapted to deal with both choice effect and rater severity. The details of deriva-

tion can be found online in Appendix B. Specifically, the likelihood function of the item para-

meters and the rater effect parameters for examinee n, given rater s, is shown in Equation 1 of

Appendix B. The summation of the likelihood of all possible response patterns is also shown in

Equation 2 of Appendix B. By dividing Equation 1 by Equation 2, the likelihood function,

which does not involve u and missingness model, is obtained. Thus, the choice effect can be

ignored and rater effect can be estimated along with item parameters.

Pairwise Estimation of Rasch Models for Choice Effect and Rater
Severity

Three variants of pairwise estimation algorithms for rater data were introduced for the Rasch

models (Garner & Engelhard, 2009). However, they neither considered the missing data that

were induced by an incomplete rating design nor attempted to handle ESI data. In this study,

pairwise estimation algorithms are adapted to take into account both choice and rater effect in

the ESI design.

In the case of a large number of items or raters, CMLE may become inefficient because of

the costly, recursive computation of the elementary symmetric function (Andersen, 1970). Rasch

proposed pooling all item pairs to obtain a pairwise noniterative (PWN) estimation for the item

parameters (Choppin, 1968, 1985). The main purpose of the pairwise estimation is to eliminate

u by calculating the odds ratio of paired items. Choppin elaborated on the PWN and the pairwise

iterative (PWI) approaches based on pairwise likelihood (Zwinderman, 1995). The pairwise

eigenvector (PWE) approach proposed by Garner and Engelhard (2009) could produce item

parameter estimates that were nearly identical to those from the PWN and the PWI approaches.

In this study, all three approaches were adapted to the ESI design and investigated their recovery

of the item and the rater parameters. The details of derivation can be found in online Appendix

C. Specifically, the idea of pairwise estimations is to use distinct paired response patterns such

as (yi = 0, yj = 1) and (yi = 1, yj = 0) on items i and j. The paired response patterns are tabulated

in a paired comparison matrix C. The lower-diagonal elements, cji, and the upper-diagonal ele-

ments, cij, represent the numbers of response patterns (yi = 0, yj = 1) and (yi = 1, yj = 0), respec-

tively. For the PWN, by using the ratio of the two likelihood functions of response patterns and

several manipulations through Equation 5 to Equation 8 of Appendix C, item and rater estimates

for binary responses are calculated directly. Similarly, estimates for polytomous items are

obtained by means of Equation 11 to Equation 18. In contrast, the PWI introduced a binomial

distribution to model the observed response matrix C. Thus, resolving the log-likelihood func-

tions via Equations 19 to 23 and 24 to 28 can yield the item and rater estimates. Garner and

Engelhard (2009) suggested the PWE and showed that the parameters could be derived by

Equation 29. Estimating the eigenvector requires a simple recursive algorithm (Garner &

Engelhard, 2009).

In summary, the CMLE and the pairwise estimation methods are not affected by the choice

effect and the rater severity in the ESI context, given that the Rasch models could fit the data.

On the contrary, the NESIRM is not restricted to the Rasch models and could accommodate

other IRT models, such as the generalized facets model (W. C. Wang & Liu, 2007); however,

specification of the MNAR mechanism is required (e.g., the flexible MNRM).
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Comparison Between NESIRM and Conditional/Pairwise Estimation

The major difference between the NESIRM and the conditional/pairwise estimations is that the

former must specify a missingness model for missing data patterns, but it is free to specify the

IRT model for the item responses. In contrast, the conditional/pairwise estimations must specify

one of the Rasch models (e.g., PCM) for the item responses, but it does not need to explicitly

specify the missingness model because the missingness model can be eliminated during condi-

tional and pairwise estimations.

Both methods are summarized in Table D of online Appendix D. For example, the CMLE,

PWN, PWI, and PWE are appropriate when the (facet) Rasch models are used and the missing-

ness model does not have to be specified. The NESIRM can include any IRT model when rater

effect is involved, whereas the NESIM can also include any IRT model but it ignores the rater

effect. The NESIRM/NESIM can accommodate various IRT models for item responses such as

the PCM, NRM (Bock, 1972), and so on. The choice of the IRT model for item responses

depends on the research interest or model fit. Although the NESIRM/NESIM must specify the

missingness model, Liu and Wang (2017a) found the NRM flexible to nominal missing data

indicators and robust to unknown missingness models based on simulation studies. On the con-

trary, conditional/pairwise estimations (not new IRT models) are somewhat restricted in prac-

tice because the Rasch models must be able to fit the item responses reasonably, although their

significant advantage is that the missingness model does not need to be specified.

In summary, it is suggested that practitioners use conditional/pairwise estimations first to

check whether the Rasch models can fit the item responses well. The choice effect and rater

effect have been tackled in the conditional/pairwise estimations, thus one needs to check the

model fit to data alone. If the Rasch models failed to characterize the data, one can resort to the

NESIRM, where the IRT model for the item responses must be specified by user as well as the

missingness model. The researchers’ responsibility is to find an IRT model that could fit the

data reasonably. For missingness model, the (M)NRM is recommended due its flexibility and

robustness (Liu & Wang, 2017a).

Simulations

The motivation of the simulations was to demonstrate the detriments of ignoring the MNAR

effect and/or rater effect on item parameter estimators and to show that the NESIRM and the

conditional/pairwise methods could perform well in recovering ‘‘true’’ parameters no matter

whether there exists choice effect and/or rater effect. A series of simulations is conducted to

compare the CMLE, pairwise estimation, NESIRM, NESIM, and PCM in terms of the recovery

of the item and the rater parameters in the ESI context.

Design and Analysis

In the ESI design, the examinees were required to choose and answer one item from a pair of

items. There were four blocks (pairs) of three-point items and four raters. The thresholds di for

item i were generated with increasing difficulty. Specifically, di1 was generated from a uniform

distribution ranging from 21.5 to 0, whereas di2 was generated from a uniform distribution

ranging from 0 to 1.5. The average of d across items was rescaled to zero as a model constraint.

In total, 500 examinees were sampled from the standard normal distribution. Such a sample size

was found sufficient to demonstrate the impact of ignoring MNAR data and the rater effect (to

be shown in the ‘‘Results’’ section) although in practice, the sample size used in the ESI design

is usually far larger than 500.
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Three missingness mechanisms were considered: (a) random selection (RS), (b) linear selec-

tion (LS), and (c) nonlinear selection (NS). In the RS condition, examinees chose items ran-

domly (each item in a pair had a 0.5 probability of being chosen). The RS served as the baseline

for performance comparison. In the LS condition, the more proficient the examinee is, the

higher the probability of choosing the first item in a pair, regardless of its difficulty. In total,

500 probabilities were randomly drawn from a uniform distribution ranging from 0 to 1 and

sorted from low to high. Likewise, the ability levels of the 500 examinees were sorted from low

to high. Then, the sorted probabilities were assigned to the sorted examinees, so that the higher

the ability, the higher the probability of selecting the first item, which could be either easier or

more difficult in each pair. In the NS condition, the responses were generated according to the

NESIRM, in which vb1 was drawn from a uniform distribution between 22 and 2, lb1 was set

at 1 for simplicity (it was less interesting than other parameters), and tb1 was set at 0, so the rela-

tionship between item selection M and u was nonlinear.

The severity levels of the four raters were set as h = (0, –1, 0, 1) for simplicity, and the sum

of h was set at 0 as a model constraint. Also h = (0, 0, 0, 0) is set to indicate no rater effect. An

incomplete and spiral-like rating designs were adopted (DeCarlo, 2010; Engelhard, 1997). In

the incomplete rating design, each examinee was judged by two raters, and each rater judged a

subset of examinees on all eight items, with overlaps between raters. Specifically, the first two

raters (severity = 0, –1) judged examinees 1 to 275, whereas the last two raters (severity = 0, 1)

judged examinees 226 to 500, and the overlaps between the first and the last two raters com-

prised 50 examinees. In the spiral-like rating design, each rater judged four of the eight items,

as shown in Table E of online Appendix E. Specifically, Item 1 was marked by Raters 1 and 2,

Item 2 by Raters 2 and 3, and so on until Item 8 by Raters 1 and 4. The authors did not consider

a complete rating design in this study because it is seldom adopted in large-scale testing.

There were altogether 12 conditions, including two rating designs 3 two rater effects 3

three missingness mechanisms. In total, 70 replications were conducted under each condition,

which appeared sufficient based on our preliminary studies. The item and the rater parameters

were fixed across replications, whereas the person parameters were randomly drawn in each

replication. For the assessment of parameter recovery, the bias and the root mean square error

(RMSE) of estimator ĵ were computed as R�1
PR

r = 1 (ĵ� j) and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R�1

PR
r = 1 (ĵ� j)

2
q

, respec-

tively, where R = 70, and j is the true parameter.

The CMLE method implemented in the eRm package of the R program (Mair & Hatzinger,

2007) was used in this study. The PWN, PWI, and PWE algorithms were implemented on the R

program. The NESIRM, NESIM, and PCM were fit by using the freeware JAGS, in which the

burn-in period covered 4,000 iterations, and the samples included 6,000 iterations, which were

found sufficient, based on our prior experiments and the following results (see the next section).

The mean threshold and the mean rater severity were set at 0 for model identification. online

Appendix F provides a template of the JAGS syntax for the NESIRM. Note that NESIM can be

obtained by constraining h = 0 of the NESIRM and can obtain the PCM by constraining v = 0

and h = 0 of the NESIRM, so model comparison is readily available.

It was anticipated that all methods would perform satisfactorily when there was no choice

effect and no rater effect. The CMLE, the pairwise estimation, and the NESIRM would yield

practically unbiased estimates in all conditions. The NESIM would produce biased estimates

when the rater severity existed but was ignored. The PCM would suffer more serious bias when

both choice effect and rater severity existed but were ignored.
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Results

This section summarizes the bias and the RMSE for the parameter estimates yielded by the

seven methods (CMLE, PWN, PWI, PWE, NESIRM, NESIM, and PCM) under the incomplete

and spiral-like rating designs.

Incomplete Rating Design

The bias and the RMSE of d̂ and ĥ for the seven methods are shown in Figures 1 and Figure G

of online Appendix G, respectively. When there was no choice effect and no rater effect

(Figures 1a and Ga for bias and RMSE, respectively), all methods yielded good parameter

recovery. When there was a choice effect due to LS but no rater effect (Figures 1b and Gb for

bias and RMSE, respectively), only the PCM yielded biased item parameter estimates and large

RMSE values. Specifically, the PCM underestimated the threshold parameters for the first item

of each pair by approximately 0.25 logits and overestimated those for the second item of each

pair by approximately 0.25 logits. The reason was that high-ability examinees tended to select

the first item, and low-ability examinees were inclined to choose the second item. When there

was a choice effect due to NS but no rater effect (Figures 1c and Gc for bias and RMSE,

respectively), the bias patterns yielded by the PCM depended on the choice-effect indicator v.

When there was a rater effect but no choice effect (Figures 1d and Gd for bias and RMSE,

respectively), both the PCM and the NESIM yielded bias up to approximately 0.35 logits in the

absolute value and RMSE larger than that obtained from the other methods by approximately

0.1. When there was a choice effect (due to LS) and a rater effect (Figures 1e and Ge for bias

and RMSE, respectively), the PCM yielded large bias and RMSE for some item parameters,

and the NESIM yielded large bias and RMSE for all item parameters. When there was a choice

effect (due to NS) and a rater effect (Figures 1f and Gf for bias and RMSE, respectively), the

results were similar to those when there was a choice effect (due to LS) and a rater effect.

Across all conditions, the CMLE, PWN, PWI, PWE, and NESIRM methods yielded good

recovery for the item and the rater parameters.

Spiral-Like Rating Design

The bias and the RMSE of d̂ and ĥ for the methods are shown in online Appendices H and I,

respectively. Similar to those observed in the incomplete rating design, the PCM yielded serious

bias and RMSE when there was a choice effect (Appendices Hb, Hc, Ib, and Ic). When both

choice and rater effects were present, the PCM and the NESIM yielded serious bias and RMSE

(Appendices Hd, He, Hf, Id, Ie, and If). The CMLE, PWN, PWI, PWE, and NESIRM methods

yielded good recovery for the item and the rater parameters in all conditions. Compared to the

incomplete rating design, the spiral-like rating design tended to generate larger bias and RMSE

because it had sparser linkage between raters.

Appendices J and K online show the bias and the RMSE for m̂, ŝ2, v̂, l̂, and t̂ under the

incomplete rating design and the spiral-like rating design, respectively, under the NS condition.

The bias and the RMSE for ŝ2 and v̂ were very large for the NESIM and the PCM methods

when there was a rater effect under the spiral-like rating design (Appendix Kb and Kd), which

might be due to the multiplier effect of ignoring rater severity and the sparse rater linkage (Liu

& Wang, 2017a).

To summarize, the CMLE, pairwise estimation, and NESIRM methods are very robust

against different missingness mechanisms (i.e., RS, LS, and NS). On the contrary, the PCM

and the NESIM methods always yield biased estimates when the choice effect and/or the rater
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effect are/is present. The CMLE and the pairwise methods are useful for the ESI design with

CR items when the Rasch models can reasonably fit the data. If the Rasch models do not fit the

data, the NESIRM should be adopted, in which the IRT model for the observed data can be

more general than the Rasch models, such as the generalized facets model. Generally, using the

MNRM to account for missingness mechanism is sufficiently robust.

Other Simulation Conditions

The above simulation studies did not address the following conditions: (a) random assignment

of examinees to raters, (b) small sample size, and (c) the recovery of person parameters. Thus,

Figure 1. Bias in item estimators d̂ and rater estimators ĥ with the incomplete rating design.
Note. (a) and (d) are for the random selection condition; (b) and (e) are for the linear selection condition; (c) and (f)

are for the nonlinear selection condition; (a), (b), and (c) are for no rater effect; (d), (e), and (f) are for rater effect;

d̂11 and d̂12 denote the first and second threshold of Item 1, and so on for the others; ĥ1 denotes the severity of

Rater 1, and so on for the others.
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three follow-up simulations are added. The goal is to examine whether the bias patterns would

be affected under the three conditions, compared with previous simulation results. Details of

designs and results were described in online Appendices L, M, and N.

In summary, the bias patterns were similar to previous simulation results irrespective of ran-

dom assignment of examinees to raters or small sample size, whereas the person parameters can

be well recovered by maximum likelihood estimation.

Conclusion and Discussion

Currently, the ESI design is rarely used in Western countries because the missing data are usu-

ally MNAR, which invalidates the use of common IRT models (X. B. Wang, Wainer, &

Thissen, 1995). This conundrum inevitably overrides the practical advantages of the ESI

design. Although some Asian countries still adopt the ESI design in high-stake and large-scale

tests, number correct scores are usually used for score reports, completely ignoring both choice

and rater effects. Despite the development of a few IRT models and approaches to tackle the

choice effect in the ESI design (Liu & Wang, 2017a, 2017b), the rater effect is not considered

in the literature. Because ESIs are usually in the CR format and thus graded by human raters,

approaches that do not consider the rater effect become inapplicable.

In this study, the authors developed the NESIRM and adapted the CMLE and three pairwise

estimation methods to account for both choice and rater effects in the ESI design. With this

approach, the person parameters become comparable among examinees who choose different

ESIs and whose answers are graded by different raters. Simulation studies confirm the advan-

tages. The CMLE and the three pairwise methods require a good fit of the Rasch models,

whereas the NESIRM is more flexible to accommodate other IRT models for observed data.

Conventional approaches, such as the PCM and the NESIM, fail to consider the choice effect

and/or the rater effect and yield biased estimates for the item parameters. With these

approaches, the person parameters are not comparable among examinees who choose different

ESIs and/or whose answers are graded by different raters.

The empirical example in online Appendix O illustrates a way to adopt the NESIRM,

CMLE, and pairwise estimation methods to analyze ESI data with the rater effect. Taking those

parameter estimates obtained from the NESIRM-C as representing the gold standard, the

authors find that those obtained from the NESIRM, CMLE, and pairwise estimation methods

are almost identical to the gold standard, justifying their applicability to the ESI design with the

rater effect. In contrast, ignoring the choice effect and/or the rater effect by adopting the

NESIM or the Rasch model results in misleading parameter estimates.

In practice, the missingness mechanisms in the ESI design may be more complex than

those manipulated in this and past studies. Future studies should investigate how the

NESIRM, CMLE, and pairwise estimation methods will perform under various choice

effects. There are rater effects other than severity, such as inconsistency, centrality/extre-

mity, halo, and rater dependency. The hierarchical rater model with signal detection theory

rater components for the ESI design is an another interesting route to explore (Patterson,

2013). Several IRT models have tackled these rater effects (DeCarlo, Kim, & Johnson,

2011; Patz, Junker, Johnson, & Mariano, 2002; W. C. Wang, Su, & Qiu, 2014; W. C. Wang

& Wilson, 2005). It is important for future studies to incorporate these models into the

NESIRM and evaluate its performance.
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