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Abstract

TDP-43 proteinopathy is very common among the elderly (affecting at least 25% in individuals 

over 85 years of age) and is associated with substantial cognitive impairment. Risk factors 

implicated in age-related TDP-43 proteinopathy include commonly inherited gene variants, 

comorbid Alzheimer’s disease pathology, and thyroid hormone dysfunction. To test parameters 

that are associated with aging-related TDP-43 pathology, we performed exploratory analyses of 

pathologic, genetic, and biochemical data derived from research volunteers in the University of 

Kentucky Alzheimer’s Disease Center autopsy cohort (n=136 subjects). Digital pathologic 

methods were used to discriminate and quantify both neuritic and intracytoplasmic pathology in 

the hippocampal formation. Overall, 46.4% of the cases were positive for TDP-43 intracellular 

inclusions, which is consistent with results in other prior community-based cohorts. The 

pathologies were correlated with hippocampal sclerosis of aging (HS-Aging) linked genotypes. 

We also assayed brain parenchymal thyroid hormone (triiodothyronine [T3] and thyroxine [T4]) 

levels. In cases with SLCO1A2/IAPP or ABCC9 risk associated genotypes, the T3/T4 ratio tended 

to be reduced (p=0.051 using 2-tailed statistical test), and in cases with low T3/T4 ratios (bottom 

quintile), there was a higher likelihood of HS-Aging pathology (p=0.025 using 2-tailed statistical 

test). This is intriguing because the SLCO1A2/IAPP and ABCC9 risk associated genotypes have 

been associated with altered expression of the astrocytic thyroid hormone receptor (product of the 

nearby gene SLCO1C1). These data indicate that dysregulation of thyroid hormone signaling may 

play a role in TDP-43 proteinopathy.
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Introduction

Hippocampal sclerosis of aging (HS-Aging) is a neurodegenerative disease, distinct from 

Alzheimer’s disease (AD) (Montine et al., 2012; Nelson et al., 2013), yet often mimicking 

AD clinically (Brenowitz et al., 2014; Murray et al., 2014; Nelson et al., 2013; Pao et al., 

2011; Zarow et al., 2012). HS-Aging is a very prevalent condition, affecting 10-25% of 

persons over age 85 (Brenowitz et al., 2014; Kero et al., 2018; Leverenz et al., 2002; Nelson 

et al., 2011; Zarow et al., 2012). The defining characteristics of HS-Aging are neuronal loss, 

astrocytosis, and transactive response DNA binding protein of 43 kDa (TDP-43) pathology 

in the hippocampus (Amador-Ortiz and Dickson, 2008; Nelson et al., 2011), and these 

pathologic features are specifically associated with cognitive impairment (Brenowitz et al., 

2014; Murray et al., 2014; Nag et al., 2017; Nelson et al., 2010). “TDP-43 pathology” refers 

to phosphorylated TDP-43 detected via immunohistochemistry, and localized in 

cytoplasmic, nuclear, perivascular, and/or neurite-like structures. Currently, the upstream 

disease-driving mechanisms associated with TDP-43 pathology and HS-Aging are not well 

understood. Thyroid hormone (TH) signaling, and/or comorbid AD-type plaques and 

tangles, may affect persons’ vulnerability to HS-Aging pathology, and disease susceptibility 

factors may also overlap with frontotemporal lobar degeneration with TDP-43 pathology 

(FTLD-TDP) (Dickson et al., 1994; Josephs et al., 2008; Katsumata et al., 2018; Nelson et 

al., 2016a; Nelson et al., 2013; Zarow et al., 2008; Zarow et al., 2012).

The identification of genetic risk factors for HS-Aging has provided insights into disease 

mechanisms. Specific variants in genes (GRN and TMEM106B) that previously were 

associated with risk for FTLD-TDP, were later also linked with risk for HS-Aging pathology 

and age-related TDP-43 pathology, which probably represent a disease continuum 

previously referred to together as cerebral age-related TDP-43 pathology with sclerosis 

(Cykowski et al., 2017;Dickson et al., 2010; Dickson et al., 2015; Murray et al., 2014; 

Nelson et al., 2016b; Rutherford et al., 2012; Van Langenhove et al., 2012). These prior 

studies support the hypothesis that GRN and TMEM106B gene variants influence the 

brain’s vulnerability to developing TDP-43 pathology. There also is compelling evidence 

that TDP-43 pathology is comorbid with advanced AD-type plaques and tangles in the 

medial temporal lobe structures in many persons (Davidson et al., 2011; Josephs et al., 2016; 

Josephs et al., 2008; Nelson et al., 2018). However, the associations between GRN/
TMEM106B gene variants, AD-type pathology, and TDP-43 pathology are inconsistent, so 

other factors must also be relevant.

The only genome-wide association study published to date that focused exclusively on 

autopsy-confirmed HS-Aging pathology as the endophenotype identified a single nucleotide 

polymorphism (SNP) in ABCC9 that was associated with risk for HS-Aging pathology 

(Nelson et al., 2014). In a non-overlapping group of autopsied subjects, the association 

between the same ABCC9 SNP and HS-Aging pathology was replicated (Nelson et al., 
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2015b). These same gene variants in ABCC9 are associated with brain atrophy (Nho et al., 

2016), and nearby polymorphisms were also linked to dementia risk in APOE ε4(−) 

individuals (D'Introno et al., 2006; Mayeux et al., 2002; Pericak-Vance et al., 1997; Scott et 

al., 1999).

Approximately one million base-pairs away on Chr. 12p12 from ABCC9 is SLCO1C1 
(Jansen et al., 2005), which encodes the brain’s main thyroid hormone (TH) importing 

protein. Importantly, Roostaei et al. discovered a novel Chr. 12p12 SNP based on its 

association with non-β neurodegeneration (Roostaei et al., 2016), and this SNP status also is 

associated with variability in SLCO1C1 expression in human brain (Nelson et al., 2016a). 

Both ABCC9 and SLCO1C1 transcripts are highly expressed in human astrocytes (Nelson et 

al., 2016a), and their functions appear interconnected. Astrocytes import TH from blood into 

brain, process blood-borne thyroxine (T4) hormone into the biologically active 

triiodothyronine (T3), and deliver T3 to neurons (Heuer and Visser, 2009; Morte and Bernal, 

2014). The ABCC9 polypeptide (also known as SUR2) serves as a metabolic sensor that 

helps couple energy needs with blood flow and intracellular signaling (Nelson et al., 2015a; 

Nichols, 2006; Nichols et al., 2013), whereas the TH importing SLCO1C1 polypeptide is 

also known as OATP1C1 and Thyroxine transporter (Bernal et al., 2015; Jansen et al., 2005). 

TH is a potent metabolic regulating agent (McAninch and Bianco, 2014; Mullur et al., 2014; 

Trentin, 2006; van der Deure et al., 2008), whereas TH dysregulation has been previously 

associated with dementia risk (Chaker et al., 2016; Mafrica and Fodale, 2008; Sampaolo et 

al., 2005; Tan and Vasan, 2009) and HS-Aging specifically (Nelson et al., 2016a; Trieu, 

2018). Together, these observations provide the basis for a plausible mechanistic hypothesis: 

gene variants that affect TH levels in the brain appear to be relevant to TDP-43/HS-Aging 

pathology. Much remains unknown about the biochemical landscape of the aged brain, and 

the impact of genetics. For example, a separate GWAS found that a SNP (rs9637454) in a 

gene encoding a distinct K+ channel modifying protein – KCNMB2 -- was also linked to 

HS-Aging risk (Beecham et al., 2014).

The main objectives of the present study were to analyze the pathologic, genetic, and 

biochemical parameters that can be correlated with TDP-43/HS-Aging pathology in the aged 

human hippocampus. We wanted to test whether gene variants that alter HS-Aging risk also 

are associated with altered brain TH processing. The data were gathered from research 

volunteers followed to autopsy in the University of Kentucky Alzheimer's Disease Center 

(UK-ADC) cohort. Results of these analyses provide support of the hypothesis that TH 

related pathways in the brain may alter vulnerability to TDP-43 pathology and HS-Aging.

Materials and methods

UK-ADC autopsy cohort:

Details of UK-ADC research volunteers’ recruitment, the overall cohort inclusion/exclusion 

criteria, and clinical assessments were described previously (Jicha et al., 2012; Schmitt et al., 

2012). Briefly, older adult volunteers (most recruited while cognitively normal) agreed to be 

followed annually for cognitive, physical, and neurological examination and to donate their 

brain at the time of death, with a provision to allow genetic testing for research purposes. 

Protocols and informed consent procedures were approved by the University of Kentucky 
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Institutional Review Board. Additional inclusion criteria for this study were the availability 

of neuropathology data and snap-frozen cerebellum with postmortem interval (PMI) before 

autopsy of <24hrs. Other inclusion/exclusion criteria for this convenience sample were 

established to include cognitively normal subjects as well as a relatively broad spectrum of 

ages and comorbid pathologies; age was >60 year at death, and some cases with α-

synucleinopathies were included (see below). However, cases with rare conditions (FTLD-

TDP, FTLD-Tau, brain tumor, triplet repeat disorders, or prion disease) were excluded. All 

the included cases were assessed systematically for pathology, genotyping, and biochemical 

analyses. No additional cases were analyzed for TH ELISAs or genotype after the initial 

samples were assayed and processed.

Pathological assessments and staining methods:

See Supplemental Figure 1 for work flow. Details of sampling and assessments in the UK-

ADC autopsy cohort were described previously (Abner et al., 2018; Nelson et al., 2007). 

Briefly, over 20 brain areas were sampled in each case using methods compatible with 

National Institute on Aging-Alzheimer’s Association consensus recommendation (Montine 

et al., 2012). The tissue was fixed in 10% formaldehyde, processed in paraffin blocks, and 

sections were cut at 8-micron thickness. According to consensus-based guidelines, the 

criterion for high level of AD pathology was Braak NFT stages V or VI, and HS was 

“defined by pyramidal cell loss and gliosis in CA1 and subiculum of the hippocampal 

formation that is out of proportion to AD neuropathologic change in the same structures” 

(Montine et al., 2012). Both the right and left hippocampi were evaluated for HS pathology 

using hematoxylin and eosin stains (H&E), and the case was deemed to be HS-Aging if 

either side had HS. Immunohistochemical stains for phospho-TDP-43 (1D3 clone, 1:500 

dilution, from EMD Millipore, Burlington, MA) was performed as described previously (Gal 

et al., 2018; Smith et al., 2017). One slide of left frontal cortex (BA9) was also evaluated 

from each case and scored dichotomously for there either being any TDP-43 pathology 

detected, or none.

For digital pathologic assessments of the hippocampal formation, phospho-TDP-43 

immunostained slides were loaded into an Aperio ScanScope XT™, scanned at 40X 

magnification via the semi-automated method, and the images stored on a dedicated server 

(Supplemental Figure 1). To calculate the density of TDP-43 neurites and inclusions, an 

Aperio GENIE (GENetic Imagery Exploitation) classifier was developed. A training set 

containing TDP-43 positive hippocampal slides was constructed. Annotations for neurites, 

inclusions, background tissue (including nuclei), and clear glass were made. These 

annotations were incorporated into a training montage. The montage magnification was set 

at 15x. The montage was subjugated to a GENIE training algorithm with 2000 iterations. 

Annotations were adjusted, added, or removed until the training accuracy values for each 

tissue class were 100. The classifier was tested on sample slides to ensure accurate 

identification of each tissue class. The classifier was applied to each analysis area, yielding 

values representing the percent of the overall analysis area covered by each tissue class. 

Clear glass values were removed to eliminate empty space from the final percentages, and 

the remaining tissue class percentages were adjusted to represent this change. This yielded 

the densities, represented by percentage of analysis area covered, of neurites, inclusions, and 
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background tissue. Inclusions were also counted using an Aperio Rare Event Detection 

(RED) algorithm. The following modifications were made to optimize for our in-house 

staining protocol: hue value 0.1, hue width 0.4, color saturation threshold 0.418, intensity 

threshold 210, averaging radius 8, minimum pixels 100, maximum pixels 100000, and 

roundness threshold 0.25. The RED algorithm was then run on each analysis area. The 

inclusion density was calculated by dividing the total inclusion count by the overall analysis 

area. Nuclei were counted using the Aperio Image Analysis Toolbox™ Nuclear algorithm. 

The Nuclear algorithm was run on each analysis area. The number of ‘weak’ (1+), 

‘moderate’ (2+), and ‘strong’ (3+) nuclei were added to calculate the total nuclei count. The 

nuclei density was calculated by dividing the total nuclei count by the overall analysis area.

Genetic (SNP) assays:

Genomic DNA from each case was isolated using Quick-DNA™ Miniprep Plus Kit (ZYMO 

RESEARCH, Irvine, CA). DNA quality and quantitation was examined using NanoDrop 

(ND-1000) Spectrophotometer (NanoDrop Technologies, Wilmington, DE) and gel 

electrophoresis. DNA samples with A260 /A280 and A260 /A230 ratios below 1.8 were 

discarded or re-extracted. TaqMan® Predesigned SNP Genotyping Assays were performed; 

details of the SNP assays are provided in Supplemental Figure 2 and Supplemental table. 

Two of the SNPs previously identified as potential risk alleles did not have commercially 

available reagents for SNP assays. To address those SNPs, we used assays for proxy SNPs 

that are in very close (>.98 r2 and >.99 D') linkage disequilibrium in human (including 

European) populations: for rs73069071 (in SLOC1A2/IAPP), rs12301085 was assayed, and 

for rs9637454 (in KCNMB2), rs12496790 was assayed. For the ABCC9 gene variant, we 

assessed rs704180, since it has been demonstrated to be associated with HS-Aging 

pathology (Katsumata et al., 2017; Nelson et al., 2014; Nelson et al., 2015b). Notably, the 

nearby ABCC9 SNP rs4148651 was found to be an eQTL for SLCO1C1 (Nelson et al., 

2016a). These two gene variants, rs4148651 and rs704180, are in linkage disequilibrium 

(D’=0.44 and p value of LD <0.0001 according to NIH’s “LDlink” server (Machiela and 

Chanock, 2015)).

TaqMan® genotyping assays were performed following manufacturer’s instructions (Life 

Technologies Corporation, Carlsbad, CA). Genotyping PCR and fluorescence recording 

were performed on a ViiA™ 7 96-well Fast Block with standard thermal cycling conditions 

(Hold at 95°C 10 minutes, 40 cycles of Denaturation at 95°C 15 seconds and Annealing/

Extension at 60°C 1 minute) (Life Technologies Corporation, Carlsbad, CA). Data were 

analyzed and the corresponding alleles called using QuantStudio™ Real-Time PCR 

Software algorithm for autocalling and generation of allelic discrimination plots (Life 

Technologies Corporation, Carlsbad, CA).

TH assays:

Commercially-available total T3 and T4 enzyme-linked immunosorbent assay (ELISA) tests 

were used to quantify TH levels. Besides those explicitly described below, no other assays 

were performed on the included samples. For brain extracts, 100-300 mg of frozen 

cerebellum (cerebellar folia) were homogenized using a PRO200 blender (Pro Scientific, 

Oxford, CT) in ice-cold buffer consisting of RIPA buffer (Pierce, Rockford, IL) diluted 4X 
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with PBS; the ratio of buffer to tissue was 4:1 v/w. In a subset of cases where both cerebellar 

and neocortical flash-frozen tissue was available, portions of superior and middle temporal 

gyri (SMTG; Brodmann Areas 21/22) were also analyzed (see below). Cells were 

additionally disrupted with two pulses (10 seconds each) of ultrasound using a Microsonic 

Cell Disruptor (Misonix, Farmingdale, NY). Cell debris was sedimented by centrifugation at 

20,000 g for 30 minutes at 4°C. Supernatants containing T3 and T4 were aliquoted and 

stored at −80°C. Manufacturer’s ELISA protocols were followed, and T3 and T4 ELISAs 

were performed separately as described previously (Nelson et al., 2016a). Briefly, undiluted 

specimen samples and manufacturer-supplied standard solutions were loaded in duplicate 

into microtiter plate wells of T3 and T4 test kits (Aviva System Biology, San Diego, CA, 

USA) following manufacturer’s specified protocol. Samples and ELISA plates were 

processed blind to clinical and pathological information. Absorbance was measured at 450 

nm using the SpectraMax M3 (Molecular Devices Inc., Sunnyvale, CA, USA) plate reader. 

Standard curves were generated with SigmaPlot software (Systat Softwre, San Jose, CA, 

USA), using a 4-paramter logistic fit, which was subsequently used to calculate T3 and T4 

concentrations in the brain extracts (See Supplemental Figure 3). An independent standard 

curve was generated for each microtiter plate used. The values obtained were then 

standardized to tissue weight. Data were downloaded to Microsoft Excel, and only later 

unblinded.

Statistical analyses:

Clinical, genetic, pathologic, and biochemical covariates were tested for marginal 

association with each of the assayed genetic variants, HS-Aging pathology, advanced AD 

(defined as Braak NFT stage V or VI) pathology, and low (bottom quintile) T3/T4 ratio. Chi-

square tests were used for dichotomous covariates with sufficient cell counts; Fisher’s exact 

test was used otherwise. T-tests were used for quantitative covariates. The distribution of 

digital pathologic TDP-43 inclusion densities necessitated the use of zero-inflated negative 

binomial regression. We modeled the probability of a non-zero inclusion and the inclusion 

count as two separate component processes and tested for association with inclusions using a 

likelihood ratio test. Nominal p-values are reported with p<0.05 deemed significant. A 

Bonferroni correction was used for correlation analysis, i.e., p-values are divided by the total 

numbers of pairwise comparison.

Results

An underlying a priori hypothesis for the current study is shown in Figure 1, and the 

workflow is depicted in Supplemental Figure 1. The overall goals were to analyze genetic, 

clinical, pathologic, and biochemical (related to TH) variables, in order to test hypotheses 

related to pathogenesis of TDP-43 pathology and HS-Aging. The data analyzed derived 

from a convenience sample based on availability of brain tissue for biochemistry, with the 

goal of including a relatively broad range of ages, clinical states, and neuropathologic 

features, to reflect the heterogeneous mix of (often comorbid) pathologies seen in advanced 

age. Included subject characteristics are shown in Table 1. Average age at death of included 

subjects was 84.0 (range 61-102) years, and 57.4% overall were female. Included were 11 

cases with diffuse/neocortical Lewy body disease, whereas 56 of the included subjects 
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(41.1%) had some subtype of Lewy body pathology. Mean and median PMI between death 

and autopsy were 5.6 and 3.3 hours, respectively (range 1.1-22.5 hours). APOE genotype 

information was available on 120/136 (88.2%) of the included subjects, and final MMSE 

scores were available for 126/136 (92.6%) of subjects.

For each case, digital pathologic assessments were performed to detect and quantify TDP-43 

pathology in the hippocampal formation. To help convey how these analyses were 

performed, Figure 2 shows a representative section of hippocampal formation with false-

colored depiction of identified phospho-TDP-43 immunoreactive intracellular inclusions and 

neurites. These subtypes of TDP-43 pathology were detected and quantified separately.

SNP genotype assays were used to assess the status of gene variants that have been 

associated with risk for HS-Aging and/or age-related TDP-43 pathology. The SNPs 

evaluated, along with additional information, are depicted in Table 2. Overall results for the 

genotyping assays, and how those results correlated with various clinical, pathological, and 

biochemical parameters, are shown in Tables 3-4. Note that, as expected, the cases with HS-

Aging pathology tended to have more TDP-43 pathology and a higher percentage were 

demented (p<0.0001), and these subjects were on average older than those without HS-

Aging pathology (p=0.006) (Table 3). More detailed information about the SNP assays are 

presented in Supplemental material, and a representative example of the PCR genotype 

assay results (for SNP rs5848) is provided in Supplemental Figure 2. Detailed descriptions 

of how each SNP and HS-Aging linked genotype correlated with pathologies and other 

parameters are presented in Supplemental Tables 1-5.

Thyroid hormone (T3 and T4) ELISA assays were performed on extracts from the 

cerebellum of each case. To show how the T3 and T4 assay results related with the 

manufacturer-provided measured TH samples, standard curves from separate ELISA plates 

are shown in Supplemental Figure 3. The rationale for using samples of cerebellum was that 

the cerebellum is relatively preserved from widespread cell loss in most common 

neurodegenerative diseases--we sought to minimize the biochemical variation that is caused 

by the sometimes devastating cerebral neurodegenerative pathologies, which can also be 

attended by compromise of the local blood-brain barrier, possibly altering detectable TH 

levels. To test this hypothesis preliminarily, we performed ELISA analyses on brain 

parenchyma from a convenience sample of 21 cases in which snap-frozen neocortical SMTG 

portions were also available. In these neocortical (unlike the cerebellar) samples, there was a 

trend for lower T3 levels in advanced AD (Braak NFT stages V/VI); Supplemental Figure 4. 

These data support the hypothesis that the TH values detected in the cerebellum are affected 

by AD pathology than the TH values detected in the neocortex, which was the reason we 

used the cerebellum for our assays.

Results of T3 and T4 assays for each case are displayed in Supplemental Figure 5. Note that 

there was a moderate but statistically robust correlation between T3 and T4 levels in this 

sample (r = 0. 50, p<0.0001). Further, there was no statistically significant association 

between TH levels detected and PMI, nor between TH levels and the duration that the 

samples were stored in the −80°C freezer between autopsy and experimental assay 
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(Supplemental Figure 6); these observations indicate that systematic technical bias from 

these factors was not large.

When the pathologic variables were analyzed along with the TH data, cases with either (or 

both) ABCC9 and SLCO1A2/IAPP risk alleles had lower-trending T3/T4 ratios than the 

cases that lacked either of those risk alleles (Figure 3), although this trend did not meet the 

statistical threshold of p<0.05 (the p-value was 0.051 using a 2-tailed statistical test). A 

similar trend was not observed for cases with either or both GRN or TMEM106B risk 

alleles. Since the T3/T4 ratio tended to be altered in association with gene variants near the 

brain’s TH transporter (SLCO1C1) on Chr. 12p12, we examined the association between 

low T3/T4 ratio and other parameters. Cases with a relatively low ratio of T3/T4 (<0.03 was 

chosen as a threshold to indicate low T3/T4 ratio, because this corresponded to the lowest 

quintile) were more likely to have HS-Aging pathology versus cases with >0.03 T3/T4 ratio 

(p=0.025 using a 2-tailed statistical test), as shown in Table 4. There was, however, no 

detected association between T3/T4 ratio and pathology across the entire spectrum of T3/T4 

ratios. The association between low T3/T4 ratio and HS-Aging pathology was not 

attributable to clinical dementia status (independent of pathology), because the average 

T3/T4 ratio for subjects with all-cause dementia before death was actually higher overall 

than for non-demented subjects: for demented subjects (n=82) the average T3/T4 ratio was 

0.043 whereas the average T3/T4 ratio for subjects cognitively normal before death (n=41) 

was 0.039. Further, there was no detectable correlation between T3/T4 ratios and final 

MMSE scores (data not shown).

We next analyzed how pathologic and genetic parameters were correlated with each other 

across the entire cohort of 136 subjects (Figure 4). The strong correlations (depicted with 

“**” in Figure 4A) were mostly as expected – for example, cases with high densities of 

neuritic amyloid plaques also tended to be the same cases with high Braak NFT stages. 

There were numerous correlations that met criteria for nominal statistical significance, i.e., 

p-value below 0.05 before but not after Bonferroni-correcting for the multiple comparisons. 

These are depicted in Figure 4A with a “*” character. Intriguing nominally significant 

correlations included correlations between T3/T4 ratio and subiculum TDP-43 

immunoreactive neurites, Braak NFT stages, APOE status, and SLC01A2/IAPP SNP status. 

The TDP-43 pathologic subtypes also tended to be correlated with each other in this cohort, 

as depicted via computational illustration in Figure 4B. More specifically, cases with 

intracytoplasmic TDP-43 inclusions in one portion of the hippocampal formation (dentate 

gyrus, CA1, or subiculum), also tended to have them in other anatomic areas, whereas, those 

with neuritic TDP-43 proteinopathy in the subiculum tended also to have the phospho-

TDP-43 immunoreactive neurites – more so than the inclusions – in the hippocampal CA1 

field.

Discussion

To explore evidence of disease-driving mechanisms relevant to TDP-43 proteinopathy in 

aged human brains, a multimodal (clinical, pathologic, genetic, and biochemical) data set 

was generated and analyzed from volunteers participating in a well-characterized autopsy 

cohort. As in another high-quality community-based cohort (Nag et al., 2018), slightly under 
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50% of the cases in the present study were positive for TDP-43 inclusions. A focal point of 

the present study was T3 and T4 levels in brain (cerebellar) parenchyma that were analyzed 

using ELISA assays. Patients with ABCC9 or SLCO1A2/IAPP (but not GRN or 

TMEM106B) gene variants tended to have lower T3/T4 ratios (compatible with the 

hypothesis that these gene variants alter TH processing), and, cases with low ratios of T3/T4 

(lowest quintile) had a relatively high likelihood of manifesting HS-Aging pathology. 

Collectively, these observations are compatible with the hypothesis that genetic factors 

modulate brain TH hormone levels in advanced age, which may in turn affect a person’s risk 

for manifesting HS-Aging/TDP-43 pathology (see summary schematic, Supplemental Figure 

7).

For this study, data from 136 study participants were analyzed, and there were relatively 

many analytic parameters. Most of the significance tests returned calculated nominal (not 

corrected for family-wise error rate) probabilities of p>0.05 and even the “statistically 

significant” results were mostly p>0.01. The lack of robust association between genotypes 

and TDP-43 pathology in this study – particularly for GRN and TMEM106B risk alleles that 

have been replicated by different labs in association with HS-Aging and TDP-43 pathology 

(Dickson et al., 2015; Lu et al., 2014; Murray et al., 2014; Rutherford et al., 2012; Satoh et 

al., 2014; Yu et al., 2015) – underscores the sample size limitation. Because of these results 

and the overall study design, the present work can be characterized as exploratory, and the 

possibilities of false-negative and false-positive results are substantial. Thus, these findings 

will require additional observations and replication. Nonetheless, we note that the sample 

size was indeed large enough to highlight some interesting and novel associations between 

genetics, pathology, and biochemical parameters. Other potential technical considerations 

apply. Whereas we found no significant correlation between ELISA-detected TH levels and 

either PMI or the duration the samples were stored in −80°C freezers, there are numerous 

other potential sources of variation, including the research subjects’ agonal conditions, drug 

exposures, gray/white matter ratio of the tissue used for extraction, etc. Notably, T3 levels 

can be decreased in serum and peripheral tissues of persons with nonthyroidal medical 

illness (Arem et al., 1993; Kaplan et al., 1982), and these common illnesses of aging are 

potential confounders. A smaller prior study (total n=24) reported that T3 (but not T4) levels 

were decreased in prefrontal cortical brain tissue in advanced AD (Davis et al., 2008), which 

is compatible with our finding in temporal neocortical tissue. Otherwise, the brain T3/T4 

ratio in the present study was decreased in HS-Aging cases, but not in cases with advanced 

AD pathology or in clinically demented subjects overall. We emphasize that it is not a safe 

assumption that all brain areas have the same TH regulation; addressing this issue will 

require more work in the future. We also acknowledge technical sources of variation that 

pertain to digital pathologic methods, which we have discussed before (Attems et al., 2014; 

Bachstetter et al., 2015; Neltner et al., 2014; Neltner et al., 2012): for example, there are 

potential pitfalls related to tissue sampling, fixation duration, staining parameters, 

standardization, calibration, thresholding, manual region of interest selection, and various 

artifacts. We attempted to minimize, standardize, or control for these factors as much as 

possible. In the current study, the digital pathologic analyses were limited to the 

hippocampal formation, and the observed relationships may or may not have implications 

about other brain regions. Finally, the UK-ADC autopsy cohort sample was drawn from a 
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community-based group of research volunteers who mostly enrolled while cognitively 

intact; however, the neuropathologic findings are not comparable to an epidemiologic cohort 

with regard to ethnoracial or socioeconomic characteristics (Ighodaro et al., 2017).

Despite the notes of caution, the present study also had strengths attributable to the multiple 

types of data that were incorporated. The different parameters enabled discovery of 

associations that could not be readily detected outside of a human autopsy cohort. The aged 

human brain is an extremely complicated milieu, so, factoring in different aspects of that 

complexity may be necessary to better understand how the various factors may interact. An 

asset in these studies was the generation and analysis of textured numerical (as opposed to 

dichotomous, or ordinal) parameters in both pathologic and biochemical domains. 

Systematic biases inherent to the study design did not relate to the researchers’ a priori 
hypotheses: in the genetic assessment as well as the TH ELISA detection, the workers were 

blinded to case identification and comorbid pathologies. The present study described 

correlative phenomena relevant to credible hypotheses previously linked to HS-Aging and 

TDP-43 (Figure 1 and Supplemental Figure 7). Specifically, those pathologies may be 

affected by TH dysregulation in the brain. Genetic risk factors may interact at discrete nodes 

along those pathways.

Thyroid derived hormones are iodinated signalling molecules that subserve evolutionarily 

ancient biologic functions (Crockford, 2009; Holzer et al., 2017; Taylor and Heyland, 2017), 

and TH plays roles in vertebrate neurodevelopment and brain disease (Bernal, 2005; Liu and 

Brent, 2018). Lack of TH in utero and in early life causes severe cognitive impairment, with 

extensive white matter pathology (Rosman, 1972). In later life, hyperthyroidism has been 

often associated with cognitive decline (Akintola et al., 2015; Chaker et al., 2018; Chaker et 

al., 2016; Moon, 2016; Moon et al., 2014; Rieben et al., 2016; Tan and Vasan, 2009; Wu et 

al., 2016; Yeap et al.,2012). A recent PubMed search using “(thyroid or thyroxine) and 

(Alzheimer’s or dementia)” returns >600 published papers. Whereas approximately 20% of 

persons are affected by hypothyroidism and ~5% by hyperthyroidism in advanced age 

(Brenowitz et al., 2018; Verburg et al., 2017), there is currently incomplete understanding as 

to how blood and brain T3 and T4 levels correspond in older individuals, and, ultimately, the 

mechanisms are still unknown as to how TH dysregulation could contribute to cognitive 

impairment in aging.

There is an emerging awareness that astrocytes are relevant to both TH homeostasis and 

TDP-43 pathology. Astrocytes import T4 from blood, convert T4 into T3, and then deliver 

T3 to neurons (Heuer and Visser, 2009; Morte and Bernal, 2014). TH also contributes to 

astrocyte development and differentiation (Bernal, 2005; Das et al., 2018). Multiple labs 

have reported data implicating astrocytes as a potential nexus of hippocampal TDP-43 

pathology. This is demonstrated in humans with Alexander disease, which is caused by a 

toxic upregulation of astrocytic GFAP, often producing hippocampal TDP-43 pathology 

(Walker et al., 2014). In hippocampal brain extracts from HS-Aging cases, abundant GFAP 

peptides were found in a detergent-insoluble fraction that also contained phosphorylated 

TDP-43 protein (Nelson et al., 2012). Further, Lin et al. described TDP-43 pathology in 

astrocyte foot-processes in the hippocampus (Lin et al., 2009). The roles for astrocytes in 

TDP-43 pathology requires additional investigation.
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Because the genomic studies pointed to TH dysregulation as a potential pathogenetic feature 

of HS-Aging (Nelson et al., 2016a), we previously reported results of testing TH levels in 

human CSF from individuals with known brain pathologies. Total T3 levels were increased 

in CSF samples from brains with HS-Aging (but not AD) pathology relative to controls in 

two separate cohorts (Nelson et al., 2016a). In the current study, parenchymal T3 and T4 

levels also tended to increase in HS-Aging cases. However, there was a complex association 

between detected brain parenchymal TH levels, genetic risk alleles, and the observed brain 

pathology.

In the present study, there was a tendency for persons with ABCC9 or SLCO1A2/IAPP (but 

not GRN or TMEM106B) risk alleles to have lower T3/T4 ratio. This result provides support 

for a credible hypothesis: both ABCC9 and SLCO1A2/IAPP SNPs have been associated 

with variation in SLCO1C1 expression (Nelson et al., 2016a), which may lead in turn to 

decreased incorporation of T3 hormone in the brain for a given amount of T4 hormone in 

blood. Providing further support for this hypothesis, brains with lower quintile of T3/T4 

ratio had elevated risk for HS-Aging pathology. Prior work from multiple laboratories has 

indicated that TH can serve to accelerate wound healing, and lower blood TH levels lead to 

worse outcomes after cerebral infarction (Genovese et al., 2013; Sadana et al., 2015; Safer, 

2013; Safer et al., 2005; Suda et al., 2016; Wang et al., 2017). We interpret these data 

collectively to indicate that T3 in the brain may stimulate or otherwise impact compensatory 

mechanisms, and this influence may be modified by ABCC9 and SLCO1A2/IAPP risk 

alleles, yet, only a subset of HS-Aging cases are detectably affected by the mechanism(s). 

Adding to the complexity, one of the risk SNPs (rs73069071) exists within the IAPP gene 

which has also been implicated in AD and TDP-43 pathologies (Despa and Decarli, 2013; 

Leino et al., 2017). Further research is required to delineate mechanisms relevant to 

neurodegenerative diseases and, ultimately, to pursue therapeutic strategies. While some of 

the disease-related pathways may be studied productively in non-human experimental 

systems, other aspects may be specific to the aged human brain.
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Highlights

• Clinical, pathological, genetic, and biochemical parameters were analyzed 

from 136 subjects

• ABCC9 and SLCO1A2 genes are near human brain thyroid hormone receptor 

gene

• Cases with ABCC9 and SLCO1A2 trended toward lower brain T3/T4 (thyroid 

hormone) ratio

• Cases with lowest brain T3/T4 ratios had elevated risk for hippocampal 

sclerosis pathology

• Thyroid hormone dysregulation is implicated in HS/TDP-43 pathology but 

more work is required
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Figure 1. Schematic representation of a priori hypothesis.
An underlying hypothesis for this study is that HS-Aging linked gene variants on Chr. 12p 

may affect the level or activity of SLCO1C1, which is the primary brain thyroid hormone 

importer protein (Heuer and Visser, 2009). Rationale for this hypothesis was presented in a 

prior study (Nelson et al., 2016a) and the direct relevance of thyroid hormone to the brain 

disease was supported by data in a community-based cohort in which thyroid hormone 

dysregulation was found to be a risk factor for hippocampal sclerosis of aging (Trieu et al., 

2018). Astrocytes import and process T4 (thyroxine) from blood, convert T4 into T3 

(triiodothyronine), and then deliver T3 to neurons. A specific prediction of the study is that 

if SLCO1C1 functions to import T4 from blood into astrocytes for conversion into the active 

T3 molecules, then, a perturbation of SLCO1C1 may affect the ratio of T3 to T4 in brain 
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parenchyma. Further, that ratio could be associated with altered risk for hippocampal 

sclerosis and/or TDP-43 pathology.
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Figure 2. Representative section of the hippocampal formation, to convey digital assessment of 
TDP-43 pathologies in the CA1 subfield and dentate granule (DG) cells of the hippocampus 
proper, and in the subiculum (Sub).
The adjacent hematoxylin and eosin (H&E)-stained section (lower-left) helps to convey the 

anatomic landmarks, including CA1, Sub, and DG subregions. Rightward is medial. This 

hippocampus had extensive Phospho-TDP-43 immunoreactivity in the CA1 (upper left), 

dentate granule cells (upper right), and subiculum (lower right). The immunostained 

pathologies were detected using digital pathologic methods that quantitatively scored the 

number of inclusions (false-colored maroon in the insets) and neuritic-like structures (false-

colored yellow); a color key is shown in the lower right. Scale bar = 2mm for the H&E 

stained photomicrograph and 200 microns for the inset boxes.
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Figure 3. The association between genetic risk factors and T3/T4 ratio.
A. Cases stratified by status of SLCO1A2/IAPP (rs12301085, a proxy SNP for rs73069071 

which was identified as a risk allele by Roostaei and colleagues (Roostaei et al., 2016)) and 

ABCC9 (rs704180) genotypes. Note that there is a trend for decreased T3/T4 levels in cases 

in the risk allele variant of these Chr. 12p12 SNPs, with overall comparison of cases without, 

versus with, a risk allele (p=0.051 applying a 2-tailed test). B. Cases stratified by status of 

GRN (rs5848) and TMEM106B (rs1990622) genotypes. There was no detected differential 

variation in T3/T4 associated with these genotypes. Horizontal bars are mean values.
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Figure 4. Correlation between various genetic, pathologic, and brain thyroid hormone-related 
parameters among the 136 research subjects included in the current study.
A. This chart conveys the strength of correlation (blue positive, red negative) for various 

parameters across all the research subjects included in the current study. *−p<0.05 only 

before correction for multiple testing (i.e., only nominally statistically significant); **

−p<0.05 after correction for multiple testing. B. A computationally-produced assessment of 

correlation between TDP-43 pathology subtypes in various anatomical regions of the 

hippocampal formation. There is a tendency for higher correlation between a particular 

TDP-43 pathology subtype (neuritic or intraneuronal pathology), rather than within a 

particular area – thus, the neuritic pathology in the subiculum is more correlated with 
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neuritic pathology in CA1 than it is with intraneuronal pathology in the subiculum. Also 

note, the neuritic TDP-43 pathology correlates better with cerebrovascular pathologies than 

the intraneuronal TDP-43 pathology does.
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Table 1.

Summary information about cases included in the current study (n=136) from the University of Kentucky AD 

Center (UK-ADC): clinical and pathological features

Age/Sex/post-mortem interval

 Age at death, Avg 84.0 yrs (range 61-103)

 Sex (F%) 57.4%

 Post-mortem interval, Avg 5.6 hours (range 1.1-22.5)

Cognitive status before death

  Normal 29.1%

  MCI 11.2%

  Demented 56.7%

 Final MMSE score, Avg 20.3 (range 0-30)

Pathologic features

 Advanced Alzheimer's Disease (Braak NFT stages V or VI) 50.0%

 Hippocampal sclerosis of aging 27.2%

 Diffuse/neocortical Lewy body disease 8.1%
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Table 2.

Single nucleotide polymorphisms (SNPs) that were assayed in the current study: associated chromosomes, 

nearby genes, and links to hippocampal sclerosis of aging and/or gene expression

SNPs
tested in
current
study

Proxy for
other SNP Chr. Nearest gene

Linked
to HS-
Aging
risk

Ref. Variants
HS-Aging

risk
allele(s)

Linked to
FTLD-

TDP risk

eQTL for
ABCC9
and/or

SLCO1C1

rs5848 n/a 17q GRN Yes
(Dickson et al., 

2010) C/T CT/TT Yes No

rs1990622 n/a 7p TMEM106B Yes
(Rutherford et al., 

2012) G/A GA/AA Yes No

rs704180 n/a 12p ABCC9 Yes
(Nelson et al., 

2014) G/A AA No Yes

rs12301085 rs73069071 12p
SLCO1A2/

IAPP Yes*
(Roostaei et al., 

2016) G/A GA/AA No Yes

rs12496790 rs9637454 3q KCNMB2 Yes
(Beecham et al., 

2014) G/A AA No No

*
-Only in persons with rs704180 risk alleles, see Ref. (Nelson et al., 2016a)
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Table 3.

Clinical, genetic, pathologic, and biochemical features of the present cohort (n=136), stratified by autopsy-

confirmed hippocampal sclerosis of aging (HS-Aging) and advanced Alzheimer’s disease (Braak NFT stages 

V or VI) pathologies

HS-Aging pathology ? → HS-Aging no HS-Aging yes p-value
for Braak

V/VI
status

p-value
for HS-
Aging
status

Advanced AD
(Braak NFT Stages V or VI)

pathology ? →

Braak
V/VI

no

Braak
V/VI
yes

Braak
V/VI

no

Braak
V/VI
yes

n 55 44 13 24 N/A N/A

Age at death, Avg 85.3 79.5 89.4 86.2 0.032 0.006

% Female 56.4 52.3 69.2 62.5 0.729 0.279

% Normal cognition/clinical state 61.8 7.1 15.4 0.0 <0.001 <0.001

% Demented cognition/clinical state 14.5 81.0 84.6 95.8 <0.001 <0.001

Final MMSE Score, Avg* 27.5 16.0 18.8 11.9 <0.001 <0.001

% SLCO1A2/IAPP risk allele(s) 29.1 18.2 16.7 7.2 0.072 0.992

% GRN risk allele(s) 36.4 43.2 50.0 29.6 0.296 0.490

% TMEM106B risk allele(s) 83.6 79.5 79.2 25.3 0.253 0.518

% ABCC9 risk allele(s) 25.5 15.9 30.8 25.0 0.307 0.472

% APOE ε4 allele [+]* 21.6 37.1 25.0 45.5 0.032 0.270

DG: % [+] TDP-43 inclusions 11 18 77 67
0.321 <0.001

DG: median # inclusions in [+] cases 1.5 1 14 6

CA1: % [+] TDP-43 inclusions 24 18 85 75
0.956 <0.001

CA1: median # inclusions in [+] cases 1 1 13 15.5

CA1 TDP-43 neurites, median 1.05E-03 1.06E-03 3.17E-02 1.05E-02 0.859 <0.001

Sub: % [+] TDP-43 inclusions 11 18 77 67
0.526 <0.001

Sub: median # inclusions in [+] cases 2 3 15 16.5

Sub TDP-43 neurites, median 1.04E-03 1.79E-03 1.41E-02 5.96E-03 0.807 <0.001

% with Frontal Cx TDP-43 1.8 0 8.3 4.1 0.441 0.002

T4 fg/mg brain tissue, Avg 195.8 183.44 182.7 211.89 0.984 0.265

T3 fg/mg brain tissue, Avg 7.58 7.59 7.83 7.91 0.885 0.654

Average of T3/T4 ratio, Avg 0.039 0.041 0.043 0.037 0.861 0.721

PMI (hrs), Avg 4.5 5.0 4.3 5.8 0.051 0.633

*
-APOE genotype was available on 120/136 (88.2%) of the included subjects, and final MMSE scores were available for 126/136 (92.6%) of 

subjects.

N/A: Not applicable.
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Table 4.

Clinical, genetic, pathologic, and biochemical features of the present cohort (n=136), stratified by whether or 

not triiodothyronine/thyroxine (T3/T4) ratio is <0.03

Brain parenchymal
T3/T4 ratio p-value:

T3/T4
<0.03 vs

>0.03>0.03
<0.03

(lowest
quintile)

n 109 27 N/A

Age at death, Avg 83.6 85.3 0.487

% Female 58.7 51.9 0.519

% Normal cognition/clinical state 29.6 26.9 0.785

% Demented cognition/clinical state 56.5 57.7 0.911

MMSE, Avg* 21.0 18.1 0.189

% SLCO1A2/IAPP risk allele(s) 20.2 40.7 0.026

% GRN risk allele(s) 41.3 40.7 0.959

% TMEM106B risk allele(s) 81.7 88.9 0.567

% ABCC9 risk allele(s) 23.9 18.5 0.554

% APOE ε4 allele [+1* 31.6 28 0.73

% Braak NFT stage V or VI* 48.6 55.6 0.519

% HS-Aging 22.9 44.4 0.025

DG: % [+] TDP-43 inclusions 27 41
0.227

DG: median # inclusions in [+] cases 2 6

CA1: % [+] TDP-43 inclusions 34 48
0.499

CA1: median # inclusions in [+] cases 5 13

CA1 TDP-43 neurites, median 1.44E-03 1.52E-03 0.361

Sub: % [+] TDP-43 inclusions 27 41
0.569

Sub: median # inclusions in [+] cases 6 17

Sub TDP-43 neurites, median 2.42E-03 1.15E-03 0.376

% with Frontal Cx TDP-43 4.6 7.4 0.625

T4 fg/mg brain tissue, Avg 188.51 213.08 N/A

T3 fg/mg brain tissue, Avg 8.46 4.46 N/A

Average of T3/T4 ratio, Avg 0.044 0.021 N/A

PMI (hrs), Avg 4.8 4.7 0.648

*
-APOE genotype was available on 120/136 (88.2%) of the included subjects, and final MMSE scores were available for 126/136 (92.6%) of 

subjects.

N/A: Not applicable.
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