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Abstract

Person-mean centering has been recommended for disaggregating between-person and within-

person effects when modeling time-varying predictors. Multilevel modeling textbooks 

recommended global standardization for standardizing fixed effects. An aim of this study is to 

evaluate whether and when person-mean centering followed by global standardization can 

accurately estimate fixed-effects within-person relations (the estimand of interest in this study) in 

multilevel modeling. We analytically derived that global standardization generally yields 

inconsistent (asymptotically biased) estimates for the estimand when between-person differences 

in within-person standard deviations exist and the average within-person relation is nonzero. 

Alternatively, a person-mean-SD standardization (P-S) approach yields consistent estimates. Our 

simulation results further revealed (1) how misleading the results from global standardization were 

under various circumstances and (2) the P-S approach had accurate estimates and satisfactory 

coverage rates of fixed-effects within-person relations when the number of occasions is 30 or more 

(in many conditions, performance was satisfactory with 10 or 20 occasions). A daily diary data 

example, focused on emotional complexity, was used to empirically illustrate the approaches. 

Researchers should choose standardization approaches based on theoretical considerations and 

should clearly describe the purpose and procedure of standardization in research articles.

Methodologists have emphasized the conceptual differences between between-person (BP) 

and within-person (WP) effects (e.g., Hamaker, Dolan, & Molenaar, 2005; Hamaker, 2012; 

Molenaar, 2004; Molenaar & Campbell, 2009) and the need to distinguish them and model 

both (e.g., Curran & Bauer, 2011; Hamaker, Kuiper, & Grasman, 2015; Wang & Maxwell, 

2015). Using the effects of stress on positive affect as an example, a between-person effect 

refers to the extent to which people who are one unit above average on stress are above or 

below average on positive affect. In contrast, a within-person effect reflects the extent to 
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which an individual has a higher or lower score on positive affect when he or she has a one 

unit higher score on stress. That is, between-person questions concern who, and within-

person questions concern when. The two types of research questions are distinct, and the 

answer to one can not generally be inferred from the other (e.g., Molenaar, 2004).

To statistically disaggregate within- and between-person effects of one variable on another, 

both variables need to be time-varying. Thus, longitudinal data on both variables are 

required. For modeling within-person effects, multilevel modeling (MLM) is often used, and 

person-mean centering (P-C) has been recommended in the literature (e.g., Bolger & 

Laurenceau, 2013; Curran & Bauer, 2011; Raudenbush & Bryk, 2002; Wang & Maxwell, 

2015). Relatedly, cluster-mean centering has been recommended for disaggregating within- 

and between-cluster effects in the cross-sectional multilevel modeling literature (e.g., 

Raudenbush & Bryk, 2002; Snijders & Bosker, 2012). When raw data (without centering) 

are used, researchers have repeatedly shown that the resulting total effect is conflated or 

confounded and thus can be meaningless in both longitudinal and cross-sectional multilevel 

modeling (e.g., Curran & Bauer, 2011; Raudenbush & Bryk, 2002; Snijders & Bosker, 

2012). Therefore, raw data generally should not be used for estimating within-person effects. 

“Generally” is emphasized in the previous sentence, because when the target of inference is 

not on within-person effects, other centering methods can be preferred, as discussed in 

Enders and Tofighi (2007), Hamaker and Grasman (2015), and Kreft, de Leeuw, and Aiken 

(1995). Therefore, the choice of a centering approach should be based on theoretical 

considerations.

After applying person-mean centering, raw fixed-effects within-person coefficients, for 

example, can measure the number of points that the “average” individual’s mood score will 

change, when he or she has a one unit higher score on stress. When the raw scales or units 

are meaningful (e.g., pounds for weight; miles for distance), raw coefficients can be 

informative and easy to interpret. However, raw coefficients can have limitations in some 

contexts. First, the interpretation of a raw within-person coefficient depends on the scales of 

two time-varying variables. In behavioral research, measurement scales sometimes are 

arbitrary and lack practical meaningfulness. Thus, interpretations of a raw within-person 

coefficient can be arbitrary and not very meaningful. For example, a raw coefficient of −.65 

for the within-person effect of stress on positive affect is almost impossible to interpret 

meaningfully without reference to the items and/or scales used to measure stress and 

positive affect. Even after studying the items, it may remain challenging to effectively 

interpret the raw coefficient. Second, raw coefficients are generally not good effect size 

measures because they are not scale/unit invariant (Kelley & Preacher, 2012). Third, a raw 

coefficient usually is less useful for comparing the strengths of within-person relations 

across different pairs of time-varying variables (e.g., stress and positive affect vs. sleeping 

quality and positive affect) because different scales may be used for different variables.

To address some of the limitations, standardization can be useful.1 When the target of 

estimation (i.e., estimand) concerns within-person relations, researchers have recently 

argued for within-person standardization. For example, Zhang and Wang (2014) discussed 

1Standardization also has limitations, which will be discussed later in the discussion section.
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the use of person-mean-SD standardized (P-S) data for aggregating intraindividual 

correlations across individuals with multilevel modeling. More recently, Schuurman, Ferrer, 

de Boer-Sonnenschein, and Hamaker (2016) have argued for using within-person 

standardization to compare within-person cross-lagged relations in multilevel autoregressive 

modeling. They explained that “we are interested in Granger-causal psychological processes, 

which happen within persons, at the level of the individual. It does not seem reasonable to 

conflate this WP variation with variation between persons, given that the person-specific 

Granger-causal processes are not concerned with differences in the means of these processes 

between individuals.” (page 213). However, researchers may still rely on popular multilevel 

modeling textbooks that recommend global standardization, where a standardized fixed-

effects coefficient is calculated by multiplying the raw coefficient with the ratio of the grand 

standard deviation (SD) of the predictor to the grand SD of the outcome (e.g., Hox, 2010; 

Snijders & Bosker, 2012). The procedure is essentially the same as the one used in 

regressions.

To shed light on the standardization practices used in multilevel modeling with time-varying 

predictors, a small literature review was conducted. Twenty four recent (published in 2011–

2018) empirical papers were included (more details are described in Part A of the online 

supplemental materials2). Although global standardization was recommended originally in 

the context of cross-sectional multilevel modeling, researchers are using it to study within-

person relations in longitudinal research (e.g., Aafjes-van Doorn et al., 2017; Armeli et al., 

2014; Foshee et al., 2013). For example, Armeli et al. (2014) stated that “To aid in the 

evaluation of the strength of the effects, we calculated standardized coefficients as per Hox 

(2010).” (page 769). The review also revealed that the rationale of standardization and the 

standardization procedures were often not clearly described in the empirical papers (more 

than 41% of the studies; e.g., Freeman & Gottfredson, 2017). Specifically, it was not clear to 

readers why the researchers conducted standardization, whether the standardization was at 

the person level or at the global level, and whether the outcomes were standardized. Due to 

the lack of descriptions on standardization approaches yet detailed descriptions of the 

person-mean centering procedures, we suspected that many of these studies likely used 

global standardization. Moreover, the review showed that researchers have begun to use WP 

standardization to study within-person relations (about 17% of the studies). Specifically, 

Ramseyer et al. (2014) conducted idiographic dynamic modeling using WP standardized 

variables and obtained the average standardized coefficients by averaging the individual 

standardized coefficients across individuals. More recently, researchers implemented WP 

standardization on the variables of interest and then multilevel modeling was conducted on 

the WP standardized variables for studying within-person relations (e.g., Dejonckheere et 

al., 2017, 2018; Lydon-Staley et al., 2018). Their implemented WP standardization approach 

was similar to the P-S approach evaluated in Zhang and Wang (2014).

Given the use of different methods for standardizing within-person effects and the lack of 

clarity in the rationale and procedure of standardization in empirical longitudinal research, 

we conducted the current study to achieve two aims. The first aim is to further evaluate 

2The online supplemental materials can be downloaded from https://ldhrm.nd.edu/assets/289171/
supplemental_materials_2018mbr.pdf.
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whether global standardization is problematic, when it is problematic, and how much of a 

problem it would be for estimating within-person relations (the estimand of interest of the 
study). The second aim is to evaluate how the within-person standardization of data followed 

by multilevel modeling approach (in the remainder of the paper, we call it the P-S approach) 

performs. We decided to evaluate P-S mainly because it has recently begun to appear in 

empirical research (e.g., Dejonckheere et al., 2017, 2018; Lydon-Staley et al., 2018) and is 

easy to implement by researchers with basic knowledge of multilevel modeling. To achieve 

the aims, we conducted analytical derivations, Monte Carlo simulations, and a real daily 

diary data analysis. Our analytical derivations revealed the asymptotic estimation (i.e., 

consistency) performance of various standardization approaches for estimating within-
person relations and uncovered the core factors that influence the performance. The 

consistency evaluation answered an unresolved question raised in Schuurman et al. (2016) 

regarding how different the asymptotic results (i.e., results obtained when the sample size 

and the number of time points approach infinity) are using global standardization vs. within-

person standardization. The simulations facilitated the evaluation of inferential properties 

with finite samples. For example, we were interested in learning how many assessments per 

person are needed for making accurate inferences about within-person relations using the P-

S approach. Furthermore, the real data example illustrated how much the results from 

different methods might differ in empirical applications.

The remainder of the article is organized as follows. First, we describe the population model, 

the estimand, various ways of obtaining standardized coefficients using multilevel modeling, 

and the modeling and estimation assumptions. Then, we derive the population correlations 

between two time-varying variables for different types of data including raw data, person-

mean centered data, and P-S data under or relaxing the normality distribution assumption. 

With the derived population correlations, we show when global standardization can yield 

asymptotically unbiased estimates of fixed-effects within-person relations, under either 

homogeneous or heterogeneous within-person relation conditions. Next, we use results from 

a simulation study to evaluate the inferential properties of both global standardization and 

the P-S approach with finite samples. A real data analysis example is provided to 

demonstrate the findings and substantively study the emotional complexity issue, illustrating 

how conclusions regarding emotional complexity might differ depending on the method 

used to analyze the data. We conclude the article with recommendations, implications, and 

future research directions.

Multilevel models and standardization methods for modeling within-person 

relations

We begin this section by describing the population model and the estimand of interest in the 

current study when there is one time-varying predictor. The case of having more than one 

time-varying predictor will be considered later in the paper. Let the population/true within-
person or intraindividual correlation between time-varying predictor X and time-varying 

outcome Y be ρw,i for individual i. We have ρw, i =
E Xit − μXi Yit − μYi | i

σXiσYi
, where µXi and µYi 

stand for the population within-person means in X and Y of individual i, σXi and σYi are the 
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individual i’s population within-person standard deviations in X and Y, and the expectation 

is taken over time/waves for individual i. Throughout the paper, we assume that individual 

i’s dynamic process is stationary over time. Note that in the derivations, we do not assume 

stationarity. This assumption is just for facilitating interpretations. That is, ρw,i represents the 

dynamic relationship between two time-varying variables for individual i. ρw,i can be used to 

compare the strengths of within-person linear relations between X and Y across individuals 

or across different sets of variables. Let µρw be the true within-person correlation for the 

“average” person or the average within-person correlation between X and Y in the 

population. In this article, µρw is the focal parameter of interest (the estimand) when there is 
one time-varying predictor. µρw is useful for (1) quantifying the average within-person 

correlation between two time-varying variables and (2) comparing the relative strengths of 

linear associations across different sets of variables at the population level.

In practice, ρw,i is unknown. A consistent estimate of ρw,i is rw, i = t xit − xi . yit − yi .
Tisxisyi

, 

where yit and xit are the observed scores of variables Y and X of individual i (i = 1, 2, …N) 

at time t (t = 1, 2, …, Ti). xi . = t xit /T i is the observed WP (within-person) mean score of X 

for individual i averaged across the Ti time points. yi. is the counterpart for Y. sxi and syi are 

the individual i’s sample WP standard deviation in X and Y respectively. For example, we 

have sxi = t xit − xi .
2/ T i − 1 . The relations among rw,i, ρw,i, and µρw can be expressed 

via the following multilevel model

rw, i = ρw, i + eit
ρw, i = μρw + u1i .

(1)

The estimated fixed-effects within-person relation between X and Y, μρw, is a precision 

weighted average of the individual sample within-person correlations rw,i (e.g., Bryk & 

Raudenbush, 1987; Maxwell & Delaney, 2004). The weight is a function of the number of 

time points an individual has, with more time points corresponding to greater weights. 

Multilevel models are often estimated by maximum likelihood (ML) or generalized least 

square (GLS) methods (e.g., Raudenbush & Bryk, 2002). When Level-1 residuals are 

normally distributed, the ML and GLS estimators for fixed effects have the same form. 

Under regular assumptions in multilevel modeling (e.g., normality for the Level-1 and 

Level-2 residuals), μρw from ML or GLS is a consistent estimator of µρw. When the 

normality assumption is relaxed, GLS estimates are still consistent.

In the following, we describe several multilevel modeling approaches coupled with different 

standardization methods for estimating the average within-person relation µρw. Note that the 

following methods are used in recent empirical research based on our literature review 

summarized earlier in the introduction.
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Person-mean centering followed by global standardization

A frequently discussed multilevel model for modeling a time-varying predictor (e.g., Curran 

& Bauer, 2011; Wang & Maxwell, 2015) has the following form.

yit = γ0i
C1 + γ1i

C1 xit − xi . + eit
C1

γ0i
C1 = γ00

C1 + γ01
C1xi . + u0i

C1,
γ1i

C1 = γ10
C1 + u1i

C1

(2)

where superscript C1 denotes that the coefficients are from the P-C (person-mean centered) 

model in Eq (2). xit
PC = xit − xi . is the person-mean centered predictor score of individual i at 

time t. γ00
C1 is the model implied level of Y when both xi. and xit − xi. are 0, and thus 

sometimes may lack practical meaningfulness. γ01
C1 represents the between-person effect of X 

on Y. When u1i
C1 is included in the model, individuals are allowed to differ in the within-

person effects. In this case, γ1i
C1 describes individual i’s within-person effect of X on Y and 

γ10
C1 describes the average within-person effect or the within-person effect for an “average” 

person in the population. When u1i
C1 is not included in the model, we have γ1i

C1 = γ10
C1, 

meaning that different individuals have the same within-person effects. The simplified model 

(i.e., u1i
C1 is not included) has been applied about as frequently as the full model (i.e., u1i

C1 is 

included) in psychological research, 17 vs. 12 times, as reported in a review conducted by 

Baird (2016). However, the simplified model yielded inflated Type I error rates for testing 

γ10
C1 when the individual within-person effects are heterogeneous in reality, whereas the full 

model had higher nonconvergence rates when the individual within-person effects are 

homogeneous in reality (e.g., Baird & Maxwell, 2016). In this study, we will study both the 

homogeneous and heterogeneous within-person effect scenarios.

Although it may appear that person-mean centering is conducted for the predictor variable 

only, person-mean centering is also conducted for the outcome variable because of the 

inclusion of the random intercept term γ0i
C1. Specifically, when the first equation in Eq (2) is 

rewritten as

yit − γ0i
C1 = γ1i

C1 xit − xi . + eit
C1, (3)

it is clearer to see that person-mean centering is conducted on both variables. Note that in 

the model of Eq (2), observed person means are used for centering the predictor X whereas 

latent/true means are used for centering the outcome Y. When observed person means are 

used for centering both X and Y, the P-C model becomes
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yit
PC = γ1i

C2xit
PC + eit

C2

γ1i
C2 = γ10

C2 + u1i
C2,

(4)

where yit
PC = yit − yi ., xit

PC = xit − xi ., and superscript C2 denotes that the coefficients are 

from the alternative P-C model (the one in Eq 4). For each individual, yit
PC and xit

PC have 

marginal means of 0. The P-C model in Eq (4) focuses on studying within-person effects or 

relations only.

Empirically, the estimated reliabilities of observed WP means (estimated squared 

correlations between observed and true WP means) are often higher than .92 and .96, even 

when the number of time points is as low as 5 or 10, respectively (Wang & Grimm, 2012). 

When T goes to infinity, the reliabilities at the population level (N is infinity) approach 1 

(Estabrook, Grimm, & Bowles, 2012; Schmiedek, Lövdén, & Lindenberger, 2009; Wang & 

Grimm, 2012). When T is infinity, γ10
C1 and γ10

C2 (population parameters; i.e., N is infinity) are 

mathematically equivalent because (1) xi. and xit
PC are uncorrelated and (2) we can equate the 

observed person means (xi.) to their true values. Thus, asymptotically (both T and N are 

infinity), γ10
C1and γ10

C2 from the same estimator (e.g., ML or GLS) should converge to the 

same value. Because the estimation in Eq (4) is simpler, we conducted the derivation about 

γ10
C2 under Eq (4) but the asymptotic results apply to γ10

C1 in Eq (2) as well. Later in the paper, 

we also evaluated the performance of both γ10
C1 and γ10

C2 with finite samples separately via 

simulations.

The GLS estimator of γ10
C2 in Eq (4) is given in Eq (8) of the online supplemental materials 

(see Appendix C of Part B). Under the homogeneous condition (i.e., u1i
C2 is not included in 

the model), the GLS estimator becomes the ordinary least square (OLS) estimator. The OLS 

estimator of γ10
C2 has a very simple form, which is rcx, cy

scy
scx

, where scy is the sample grand 

standard deviation (SD) of the person-mean centered outcome variable Y and scx is the 

sample grand SD of the person-mean centered predictor variable X. Mathematically, 

scy =
i t

yit
PC 2/ iT i − 1  and scx =

i t
xit

PC 2/ iT i − 1 . rcx,cy is the sample grand 

correlation between the person-mean centered variables. Note that scy, scx, and rcx,cy are 

obtained using the stacked long person-mean centered data from all the individuals and time 

points (yit
PC and xit

PC).

In multilevel modeling textbooks, a recommended standardization approach for γ10
C1 in Eq 

(2) or γ10
C2 in Eq (4) is γ10

C ∗ = γ10
C spredictor

soutcome
 (e.g., Hox, 2010; Snijders & Bosker, 2012), where 

spredictor and soutcome are the sample grand SDs of the predictor and outcome variables 
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calculated using the stacked long data, respectively. We refer to the standardization approach 

as global standardization. When the P-C model in Eq (2) is fitted, there are two potential 

global standardization options. One is to use the sample grand SD of the person-mean 

centered outcome variable and the other is to use the sample grand SD of the original 

outcome variable for the calculations, respectively. In some of the reviewed empirical 

articles (more than 41% of the studies), it was not clear which one was used. Thus, we 

evaluated both in this study. A globally standardized estimator of γ10
C1 in Eq (2) is

γ10
G1 ∗ = γ10

C1scx
scy

, (5)

where scy is the sample grand SD of the person-mean centered outcome variable. We call the 

standardization method in Eq (5) the MG1 method. And an alternative globally standardized 

estimator of γ10
C1 in Eq 2 is

γ10
G2 ∗ = γ10

C1scx
sy

(6)

where sy is the sample grand SD of the original outcome variable. We call the 

standardization method in Eq (6) the MG2 method.

When the model in Eq 4 is fitted, with global standardization, we have

γ10
G3 ∗ = γ10

C2scx
scy

. (7)

Eq (7) can be simplified under the homogeneous within-person effect assumption:

γ10, OLS
G3 ∗ = γ10, OLS

C2 scx
scy

= rcx, cy . (8)

We call the standardization method in Eqs (7) and (8) the MG3 method.

Note that in global standardization, regular MLM assumptions apply to the unstandardized 

coefficients. For example, when normal-theory-based ML is used for inference, the 

unstandardized random coefficients (e.g., γ1i
C) are assumed to have a normal distribution 

under the heterogeneous within-person effect condition. When GLS is used for inference, 

however, such assumptions are not made.

Global standardization can help answer the following kind of research question: The number 

of grand SDs that the “average” person’s daily mood will change when his or her daily stress 
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increases 1 grand SD (also see Table 1). When this research question is of interest, global 

standardization can be used. However, we doubt that researchers are often interested in the 

research question. In MG1 and MG3, the grand SD of a person-mean centered predictor or 

outcome variable is a linear combination of both the average of within-person SDs and 

variance in within-person SDs (see Table 2). For MG2, it is more complex in that the grand 

SD of the raw outcome variable is a linear combination of the average of within-person SDs, 

variance in within-person SDs, and variance in within-person means (see Table 2). The 

derivations are shown in Part B of the online supplemental materials. In other words, 

between-person variances are involved in global standardization. We agree with the 

statement in Schuurman et al. (2016) that the person-specific Granger-causal processes are 

not concerned with between-person differences in the processes. Thus, the kind of research 

question addressed by global standardization may be less interesting to researchers. When 

the estimand is on within-person relations or relations at the individual level (e.g., µρw, the 

average within-person correlation between X and Y), we expect that the three global 

standardization approaches yield inconsistent estimates of µρw under some circumstances. 

We will evaluate whether and when our conjecture is correct later in the derivation section.

Within-person standardization

An alternative multilevel modeling approach is to use the person-mean-SD standardized (P-

S) data for both the time-varying predictor and outcome variables, rather than person-mean 

centered data. This approach has begun to be used in recent empirical research for 

standardizing within-person effects (e.g., Dejonckheere et al., 2017, 2018; Lydon-Staley et 

al., 2018). Methodologically, Zhang and Wang (2014) discussed the use of this P-S approach 

and compared it to two meta-analysis approaches in which within-person correlations are 

directly used for aggregating intraindividual correlations across individuals. They found that 

the multilevel modeling approach worked well under certain conditions, whereas the meta-

analysis approaches yielded slightly biased estimates of the population average within-

person correlation under small T conditions. In addition, it is easier to model multiple time-

varying predictors using the multilevel modeling approach. Thus, we focus on the multilevel 

modeling approach rather than directly using within-person correlation coefficients in this 

study. A P-S multilevel model has the following form

yit
PS = γ1i

PSxit
PS + eit

PS

γ1i
PS = γ10

PS +u1i
PS ,

(9)

where yit
PS = yit − yi . /syi with syi = t yit − yi .

2/ T i − 1  and xit
PS = xit − xi . /sxi with 

sxi = t xit − xi .
2/ T i − 1 . yit

PS and xit
PS are the within-person standardized data (or within-

person z scores) for the outcome and predictor, respectively.3

3P-S data can not be obtained when the within-person sample SD is zero. In this case, we recommend that one can just person-mean 
center the data of the zero-WP-SD variable for the individual. This is because (1) the within-person sample covariance is 0 between 
this zero-WP-SD variable and another time-varying variable for the individual and (2) 0 times any weight is still 0.

Wang et al. Page 9

Multivariate Behav Res. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For each individual, yit
PS and xit

PS have marginal means of 0 and unit marginal variances. 

Within-person z scores have been used in personality research of within-person correlational 

designs (Michela, 1990). Superscript PS is used for denoting that the coefficients are from 

the P-S approach to distinguish them from the P-C coefficients presented earlier in the paper. 

Conceptually, γ1i
PS quantifies the within-person correlation of the two time-varying variables 

for individual i and thus γ10
PS measures the within-person correlation for the “average” 

person. The P-S approach can help answer the following kind of research question: The 

number of within-person SD units that the “average” person’s daily mood will change when 

his or her daily stress increases 1 within-person SD unit (also see Table 1). Thus, the 

research question is a question at the individual level. Note that in Eq (9), regular MLM 

assumptions apply to the standardized coefficients γ1i
PS .

Readers may have noticed that a random intercept term is not included in the P-S model. 

This is because with P-S data, the intercept is 0 for each individual. The (standardized) GLS 

estimator of γ10
PS is given in Eq (11) of the online supplemental materials (see Appendix C of 

Part B). The (standardized) OLS estimate (also the GLS estimate for the model with u1i
PS = 0

for all i) of γ10
PS is rwx,wy, where rwx,wy is the sample grand correlation between the WP 

standardized variables, calculated using the stacked long data (yit
PS and xit

PS). We call the 

standardization method in Eq (9) the MPS (P-S) approach. The simulations in Zhang and 

Wang (2014) have shown that the P-S approach can be used to describe the average 

intraindividual correlation under certain conditions. However, they did not (1) compare P-S 

to global standardization; (2) consider between-person differences in within-person standard 

deviations (a core factor discovered from our derivations to be described later); or (3) 

consider two or more time-varying predictors. In addition, they did not conduct analytical 

derivations to evaluate the consistency of global standardization or P-S for estimating 

within-person relations.

As discussed earlier, Schuurman et al. (2016) argued for conducting standardization of 

random effects at the person level to facilitate a more valid comparison of the cross-lagged 

relations in multilevel autoregressive modeling. They did not recommend global 

standardization in that context. Their approach is similar to the P-S approach in that both are 

within-person standardization approaches, but there are some differences. For example, 

Schuurman et al. (2016) first person-mean center the data and then use latent person SDs to 

standardize the random effects at the person level, whereas in the P-S approach (Eq 9), the 

data are first WP standardized at the person level and then a multilevel model is fit to the 

standardized data. Furthermore, in Schuurman et al. (2016), sophisticated Bayesian 

modeling was used, in which latent variances are modeled assuming stationarity in the time 

series data.

In the current study, we further evaluated the performance of the P-S approach as a within-

person standardization approach for estimating and inferring within-person relations under a 

broader variety of conditions than Zhang and Wang (2014), using both derivations and 
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simulations. We focused on P-S because it has recently began to appear in the empirical 

literature and can be easily fitted by substantive researchers with basic knowledge of 

multilevel modeling using standard statistical software such as SPSS and SAS. In addition, 

as suggested by a reviewer, we also evaluated another frequentist within-person 

standardization procedure. In this method, individual empirical Bayes estimates of γ1i
C1 in Eq 

(2) are first obtained (e.g., Fitzmaurice et al., 2011) and then standardized at the person level 

using individual i’s observed within-person SD.4 The standardized estimates were averaged 

across individuals for estimating the average within-person relation. We call this approach 

the EB standardization approach (the MEB method). The empirical Bayes estimates are the 

“best linear unbiased predictor” (or BLUP; e.g., Fitzmaurice, Laird, & Ware, 2011). For 

individual i, after standardizing γ1i
C1 using within-person SDs, asymptotically, the EB 

standardized coefficient is individual i’s within-person correlation.

We conducted analytical derivations to evaluate the asymptotic performance of various 

standardization approaches for estimating the average within-person relation µρw when there 

is one time-varying predictor. That is, we evaluated whether γ10
G3 ∗ and γ10

G2 ∗ from global 

standardization, and γ10
PS from P-S are consistent estimates of µρw when the within-person 

relations are heterogeneous or homogeneous. As discussed above, the consistency results 

about γ10
G3 ∗ apply to γ10

G1 ∗. Similarly, the consistency results about γ10
PS also apply to those 

from the EB standardization approach.

Two or more time-varying predictors

The consistency findings from multilevel modeling with one time-varying predictor can be 

directly extended to multilevel modeling with two or more time-varying predictors.5 If a 

bivariate relation µρw can not be consistently recovered using a standardization approach, the 

partial correlation and standardized coefficient estimates after controlling for the other time-

varying predictors from the standardization approach would generally be inconsistent as 

well because the partial correlations and standardized coefficient estimates are functions of 

the relevant bivariate correlations. Therefore, the standardization approach may produce 

inconsistent estimates for within-person relations after controlling for the other time-varying 

predictors.

To evaluate the inferential properties of the standardization approaches, we conducted 

simulations when there are one or two time-varying predictors under both the heterogeneous 

and homogeneous within-person relation scenarios with finite N and Ti. For the real data 

analysis illustrations, models with one or two time-varying predictors were fitted.

4Observed within-person SD, rather than latent WP SD, are used. So this approach is different from the approach in Schuurman et al. 
(2016).
5Due to space limitations, we do not list the model forms with two or more time-varying predictors.
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Derivations

When within-person effects are homogeneous in reality and thus there is no need to include 

random effects for the γ1is, the standardized GLS estimates of γ10 in Eqs (4) and (9) are the 

sample correlations from the corresponding stacked long data (i.e., rcx,cy and rwx,wy), as 

discussed in the previous section. Those sample correlations asymptotically approach their 

population correlations correspondingly. Thus, to examine estimation consistency, in this 

section, we first derive the population correlations for different kinds of stacked long data 

including raw data, person-mean centered data, and WP standardized data. Our derivations 

revealed that some of the correlations involve the between-person variances in within-person 

means and SDs. Below, we define the relevant concepts and terms, and describe the 

assumptions used for deriving the conclusions. Then, we summarize the correlation 

derivation results. After that, we describe the asymptotic performance of the different 

standardization approaches for estimating µρw. The detailed derivation process and results 

are included in the online supplemental materials (see Part B).

Between-person differences in person means and variabilities

Let µXi and µY i represent the population intraindividual/person means in X and Y of 

individual i, where μXi = E Xit | i  and μYi = E Y it | i . The between-person population 

covariance matrix of µXi and µY i is

σμX
2 σμX, μY

σμX, μY σμY
2 , (10)

where σμX
2  and σμY

2  are the population variances of the person means for X and Y, 

quantifying between-person differences in the person means of X and Y, respectively. The 

correlation between the person means (µXi and µY i), ρb =
σμX, μY
σμXσμY

, quantifies the population 

between-person correlation between X and Y. For example, a positive ρb shows that a 

person with a higher average score in X tends to have a higher average score in Y, compared 

to another person with a lower average score in X.

A widely used indicator of intraindividual variability is the intraindividual or person 

standard deviation (e.g., Gerstorf et al., 2009; Nesselroade & Salthouse, 2004). It may be 

worth noting that the intraindividual SD here is different from the innovation SD of time 

series analysis. The former is the overall intraindividual SD of a person, whereas the latter is 

the residual SD after controlling for a dynamic process (e.g., a first-order autoregressive 

process; Jongerling, Laurenceau, & Hamaker, 2015). Let σXi and σY i be individual i’s 

population intraindividual standard deviations in X and Y, where σXi = E Xit − μXi
2 | i  and 

σYi = E Y it − μYi
2 | i . The population means of σX and σY are E σX = μσX and 
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E σY = μσY, representing the average of the WP standard deviations averaged across 

individuals, respectively. The covariance matrix of the person SD variables (σX and σY) is

σσX
2 σσX, σY

σσX, σY σσY
2 , (11)

where σσX
2  and σσY

2  are the population between-person variances of σX and σY, quantifying 

between-person differences in the within-person SDs of X and Y, respectively.

In the past few decades, researchers have found that substantial between-person differences 

in within-person standard deviations existed in psychological and behavioral variables such 

as mood, motor performance, and stress (e.g., Ferrer, Gonzales, & Steele, 2013; Hedeker, 

Mermelstein, Berbaum, & Campbell, 2009; Nesselroade & Salthouse, 2004; Wang, 

Hamaker, & Bergeman, 2012). Between-person differences in intraindividual variability 

have been found to be predictive of important outcomes (e.g., Eid & Diener, 1999; Fiske & 

Rice, 1955; Hedeker et al., 2009; Nesselroade, 1991; Nesselroade & Molenaar, 2010; Ram 

& Gerstorf, 2009). Our derivations discovered how between-person differences in both 

within-person means and/or variabilities play a role in the population correlations of the 

different kinds of stacked long data and thus the standardized fixed-effects coefficients from 

various standardization approaches.

The population correlation derivation results

We derived correlations under two different assumptions. First, we assumed that σX, σY , 
XPS, and Y PS follow a joint multivariate normal distribution. Second, we relaxed this 

assumption. Under the normality assumption, the derived population correlations of stacked 

long raw data, P-C data, and P-S data all have simple forms (see Table 2). When the 

normality assumption is relaxed, the population correlation of stacked long P-S data is still 

the population average WP correlation; whereas more elements are involved in the derived 

population correlations for stacked long raw data and P-C data (see Eqs 3 and 5 in Part B of 

the online supplemental materials respectively).

Overall, we have the following findings from the correlation derivations. First, ρX,Y, the 

population correlation between stacked long raw data of variables X and Y, is a weighted 

average of the BP correlation ρb and the average WP correlation µρw. Thus, ρX,Y reflects 

neither the average WP correlation nor the BP correlation; instead, it measures a conflated 

and often meaningless relation.

Second, person-mean centering successfully removes the BP correlation ρb from the 

population correlation between stacked long P-C data of XPC and YPC (ρCX,CY). However, 

ρCX,CY, is still generally not equal to the population average WP correlation µρw when µρw ≠ 

0. When µρw = 0 and/or there are no between-person differences in the within-person SDs 

(σσX = σσY = 0), the population correlation of P-C data is the population average WP 

correlation (ρCX,CY = µρw).
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Third, the population correlation between WP standardized data of variables XPS and YPS, 

ρWX,WY, is equal to µρw, regardless of whether the data are normally distributed or not and 

whether the within-person correlations are homogeneous or heterogeneous.

In the correlation derivations, we did not assume the covariances between a person mean 

variable and a person SD variable to be zero and those covariances do not appear explicitly 

in the population correlation formulas.

Asymptotic performance of global standardization and P-S for estimating the average WP 
relation

With the correlation derivation results, we analytically evaluated the asymptotic performance 

of global standardization and the P-S approach for estimating the average within-person 

correlation (µρw), under homogeneous or heterogeneous within-person relation conditions. 

We utilized some ideal-case scenarios to help understand how between-person differences in 

within-person SDs play a role in the asymptotic performance of global standardization.

Our derivation results revealed that regardless of whether within-person relations are 

homogeneous or heterogeneous, global standardization (MG1 and MG3) generally yields 

inconsistent estimates of the average within-person correlation (µρw) when (1) µρw ≠ 0 and 

(2) there are between-person differences in the WP standard deviations of one or both of the 

time-varying variables. For MG2, even under the ideal case that there are no BP differences 

in the WP standard deviations of either variables, the standardized estimates are generally 

inconsistent for µρw when the population grand SD of Y is different from that of person-

mean centered Y (σCY ≠ σY) and µρw ≠ 0. In contrast, P-S yields consistent estimates of 

µρw.

Note that the normality assumption was not used in the derivations of asymptotic estimation 

performance. Under the heterogeneous within-person relations, the derivations were based 

on the condition in which all individuals have the same number of time points so that 

simple-form results can be obtained. In the next section, we evaluated the performance of 

the standardization methods for estimating and inferring within-person relations under both 

equal and unequal number of assessments conditions with a finite sample size.

The aforementioned derivation results apply to the multilevel models with only one time-

varying predictor or bivariate within-person relations. With two or more predictors, the 

standardized coefficients are functions of the relevant bivariate correlations. When the 

bivariate within-person relations are inconsistently recovered by a global standardization 

approach, one can infer that the standardized coefficient estimates from the global 

standardization approach for multilevel models with two or more predictors are generally 

inconsistent estimates of the multivariate within-person relations.

A simulation study

In this section, we conducted a simulation study to evaluate the inferential properties of the 

global standardization and within-person standardization approaches for models with one or 

two time-varying predictors. The simulation study is helpful for evaluating the performance 
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of the methods with finite samples (finite N and finite Ti) in terms of both estimation 

accuracy (bias in the point estimates) and statistical inference (coverage rates of confidence 

intervals).

Simulation design

For models with one time-varying predictor (Xit), we generated ρw,i from a normal 

distribution with µρw = 0, −.25, or −.5 (corresponding to the null, small-medium, and large 

correlations) and SD = 0 or .25 (corresponding to the homogeneous and heterogeneous 

within-person relation conditions). For each of the N = 50, 100, or 300 individuals, T = 5, 

10, 20, 30, 56, or 100 data points of XPS and Y PS were generated from a bivariate normal 

distribution with means of 0, SDs of 1, and the within-person correlation ρw,i. Then, N 
person mean scores of X and N person mean scores of Y were generated from a bivariate 

normal distribution with means of 13 and 30 and a covariance matrix of (19, −6.5, −6.5, 70). 

Meanwhile, N person SD scores of X and N person SD scores of Y were generated from a 

bivariate gamma distribution with means of 2.7 and 5.3 and a covariance matrix of (3, 0.6, 

0.6, 2.5), (0, 0, 0, 2.5), or (0, 0, 0, 0). The middle covariance matrix corresponds to the 

situation in which between-person differences in person SDs of X do not exist, but do for Y 
(an ideal scenario considered in the derivations). The zero covariance matrix is for the 

situation in which there are no between-person differences in the person SDs for both 

variables (another ideal scenario considered in the derivations). Raw scores of X and Y were 

then generated. The multilevel models in Eqs (2), (4), and (9) were fitted to the observed 

person-mean centered or WP standardized data. In the simulations, the correlations between 

the observed and true person SDs were not 1, but were about .62, .76, .87, .91, .95, and .97 

for Y with T = 5, 10, 20, 30, 56, or 100 respectively. The corresponding values are slightly 

higher or similar for X. The P-S approach (MPS) was implemented by fitting the model in 

Eq (9). The global standardization approaches (MG1, MG2, and MG3) were implemented 

using Eqs (5) to (8). In addition, the EB standardization approach (MEB) was also 

implemented. The EB standardization approach conducts standardization at the person level, 

so we expect reasonably accurate point estimates of µρw. However, the EB estimates suffer a 

shrinkage problem and the problem becomes more severe when T is smaller (e.g., 

Fitzmaurice et al., 2011). Thus, we expect poor inferential properties (e.g., undercoverage) 

from the EB method when T is not sufficiently large. In total, when there is one time-varying 

predictor, we had 3 × 6 × 3 × 2 × 3 = 324 conditions for each of the five evaluated methods.

For models with two time-varying predictors (X1it and X2it), we generated N = 50, 100, or 

300 sets of three pairwise within-person correlations, ρw1,i (X1it and X2it), ρw2,i (X1it and 

Yit), and ρw3,i (X2it and Yit). Specifically, each follows a normal distribution with mean = .

50 and SD = .20, mean = −.20 and SD = .25, and mean = −.40 and SD = .25, respectively. 

For each of the N individuals, T = 5, 10, 20, 30, 56, or 100 data points of X1
PS, X2

PS, and YPS

were generated from a trivariate normal distribution with means of 0, SDs of 1, and the three 

pairwise within-person correlations. Then, N person mean scores for each of X1, X2, and Y 
were generated from a trivariate normal distribution with means of 13, 19, 30 and a 

covariance matrix of 
19    
20 35  
−6 −22 70

. Meanwhile, N person SD scores for each of X1, X2, 
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and Y were generated from a trivariate gamma distribution with means of 2.7, 3.5, and 5.3 

and a covariance matrix of 
3    

1.2 1.2  
0 0 2.4

 or a 0 covariance matrix. The 0 covariance matrix is 

for the situation in which there are no between-person differences in the person SDs for any 

of the three variables. The other data generation and model fitting steps were the same as 

those in the bivariate simulation settings except that two predictors were included in the 

multilevel models. Theoretically, the two standardized fixed-effects within-person 

coefficients of X1 and X2 are 0 and −0.4 at the population level. Empirically, some of the 

generated correlations that are above 1 (or below −1) were set to be .99 (or −.99) and thus 

the empirical reference values were −.0135 and −.3907 when there are between-person 

differences in the person SDs and −.0126 and −.3914 when there are not.

Recall that under the heterogeneous within-person relation condition, the derivations were 

done with the data assumption that there are equal number of assessments across individuals 

for obtaining simple-form results. With the data assumption, we found that global 

standardization generally yields inconsistent estimates of the average within-person 

correlation. When the data assumption is violated, we expect that the same conclusion still 

holds for global standardization. It was less clear, however, how within-person 

standardization performs when individuals have different numbers of assessments. Thus, to 

further evaluate the performance of the methods, we also generated Ti from a Poisson 

distribution with mean(T)= sd(T) = 5, 10, 20, 30, 56, or 100 respectively for the simulations 

with two time-varying predictors. The distributions of the number of time points are 

displayed in Part C of the online supplemental materials. In total, 3 × 6 × 2 × 2 = 72 

conditions were considered when there are two time-varying predictors. For both bivariate 

and trivariate simulations, the non-null population values for the person mean and person SD 

variables were adopted based on the real data in the real data example section.

For each of the conditions in which individual differences in within-person relations exist, 

all of the five standardization methods were evaluated. For each of the conditions in which 

individual differences in within-person relations do not exist, four of the five standardization 

methods were evaluated because the EB standardization approach is not applicable here. The 

number of replications is 1000 for each condition. Bias or relative bias based on point 

estimates and coverage rates based on 95% confidence intervals were evaluated for each 

method under each condition. Relative biases more than 10% are treated as nonignorable 

and coverage rates outside the range of 91% – 98% are viewed as unsatisfactory (Muthén & 

Muthén, 2002).

Simulation results

Due to space limitations, a subset of the simulation results from the models with one 

predictor (bivariate) and two predictors (trivariate) are included in Tables 3–4 and Table 5, 

respectively. The results from the other conditions share very similar patterns and those from 

the conditions with N = 50 or N = 300 are displayed in Part E of the online supplemental 

materials.
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Table 3 displays the bivariate results when µρw = 0. When µρw = 0, regardless of whether 

there are between-person differences in person SDs of X and Y, our derivation results 

showed that ρCX,CY = µρw = 0 and thus all the global standardization approaches (MG1, 

MG2, and MG3) and the P-S standardization approach (MPS) can yield consistent estimates 

of µρw. The simulation results were aligned with the derivation results. In addition, MG1, 

MG2, MG3, and MPS yielded satisfactory coverage rates except when MG3 is used for data 

with 5 time points under the scenario in which between-person differences in the person SDs 

of both X and Y exist. The empirical biases in estimating µρw from the EB standardization 

approach (MEB) were also 0.00 but the coverage rates were all below 90% when T ≤ 56. 

When T = 100, MEB had more satisfactory coverage rates (90.8% to 92.0%).

Table 4 displays the bivariate results when µρw = 0.5. When µρw ≠ 0, our derivation results 

showed that the MG2 approach generally yields inconsistent estimates of µρw regardless of 

whether there are between-person differences in person SDs of X and Y. The simulation 

results confirmed the derivation results. Specifically, MG2 yielded biased estimates of µρw 

with nonignorable relative biases and poor coverage rates under all of the conditions with 

µρw = 0.5. Increasing N and/or T did not improve its performance. When µρw = 0.5, the 

biases in estimating µρw from the EB standardization approach were ignorable when T ≥ 20 

but the coverage rates were below 91% in most of the studied conditions (MEB in Table 4). 

As T increases, performance of the EB standardization approach became better in both point 

estimation accuracy and coverage rates.

As shown in our derivations, when µρw ≠ 0, estimation performance of the other two global 

standardization methods, MG1 and MG3, depends on whether there are between-person 

differences in person SDs of X and Y. First, when between-person differences in person 

standard deviations of both X and Y exist, our derivation results showed that MG1 and MG3 

generally yielded inconsistent estimates of µρw with a nonzero µρw. Under the scenario and 

µρw = 0.5, our simulation results showed that MG1 and MG3 had nonignorable relative biases 

in estimating µρw under most of the relevant simulation conditions. Increasing N and/or T 
did not lower the relative biases. Furthermore, there was severe undercoverage in the 95% 

confidence intervals from MG1 and MG3. Second, when µρw ≠ 0 and between-person 

differences in person standard deviations exist in Y but not in X, our derivation results 

showed that MG1 and MG3 generally also yields inconsistent estimates of µρw. Under this 

scenario, although it appeared that MG1 and MG3 had ignorable relative biases in estimating 

µρw, increasing N and/or T did not reduce the relative biases and made the coverage rates 

even more unsatisfactory (the second row block of Table 4). Third, when µρw = 0.5 and 

between-person differences in person standard deviations of X and Y do not exist, our 

derivation results showed that MG1 and MG3 can yield consistent estimates of µρw. The 

simulation results were also aligned with the derivation results (Table 4). In addition, MG1 

and MG3 had very similar results when T is large (e.g., T ≥ 56), aligned with our derivations 

that the results from the two methods asymptotically approach the same values. When T is 

small (e.g., 5 or 10), MG1 performed better than MG3 in the simulations.

The P-S approach (MPS) yielded ignorable biases in estimating µρw and the biases became 

lower when T increases (Table 4). This was consistent with our derivation results that the 

estimates from P-S are consistent for estimating µρw. For obtaining satisfactory coverage 
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rates, our simulation results revealed that, in some conditions, 30 or more measurement 

occasions may be needed in order to use P-S (Table 4).

The results from the models with two predictors (see Table 5 for the results under both the 

equal Ti and unequal Ti data conditions) shared the same patterns as those from the models 

with one predictor, regardless of whether there are equal or unequal numbers of time points 

across individuals. Thus, we do not repeat the details here.

Summary of the simulation results

In summary, our simulation results were consistent with the derivations in that (1) global 

standardization methods including MG1 and MG3 yielded inaccurate estimates of fixed-

effects within-person relations when the average relations exist (e.g., µρw ≠ 0) and between-

person differences in person SDs exist; (2) global standardization MG2 yielded inaccurate 

estimates of fixed-effects within-person relations when the average relations exist (e.g., µρw 

≠ 0) regardless of whether between-person differences in person SDs exist; (3) P-S (MPS) 

yielded accurate estimates of fixed-effects within-person relations when T is not too small 

(e.g., T ≥10); and (4) the estimates from the EB standardization approach (MEB) also had 

ignorable biases when T is not too small.

The simulation results revealed extra information about inferential properties of the 

approaches. Generally, when average within-person relations do not exist (e.g., µρw = 0), 

MEB was the only method that yielded unsatisfactory coverage rates. When average within-

person relations exist (e.g., µρw ≠ 0), global standardization MG2 had unsatisfactory 

coverage rates in all of the studied conditions. When average within-person relations exist 

(e.g., µρw ≠ 0) and between-person differences in person SDs exist, global standardization 

approaches including MG1 and MG3 had unsatisfactory coverage rates in most of the studied 

conditions. When average within-person relations exist (e.g., µρw ≠ 0) and between-person 

differences in person SDs do not exist, MG1 and MG3 had satisfactory coverage rates. P-S 

(MPS) yielded satisfactory coverage rates when T ≥ 30 and N ≥ 50. In many conditions, the 

coverage rates were also satisfactory with a smaller T (e.g., 10 or 20 occasions).

A summary of all the evaluated methods is listed in Table 6. The consistency performance of 

the methods and the performance with finite samples are summarized in the last three 

columns of Table 6.

A real data analysis example

In this section, we use real daily diary data to illustrate similarities and differences in the 

results from the various standardization approaches. Substantively, we analyze the data to 

better understand the emotional complexity issue, or the degree of relationship between 

positive and negative affect. The issue of ongoing debate is whether positive and negative 

emotions are opposite ends of a bipolar continuum or independent dimensions in a bivariate 

distribution. The Affect Circumplex model suggests that one would expect positive affect 

(PA) and negative affect (NA) to be independent of one another (Watson, Weise, Vaidya & 

Tellegen, 1999). The Dynamic Model of Affect (DMA), on the other hand, stresses the 

importance of contextual factors in feelings and emotions. For example, using the DMA 
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perspective, one would predict that under stress, affect becomes bipolar (Zautra, Potter, & 

Reich, 1997). In this real data analysis example, daily data on PA, NA and Stress were 

analyzed using multilevel modeling to study the emotional complexity issue from the day-

to-day intraindividual variability perspective. Specifically, we are interested in how these 

variables are related intraindividually over time. In this example, within-person relations 

among the variables are more useful than between-person relations.

A subset of data from the middle-aged and older cohorts of the Notre Dame Study of Health 

& Well-Being (Bergeman & Deboeck, 2014) were used. For the purpose of illustration, we 

chose cases that have complete data for all variables involved in the analyses (N = 101). The 

participants, ranging in age from 31 to 91, were measured daily on PA and NA using the 

Positive Affect and Negative Affect scale (PANAS; Watson et al., 1988) and stress using the 

Perceived Stress Scale (Cohen et al., 1983) for 56 onsecutive days. Therefore, for each 

variable, we have 101 × 56 = 5656 data points. In addition, the data were detrended to 

eliminate the influence of trend in the time series when trends were detected for some 

participants. The rationale of detrending was that we did not expect increasing or decreasing 

patterns in the variables due to the nature of the sample of typical aging adults. With the 

detrended data, we studied the relations after controlling for the effect of time (i.e., day). 

More details about how the data were detrended can be found in Zhang, Wang, and 

Bergeman (2018). Descriptive statistics of the variables are displayed in Table 7 and 

summary statistics of the person mean and SD variables are displayed in Table 8.

The standard deviations of the person means were 4.36 (95% bootstrap percentile confidence 

interval [95% BPCI]: 3.06, 5.59), 5.92 (95% BPCI: 4.74, 7.01), and 8.39 (95% BPCI: 6.95, 

9.74) for NA, Stress, and PA respectively. The standard deviations of the person standard 

deviations were 1.72 (95% BPCI: 1.39, 1.99), 1.29 (95% BPCI: 1.10, 1.46), and 1.53 (95% 

BPCI: 1.35, 1.69), for NA, Stress, and PA respectively. Thus, statistically significant 

between-person differences existed in both the person means and person SDs of all three 

variables.

The sample correlations were different with different kinds of stacked long data. For 

example, the sample correlation between NA and Stress from raw data was .72, whereas that 

from person-mean centered data was .65 and from P-S standardized data was .55. We also 

applied our derived formulas for calculating the sample correlations. Plugging the relevant 

values into the formulas, as shown in Part D of the online supplemental materials, we can 

recover the sample correlation estimates. Thus, the calculations confirmed the accuracy of 

the population correlation derivations in the online supplemental materials.

We applied the five standardization approaches to various multilevel models with NA or 

Stress predicting PA and models with both NA and Stress predicting PA. Specifically, the 

single predictor model (e.g., NA predicting PA) was fitted to study the concurrent within-

person relations between daily NA and daily PA, whereas the double predictor model (both 

NA and Stress predicting PA) was fitted to study the within-person relations between daily 

NA and daily PA after controlling for daily Stress. The results are presented in Table 9.
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Methodologically, the real data analysis results from the models with one predictor were 

consistent the derivation and simulation results. For example, our analytical and simulation 

results revealed that global standardization generally does not accurately recover the average 

within-person relations but the P-S approach can. Under the heterogeneous within-person 

relation assumption, we obtained γ10, heter, NA
G1 ∗ = γ10, heter, NA

G3 ∗ = − .29 and 

γ10, heter, Stress
G1 ∗ = γ10, heter, Stress

G3 ∗ = − .46, which were substantially different from those of the 

P-S approach (γ10, NA
PS = − .23 and γ10, Stress

PS = − .40; 26% = .06/.23 and 15% = .06/.40 

relative differences) respectively. As another instance, with T = 56, the standard error 

estimates from the EB standardization approach (MEB) were smaller than those from the P-S 

approach (MPS) due to the shrinkage problem. This is consistent with the undercoverage 

problem from EB when T is not large enough.

The standard error estimates from the P-S models (MPS) under the homogeneous within-

person relation assumption were all less than half of those from the P-S models that relaxed 

the assumption. For our real example, there were statistically significant different within-

person relations across individuals before and after controlling for the other predictor, using 

various variance tests (e.g., Ke & Wang, 2015). The homogeneous within-person relation 

assumption is not met for our example. Therefore, u1i should be included in the multilevel 

models.

Based on the derivation and simulation results, given that we have 56 occasions of data (> 

30), significant between-person differences in person SDs, and the research interest is in 

evaluating within-person relations, we recommend the results from the P-S approach (MPS) 

under the heterogeneous within-person relation assumption for this example. Substantively, 

using P-S, we found that on average, daily NA did not relate intraindividually to daily PA 

after controlling for daily Stress (.001 with its standard error estimate at .030; 95% CI: [−.

058, .060]), but daily Stress significantly related intraindividually to daily PA after 

controlling for daily NA (−.40 with its standard error estimate at .032: 95% CI: [−.463, −.

337]). Note that the results from global standardization yielded noticeably different point 

and interval estimates of within-person relations, although the significance of the results was 

the same. Schuurman et al. (2016) stated that the person-specific Granger-causal processes 

should not involve between-person differences in the processes. For these data, we found 

that the grand SDs used in global standardization involve the between-person variance in 

within-person SDs (MG1 and MG3) or between-person variances in both within-person SDs 

and within-person means (MG2), as shown in Table 2 and Part B of the online supplemental 

materials. Therefore, we think that researchers may be less interested in the findings from 

global standardization than those from within-person standardization.

Recalling the debate on the two substantive theories about emotional complexity, our results 

supported both. That is, at the person level, daily NA was a significant predictor of daily PA; 

whereas after controlling for daily stress, daily PA and daily NA were not significantly 

correlated. It is interesting to note that these relations are salient not only under extreme 

duress, which is usually tested (e.g., Zautra, Smith, Affeck & Tennen, 2001), but also hold 

under typical daily hassles.
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Discussion

In the current study, we evaluated five standardization approaches for studying within-

person relations using multilevel modeling. The global standardization approaches we 

evaluated are based on the sample grand standard deviations of a variable. Global 

standardization is currently recommended in multilevel modeling textbooks for 

standardizing fixed-effects coefficients (e.g., Hox, 2010; Snijders & Bosker, 2012). Our 

derivations showed that when there are individual differences in the within-person standard 

deviations and the average within-person relation is not 0, global standardization generally 

yields inconsistent (asymptotically biased) estimates of fixed-effects within-person relations 

(e.g., µρw). Our simulation results expanded the findings to performance with finite samples. 

In the real example, all three time-varying variables had substantial individual differences in 

within-person standard deviations and thus the results from global standardization can be 

misleading for describing the average within-person relations.

The current article also provides both analytical and simulation results to show whether and 

when the person-mean-SD standardization (P-S) approach can be used for estimating and 

inferring about within-person relations. Specifically, our derivation results revealed that the 

within-person relations can be consistently estimated from P-S, regardless of whether there 

are individual differences in the within-person standard deviations. In addition, our 

simulation results revealed that the P-S approach had ignorable estimation bias when T ≥ 10 

and N ≥ 50, and satisfactory coverage rates when T ≥ 30 and N ≥ 50. In many conditions, P-

S had satisfactory coverage rates with a smaller T (e.g., 10 or 20 occasions) as well.

A benefit of using the P-S approach is that the within-person relation estimates satisfy 

Kelley and Preacher’s (2012) properties of a good effect size estimate. Specifically, fixed-

effects within-person relation estimates from P-S are invariant to the change of the units of 

the measurements. In addition, it is easy to obtain confidence interval estimates as shown in 

the real example. A practical implication is that the fixed-effects within-person relation 

estimates from P-S can be used for comparing the quantitative strengths of within-person 

relations from different pairs of time-varying variables.

The choice of a standardization method depends on the estimand and the research goal

When considering the type of centering to use, Enders and Tofighi (2007), Hamaker and 

Grasman (2015), and Kreft et al. (1995) all emphasized that one may prefer different 

centering methods for different estimands (the target of estimation/inference) in cross-

sectional or dynamic multilevel modeling. On standardization, we echo that the choice of a 

standardization method also depends on the estimand. In this study, our focus was on 

estimating and making inferences about within-person relations (e.g., µρw). With this 

estimand in mind, we argue for P-S over global standardization. Comparing P-S or WP 

standardized coefficients across individuals on the same pair of variables or across different 

pairs of variables, however, may have limited use under some circumstances. For example, 

when guiding decisions concerning interventions, standardization takes into account neither 

the relative difficulty nor importance of manipulating a variable in practice. In our real 

example, stress and positive affect had a statistically higher average within-person relation 

compared to the pair of negative affect and positive affect. Decreasing negative affect by one 
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standard deviation, however, may be easier than decreasing stress by one standard deviation 

in a real life context. As another instance, when the raw within-person effect coefficients of 

stress on positive affect are the same between two individuals (e.g., −.65), we can interpret 

the results such that when stress increases by 1 point, positive affect decreases by .65 point 

for both individuals. After WP standardization, the two standardized coefficients can be 

different (e.g., −.65
sx1
sy1

= − .650.5
0.5 = − .65 for the first individual and 

−.65
sx2
sy2

= − .650.5
1 = − .325 for the second individual). In this case, we interpret the 

standardized results such that when stress increases by 1 within-person SD, positive affect 

decreases by .65 within-person SD for the first individual whereas positive affect decreases 

by .325 within-person SD for the second individual. The standardized coefficient is larger 

for the first individual due to his or her smaller within-person SD in the outcome variable 

(i.e., positive affect). Whether the raw within-person coefficients or the WP standardized 

coefficients are more useful for evaluating invention effects for these two individuals is 

arguable and depends on the context. Thus, comparing within-person standardized 

coefficients may have limitations in developing new interventions.

When raw scales are compatible with within-person relations, standardization may not be 

needed at all. Moreover, if the time-varying predictor and/or outcome are binary, different 

considerations may need to be made on whether and how to standardize the variables (e.g., 

Hedges, 2007); future research on this issue is needed. Therefore, it is important to identify 

the estimand and the research goal with substantive/theoretical considerations (e.g., see a 

discussion in Schuurman et al., 2016), and then select an appropriate standardization 

approach for estimating the estimand of interest.

Future research directions

In the derivations, the within-person mean variables as well as the within-person SD 

variables are reliable because T is infinity. Our derivation results have shown that even under 

this best-case condition, global standardization may yield asymptotically-biased estimates of 

average within-person relations. For our real data example, the estimated reliabilities of the 

person mean variables were above .99 and those of the within-person SD variables were all 

above .92, calculated using the formulas in Wang and Grimm (2012). Thus, the observed 

person mean and SD variables used in the P-S multilevel models in the real data example 

were highly reliable. When the number of time points is relatively small, however, the 

within-person SD variables can be unreliable (e.g., Du & Wang, 2018; Estabrook et al., 

2012; Wang & Grimm, 2012). Our simulation results did reveal that a relatively large 

number of occasions (e.g., 30 or more) may be needed for obtaining satisfactory coverage 

rates from the P-S approach. When the number of time points is not large (e.g., 5 or 10), we 

should use the P-S approach with caution, especially for statistical inference (e.g., 

confidence interval construction).

When T is relatively small, latent variables or random effects may be helpful for modeling 

the within-person means and SDs. For example, Schuurman et al. (2016) used sophisticated 

Bayesian modeling with MCMC to obtain person variances as random effects for 
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standardizing the within-person random-effects coefficients. Future research should 

investigate how to use Bayesian modeling with MCMC to model random effects for 

intraindividual/person means and variances (instead of using observed person means and 

variances) in the P-S approach. Furthermore, as shown in Table 1, standardizing the 

variables before multilevel modeling vs. standardizing the random coefficients during or 

after multilevel modeling can result in different models due to different modeling 

assumptions. It is not immediately clear, however, which assumption should be preferred 

and which estimation method (Bayesian vs. frequentist) should be preferred. Our 

expectation was that when the modeling assumption is met for the Bayesian approach in 

Schuurman et al. (2016), the approach may require fewer time points than our evaluated 

within-person standardization approaches (MPS and MEB) for making accurate inferences 

about within-person relations, due to their capability of directly modeling person variances 

as random effects. In addition, our simulation results revealed that MEB required many more 

time points of data than MPS (e.g., 100 vs. 30 for some conditions). This may be explained 

by the current simulation study design: The standardized coefficients were generated to 

follow a normal distribution whereas the unstandardized coefficients were not. We 

conducted a small simulation study to evaluate the performance of MEB and MPS when the 

unstandardized coefficients followed a normal distribution but the standardized coefficients 

did not. Our simulation results from the additional conditions revealed that MEB required 20 

or more time points of data whereas MPS required 10 or more time points of data (simulation 

results are listed in Part E of the online supplemental materials). Thus the data requirement 

differences appeared smaller, but MEB still required more time points than MPS. Future 

research should evaluate the different modeling and estimation approaches for within-person 

standardization.

Another possibility is to conduct the analysis in the latent variable modeling framework. 

Lüdtke et al. (2008) modeled cluster means as latent intercepts for better understanding 

between-cluster effects. They did not, however, allow within-cluster effects to vary across 

clusters. Nor did they include cluster SDs or variances as latent variables in the models. 

Therefore, future research should be done to develop and evaluate the possibility. In 

addition, the location-scale model proposed by Hedeker and colleagues allows for direct 

modeling of heterogeneous within-person variances in only the outcome variable using the 

frequentist framework (e.g., Hedeker, Mermelstein, Berbaum, & Campbell, 2008; Hedeker, 

Mermelstein, Demirtas, 2009, 2012). Future research should be done to explore extensions 

of this model to allow for direct modeling of heterogeneous within-person variances in both 

the predictor and outcome variables.

Non-stationarity (e.g., trends or cycles) may exist in the time-varying variables. For 

example, when trends exist, detrending may or may not be needed, depending on the 

research goals (e.g., Curran & Bauer, 2011; Liu & West, 2016; Wang & Maxwell, 2015). 

Thus, we have the following data analysis recommendations for studying within-person 

relations (e.g., correlations) when trends exist in the time-varying variables. First, whether 

detrending is necessary should be determined. As discussed in Wang and Maxwell (2015), 

detrending is necessary when the research interest is on net-time (conditional) within-person 

relations, but is not necessary when the focus is on original (unconditional) within-person 

relations. Second, when detrending is needed, either (a) detrending first then using the model 
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in Eq 9 or (b) including time (or a function of time) as a Level-1 covariate in Eq 9 can be 

done to make inferences about fixed-effects net-time within-person relations. Future 

research is needed to compare the performance of the two methods. Third, when detrending 

is not needed, the multilevel model in Eq 9 can be fitted to make inferences about fixed-

effects within-person relations when the number of time points is large enough. Note that 

when non-stationarity exist, Granger causality can not be implied (Granger, 1969) and only 

association relationships can be implied. Overall, future research can be done to propose and 

evaluate standardization methods for better understanding within-person processes when the 

dynamic processes are not stationary.

Concluding remarks

We analytically derived that when both (a) between-person differences in within-person 

standard deviations exist and (b) the average within-person relation is not 0, global 

standardization generally yields inconsistent (asymptotically biased) estimates for the 

average within-person relations (the estimand of interest in the current study). We hope that 

our results can help researchers further appreciate the importance of considering individual 

differences in intraindividual variability and understand the consequences of ignoring the 

differences when studying within-person relations. Alternatively, a within-person 

standardization approach (within-person standardize both the time-varying predictor and 

outcome variables and the standardized variables are used in multilevel modeling; P-S) 

yields consistent estimates. Our simulation results were aligned with the derivation results 

and further revealed that the P-S approach provided proper confidence interval coverage of 

fixed-effects within-person relations when the number of occasions is 30 or more (in many 

conditions, performance was also satisfactory with 10 or 20 occasions). To conclude the 

paper, we want to emphasize that different studies may have different research questions and 

thus estimands of interest. Therefore, we suggest that researchers should make the choice of 

standardization based on theoretical considerations and should clearly describe the purpose 

and procedure of standardization in research articles.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1:

Research questions, estimands, and standardization approaches.

Example research 
questions

Estimand (Target 
of estimation)

Standardization 
approaches

Modeling 
assumptions Strengths Limitations

The number of 
points that the 

“average” person’s 
daily mood score 
will change when 
he/she has a 1 unit 

higher score on 
daily stress.

Average WP 
effect; 

Unstandardized 
WP coefficient.

Standardization not 
done; Person-mean 

centering is useful for 
disaggregating WP and 

BP effects.

Regular MLM 
assumptions apply 
to unstandardized 

coefficients.

Raw scales and 
units are kept. Easy 
to obtain estimates.

Raw coefficients may 
not be easy to interpret 

or be suitable for 
comparing the 

strengths of the effects.

The number of 
WP SDs that the 

“average” person’s 
daily mood will 
change when his 
or her daily stress 
increases 1 WP 

SD.

Average WP 
relation or 

association;
A standardized 

coefficient.

WP Standardization; 1. 
WP standardize 

variables before MLM 
(MPS); 2. WP 

standardize random-
effects estimates after 
MLM (MEB); 3. WP 
standardize random-

effects estimates during 
MLM.

1. Regular MLM 
assumptions apply 

to standardized 
coefficients. 2 & 3. 

Regular MLM 
assumptions apply 
to Unstandardized 

coefficients.

May ease 
interpretation and 
aid evaluating the 
strengths of WP 

relations. 1 &2 are 
easy to implement. 

3 can be 
implemented with 
Bayesian methods 

(e.g., Mplus 8, 
BUGs).

Raw scales or units are 
not kept but the 

standardized 
coefficients can be 

useful and meaningful 
for comparing the 

strengths of the WP 
relations across 
different sets of 

variables.

The number of 
grand SDs that the 
“average” person’s 

daily mood will 
change when his 
or her daily stress 
increases 1 grand 

SD.

Generally not the 
average WP 

relation*;
A standardized 

coefficient.

Global Standardization; 
Globally standardize 

WP fixed-effects 
estimates after MLM 
(MG1, MG2, or MG3).

Regular MLM 
assumptions apply 
to unstandardized 

coefficients.

May ease 
interpretation. Easy 
to obtain estimates.

Raw scales or units are 
not kept but the 

standardized 
coefficients may be 

useful and meaningful. 
But grand SD is a 

conflated combination 
of the average WP SD 

and BP variation in WP 
SDs. The research 

question may be less 
interesting to 
researchers.

Note: WP: within-person; BP: between-person. Regular multilevel modeling (MLM) assumptions include, for example, the random coefficients 
(standardized or unstandardized, depending on the modeling approach) are normally distributed when a normal-theory-based estimation approach 
is used. MG1: the person-mean centering (P-C) model in Eq (2) followed by global standardization in Eq (5); MG2: the P-C model in Eq (2) 

followed by global standardization in Eq (6); MG3: the P-C model in Eq (4) followed by global standardization in Eq (7); MPS : the P-S approach 

in Eq (9); MEB: the P-C model in Eq (2) with EB standardization.

*
Our statistical consistency derivation results (summarized in the derivation section) revealed this.
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Table 2:

Derived population correlations of different kinds of stacked long data when σX, σY , XPS, and Y PS follow a 

joint multivariate normal distribution.

Data Type Derived population correlation Involved parameters

Raw data
(xit and yit)

ρX, Y =
μσXμσY + σσX, σY μρw + σμXσμYρb

μσX
2 + σσX

2 + σμX
2 μσY

2 + σσY
2 + σμY

2

Average within-person correlation (µρw)
Between-person correlation (ρb)

Mean and SD of the person SDs (µσX , µσY , σσX , σσY)
Covariance of the person SDs (σσX,σY)

SD of the person means (σµX , σµY)

P-C data

(xit
PC

 and yit
PC

)

ρCX, CY =
μσXμσY + σσX, σY μρw

μσX
2 + σσX

2 μσY
2 + σσY

2

Average within-person correlation (µρw)
Mean and SD of the person SDs (µσX , µσY , σσX , σσY)

Covariance of the person SDs (σσX,σY)

P-S data

(xit
PS

 and yit
PS

)
ρWX, WY = μρw Average within-person correlation (µρw)
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Table 3:

Simulation results: Biases and coverage rates of µρw (average within-person relation) estimates when µρw = 0, 

N = 100, and one predictor is included.

T

Individual differences in within-person relations exist No individual differences in within-person relations

Bias Coverage rates (%) Bias Coverage rates (%)

All 5 methods MG1 MG2 MG3 MPS MEB All 4 methods MG1 MG2 MG3 MPS

Between-person differences in within-person standard deviations of X and Y exist

5 0.00 94.5 94.5 94.9 95.4 34.2 0.00 91.1 91.1 87.7 91.8

10 0.00 94.1 94.1 93.9 94.4 44.6 0.00 93.9 93.9 92.2 94.0

20 0.00 94.0 94.0 93.7 94.1 63.4 0.00 93.2 93.2 92.4 94.6

30 0.00 93.7 93.7 93.9 93.8 75.8 0.00 94.6 94.6 94.3 95.9

56 0.00 95.3 95.3 95.6 94.7 85.7 0.00 93.4 93.4 93.3 94.9

100 0.00 95.3 95.3 95.4 94.6 91.8 0.00 93.3 93.3 93.3 96.2

Between-person differences in within-person standard deviations exist for Y but not for X

5 0.00 93.2 93.2 93.9 93.2 31.0 0.00 95.5 95.5 93.7 92.0

10 0.00 95.1 95.1 95.2 95.9 48.0 0.00 95.8 95.8 94.8 94.6

20 0.00 94.4 94.4 94.4 94.3 67.9 0.00 94.9 94.9 94.6 94.1

30 0.00 94.9 94.9 95.0 94.3 74.8 0.00 94.9 94.9 94.6 95.9

56 0.00 95.5 95.5 95.5 94.6 87.1 0.00 94.3 94.3 94.3 93.2

100 0.00 95.2 95.2 95.2 95.3 92.0 0.00 95.7 95.7 95.6 95.5

Between-person differences in within-person standard deviations of X and Y do not exist

5 0.00 94.0 94.0 94.1 95.3 32.9 0.00 95.7 95.7 92.8 92.5

10 0.00 94.5 94.5 94.5 94.4 53.6 0.00 95.6 95.6 94.5 94.7

20 0.00 94.3 94.3 94.2 93.7 70.7 0.00 95.9 95.9 95.4 96.0

30 0.00 95.5 95.5 95.6 95.4 83.0 0.00 95.1 95.1 94.5 94.6

56 0.00 93.7 93.7 93.7 94.1 86.1 0.00 95.4 95.4 95.2 94.9

100 0.00 94.3 94.3 94.3 94.2 90.8 0.00 95.6 95.6 95.6 96.1

Note: MG1: the person-mean centering (P-C) model in Eq (2) followed by global standardization in Eq (5); MG2: the P-C model in Eq (2) 

followed by global standardization in Eq (6); MG3: the P-C model in Eq (4) followed by global standardization in Eq (7); MPS : the P-S 

standardization approach in Eq (9); MEB: the P-C model in Eq (2) with EB standardization.
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Table 4:

Simulation results: Relative biases and coverage rates of µρw (average within-person relation) estimates when 

µρw = −0.5, N = 100, and one predictor is included.

T

Individual differences in within-person relations exist No individual differences in within-person relations

Relative bias (%) Coverage rates (%) Relative bias (%) Coverage rates (%)

MG1 MG2 MG3 MPS MEB MG1 MG2 MG3 MPS MEB MG1 MG2 MG3 MPS MG1 MG2 MG3 MPS

Between-person differences in within-person standard deviations of X and Y exist

5 2.3 −49.3 9.6 −7.7 −8.8 93.0 0.1 91.2 90.1 64.1 −15.6 −58.1 −15.6 −9.5 60.6 0.0 51.3 76.3

10 13.2 −40.3 16.5 −3.4 −11.3 79.3 0.4 73.3 92.6 40.7 −15.2 −55.3 −15.2 −3.7 28.3 0.0 23.9 91.9

20 28.0 −30.7 29.5 −1.5 −8.7 32.1 3.9 28.9 92.6 52.9 −15.4 −54.1 −15.4 −1.5 3.8 0.0 3.4 94.6

30 37.2 −25.1 38.1 −1.0 −6.7 12.1 11.6 11.1 94.0 65.6 −15.4 −53.8 −15.4 −0.8 1.0 0.0 0.8 95.9

56 50.6 −17.1 50.9 −0.8 −4.5 1.1 38.0 1.0 94.7 81.7 −15.2 −53.3 −15.2 −0.2 0.0 0.0 0.0 96.6

100 61.1 −11.2 61.2 −0.2 −2.4 0.2 59.2 0.2 94.9 90.1 −15.3 −53.4 −15.3 0.1 0.0 0.0 0.0 97.5

Between-person differences in within-person standard deviations exist for Y but not for X

5 −4.4 −52.5 −4.3 −7.7 13.4 95.5 0.0 95.7 88.3 46.9 −3.8 −52.1 −3.8 −9.6 96.6 0.0 94.4 77.7

10 −4.0 −49.4 −3.9 −3.1 5.5 94.4 0.0 94.4 90.9 62.1 −3.7 −49.2 −3.7 −3.8 93.2 0.0 91.4 89.1

20 −4.1 −48.0 −4.1 −1.5 2.7 93.3 0.0 93.5 94.5 79.8 −3.8 −47.9 −3.8 −1.6 87.2 0.0 85.9 94.8

30 −4.4 −47.8 −4.4 −1.2 1.5 90.9 0.0 90.7 93.9 85.4 −3.8 −47.4 −3.8 −0.9 78.3 0.0 77.4 96.0

56 −4.3 −47.5 −4.3 −0.7 0.8 90.4 0.0 90.4 93.9 90.6 −3.6 −46.9 −3.6 −0.1 61.4 0.0 60.7 97.1

100 −4.0 −46.9 −4.0 −0.2 0.7 90.4 0.0 90.4 93.8 92.4 −3.6 −46.9 −3.6 0.2 37.0 0.0 36.3 98.0

Between-person differences in within-person standard deviations of X and Y do not exist

5 −0.1 −51.7 −0.1 −7.6 7.1 96.4 0.0 96.4 86.5 56.1 0.8 −51.4 0.8 −8.9 98.0 0.0 96.0 79.4

10 0.2 −48.7 0.2 −3.2 1.1 95.6 0.0 95.9 92.7 62.5 0.4 −48.6 0.4 −3.8 97.5 0.0 96.8 90.1

20 0.2 −47.4 0.1 −1.4 −0.2 96.1 0.0 96.1 95.3 80.5 0.5 −47.1 0.5 −1.5 97.1 0.0 96.9 94.0

30 −0.2 −47.2 −0.2 −1.3 −0.7 95.1 0.0 95.0 92.9 82.2 0.6 −46.7 0.6 −0.7 97.4 0.0 97.3 94.9

56 −0.2 −46.7 −0.2 −0.7 −0.6 96.1 0.0 96.1 95.2 88.5 0.4 −46.4 0.4 −0.3 98.2 0.0 97.9 96.7

100 −0.1 −46.4 −0.1 −0.3 −0.3 92.3 0.0 92.3 92.3 90.0 0.5 −46.0 0.5 0.1 97.9 0.0 97.9 97.4

Note: MG1: the person-mean centering (P-C) model in Eq (2) followed by global standardization in Eq (5); MG2: the P-C model in Eq (2) 

followed by global standardization in Eq (6); MG3: the P-C model in Eq (4) followed by global standardization in Eq (7); MPS : the P-S 

standardization approach in Eq (9); MEB: the P-C model in Eq (2) with EB standardization.
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Table 5:

Simulation results from the models with two predictors included (N = 100).

T

X1 on Y (True value = 0) X2 on Y (True value = −0.4)

Coverage rates (%) Relative bias (%) Coverage rates (%)

MG1 MG2 MG3 MPS MEB MG1 MG2 MG3 MPS MEB MG1 MG2 MG3 MPS MEB

Between-person differences in within-person standard deviations of X and Y exist

Equal number of assessments across individuals

5 94.4 93.9 95.4 95.2 42.2 −7.5 −54.1 −2.9 −13.0 3.2 91.6 0.0 94.5 87.5 81.2

10 93.3 93.2 94.4 94.4 59.8 −2.5 −48.8 −0.6 −7.2 −4.3 94.6 0.0 95.8 93.3 76.7

20 93.8 93.9 94.1 95.2 80.6 4.5 −43.5 5.1 −3.0 −3.9 94.3 0.1 94.0 93.3 84.0

30 95.2 95.0 95.2 95.7 87.4 8.0 −40.9 8.3 −2.3 −3.3 93.2 0.4 93.0 95.0 89.8

56 94.7 95.0 94.7 95.1 91.1 12.9 −38.0 13.0 −0.6 −1.4 87.5 0.8 87.4 94.7 94.5

100 95.2 95.7 95.1 94.1 92.2 14.7 −36.6 14.8 −0.8 −1.3 85.5 3.5 85.5 94.2 95.7

Unequal number of assessments across individuals

5 92.6 92.6 93.1 94.1 47.4 −6.9 −53.9 −2.3 −13.1 79.4 92.6 0.1 94.4 86.6 91.2

10 93.4 93.4 93.5 94.3 57.3 −1.5 −48.2 0.2 −6.6 0.1 94.0 0.0 94.0 91.9 80.8

20 94.2 94.2 94.2 94.2 79.3 4.2 −43.7 4.8 −3.8 −4.2 94.9 0.3 94.4 92.3 83.2

30 93.7 93.7 93.9 95.0 87.8 8.2 −41.0 8.6 −2.1 −3.1 91.8 0.7 91.6 94.4 89.6

56 95.0 95.0 94.9 94.7 91.7 13.4 −37.7 13.5 −0.5 −1.4 86.9 1.6 86.8 95.1 95.2

100 93.5 93.5 93.5 93.9 92.7 14.7 −36.6 14.8 −0.5 −1.1 84.7 2.8 84.6 94.3 94.2

Between-person differences in within-person standard deviations of X and Y do not exist

Equal number of assessments across individuals

5 93.8 93.7 94.4 93.7 45.1 −4.4 −53.9 −3.6 −13.2 4.2 92.9 0.0 93.7 87.5 82.3

10 94.6 95.2 94.7 94.1 66.9 −3.3 −50.4 −3.0 −7.0 −2.0 95.5 0.0 95.5 92.8 81.0

20 95.0 93.6 94.7 94.4 79.5 −1.7 −48.4 −1.6 −3.3 −1.8 94.9 0.0 94.9 94.4 88.0

30 93.4 93.0 93.5 93.6 85.5 −1.8 −47.9 −1.7 −2.8 −2.1 94.7 0.0 94.7 93.6 92.0

56 93.2 93.7 93.2 93.3 89.9 −0.9 −47.0 −0.8 −1.3 −1.1 94.4 0.0 94.4 94.9 94.2

100 94.2 94.0 94.2 94.0 92.0 −0.1 −46.5 −0.1 −0.4 −0.3 94.2 0.0 94.2 94.1 95.6

Unequal number of assessments across individuals

5 94.2 94.6 94.6 94.3 45.1 −3.81 −53.57 −3.14 −12.83 47.45 95.0 0.0 95.2 89.0 92.3

10 94.0 94.3 93.9 94.0 64.6 −3.21 −50.36 −3.02 −7.23 −0.43 94.6 0.0 94.6 90.6 82.1

20 93.7 94.5 93.8 93.5 81.6 −2.11 −48.48 −2.03 −3.78 −2.15 94.3 0.0 94.4 93.8 86.7

30 95.2 95.2 95.3 95.2 87.1 −1.46 −47.74 −1.42 −2.42 −1.68 95.8 0.0 96.0 95.4 91.6

56 93.5 92.9 93.5 94.0 88.1 −1.37 −47.28 −1.36 −1.91 −1.69 94.7 0.0 94.8 94.8 94.3

100 93.7 94.3 93.7 94.4 92.5 −0.08 −46.41 −0.07 −0.32 −0.25 94.3 0.0 94.3 94.4 95.8

Note: MG1: the person-mean centering (P-C) model in Eq (2) followed by global standardization in Eq (5); MG2: the P-C model in Eq (2) 

followed by global standardization in Eq (6); MG3: the P-C model in Eq (4) followed by global standardization in Eq (7); MPS : the P-S approach 

in Eq (9); MEB: the P-C model in Eq (2) with EB standardization. The empirical biases from the 5 methods were all between −.02 and .00 when 

the true value is 0 and thus are not listed to save space.
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Table 6:

A summary of the evaluated standardization approaches in estimating and inferring fixed-effects within-person 

relations (e.g., µρw).

Model Data 
used Standardization method Consistency

Performance with finite samples

Estimation accuracy Coverage rates

MG1 Eq 2 P-C
γ10

G1 ∗ = γ10
C1 scx

scy
Global-1 

standardization

Generally not 
consistent when 
both the average 

WP relation is not 
0 and BP 

differences in 
person SDs exist

Generally not accurate 
when both the average 
WP relation is not 0 

and BP differences in 
person SDs exist

Generally not 
satisfactory when both 

the average WP 
relation is not 0 and 

BP differences in 
person SDs exist

MG2 Eq 2 P-C
γ10

G2 ∗ = γ10
C1 scx

sy
Global-2 

standardization

Generally not 
consistent when the 

average WP 
relation is not 0

Generally not accurate 
when the average WP 

relation is not 0

Generally not 
satisfactory when the 

average WP relation is 
not 0

MG3 Eq 4 P-C
γ10

G3 ∗ = γ10
C2 scx

scy
Global-3 

standardization

Generally not 
consistent when 
both the average 

WP relation is not 
0 and BP 

differences in 
person SDs exist

Generally not accurate 
when both the average 
WP relation is not 0 

and BP differences in 
person SDs exist

Generally not 
satisfactory when both 

the average WP 
relation is not 0 and 

BP differences in 
person SDs exist

MPS Eq 9 P-S
γ10

PS ∗ = γ10
PS

Person-level P-S standardization
Consistent

Generally ignorable 
biases when T ≥ 10 
and N ≥ 50 Larger T 
and N, smaller biases

Generally satisfactory 
when T ≥ 30 and N ≥ 

50

MEB Eq 2 P-C
γ10

EB ∗ = 1
N γ1i

C1 scx, i
scy, i

γ1i
C1

: 

Empirical Bayes estimate; Person-
level EB standardization

Consistent
Generally ignorable 

biases Larger T and N, 
smaller biases

Satisfactory or 
approaching 

satisfactory when T 
and N are large 

enough

Note: P-C: person-mean centered; P-S: person-mean-SD standardized.
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Table 7:

Descriptive statistics of the stacked long data.

Mean SD Skewness Kurtosis Correlation Matrix

PA NA Stress PC-PA PC-NA PC-
Stress PS-PA PS-

NA
PS-

Stress

PA 29.46 9.96 0.07 0.54 1.00

NA 12.91 5.36 2.21 6.96 −0.20 1.00

Stress 18.72 6.92 0.73 1.72 −0.45 0.72 1.00

PC-PA 0 5.41 0.01 0.77 0.54 −0.15 −0.23 1.00

PC-NA 0 3.13 1.94 10.35 −0.14 0.59 0.34 −0.26 1.00

PC-Stress 0 3.62 0.71 2.44 −0.24 0.38 0.53 −0.44 0.65 1.00

PS-PA 0 .99 −0.04 0.42 0.52 −0.14 −0.21 0.96 −0.24 −0.41 1.00

PS-NA 0 .99 2.12 7.10 −0.13 0.49 0.30 −0.23 0.84 0.57 −0.23 1.00

PS-Stress 0 .99 0.59 1.29 −0.23 0.32 0.49 −0.42 0.55 0.94 −0.40 0.55 1.00

Note: PA: positive affect; NA: negative affect; PC-PA: person-mean centered positive affect; PC-NA: person mean centered negative affect; PC-
Stress: person mean centered Stress; PS-PA: person-mean-SD (P-S) standardized positive affect; PS-NA: P-S standardized negative affect; PS-
stress: P-S standardized Stress.
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Table 8:

Summary statistics of the person mean and standard deviation variables.

Mean SD Skewness Kurtosis Covariance (Correlation) Matrix

MPA MNA MStress SPA SNA SStress

MPA 29.46 8.39 0.26 0.74 70.39

MNA 12.91 4.36 2.26 6.70 −6.43 (−.18) 18.99

MStress 18.72 5.92 0.81 2.15 −22.28 (−.45) 19.62 (.76) 35.00

SPA 5.26 1.53 −0.13 −0.54 −2.70 (−.21) 0.86 (.13) 0.78 (.09) 2.34

SNA 2.68 1.72 1.11 1.22 −0.64 (−.04) 4.35 (.58) 3.74 (.37) 0.57 (.22) 2.96

SStress 3.44 1.29 0.78 0.27 0.48 (.04) 2.37 (.42) 1.86 (.24) 0.64 (.33) 1.71 (.77) 1.67

Note: MPA: person means of positive affect; MNA: person means of negative affect; MStress: person means of stress; SPA: person standard 
deviations of positive affect; SNA: person standard deviations of negative affect; SStress: person standard deviations of stress.
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Table 9:

Estimates of the fixed-effects within-person relations from various multilevel models.

MG1 MG2 MEB MG3 MPS

Eqs 2 & 5 Eqs 2 & 6 Eq 2 & EB Eqs 4 & 7 Eq 9

P-C with global-1 P-C with global-2 P-C with EB P-C with global-3 P-S

Predictor: Negative affect; Outcome: Positive affect

Under the homogeneous within-person relation assumption

γ10
∗

−.26 (.013) −.14 (.007) na −.26 (.013) −.23 (.013)

Under the heterogeneous within-person relation assumption

γ10
∗

−.29 (.034) −.16 (.018) −.24 (.022) −.29 (.034) −.23 (.028)

Var γ1i
∗

na na .048 (na) na .062 (.011)

Predictor: Stress; Outcome: Positive affect

Under the homogeneous within-person relation assumption

γ10
∗

−.44 (.012) −.24 (.007) na −.44 (.012) −.40 (.012)

Under the heterogeneous within-person relation assumption

γ10
∗

−.46 (.035) −.25 (.019) −.41 (.022) −.46 (.035) −.40 (.027)

Var γ1i
∗

na na .052 (na) na .063 (.011)

Predictors: Negative affect and Stress; Outcome: Positive affect

Under the homogeneous within-person relation assumption

γ1, NA
∗

.04 (.016) .02 (.009) na .04 (.016) −.007 (.015)

γ1, Stress
∗

−.46 (.016) −.25 (.009) na −.46 (.016) −.40 (.015)

the heterogeneous within-person relation assumption

γ1, NA
∗

.05 (.039) .03 (.021) .006 (.025) .05 (.039) .001 (.030)

γ1, Stress
∗

−.47 (.042) −.25 (.023) −.42 (.026) −.47 (.042) −.40 (.032)

Var γ1i, NA
∗

na na .062 (na) na .077 (.014)

Var γ2i, Stress
∗

na na .069 (na) na .067 (.013)

Note: The values outside the parentheses are point estimates and those inside the parentheses are standard error estimates. The variance estimates 
were from the restricted maximum likelihood method. P-C: person-mean centering; Global-1, global-2 and global-3: scy, sy, and scy are used for 

global standardization respectively; P-C with EB: person-mean centering with Empirical Bayes person-level standardization; P-S: person-mean-SD 
standardization.
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