
Microbial Dynamics of Biosand Filters and Contributions of
the Microbial Food Web to Effective Treatment of
Wastewater-Impacted Water Sources

Tara M. Webster,a Noah Fierera,b

aCenter for Interdisciplinary Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
bDepartment of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA

ABSTRACT Biosand filtration systems are widely used for drinking water treatment,
from household-level, intermittently operated filters to large-scale continuous munic-
ipal systems. While it is well-established that microbial activity within the filter is
essential for the removal of potential pathogens and other contaminants, the micro-
bial ecology of these systems and how microbial succession relates to their performance
remain poorly resolved. We determined how different source waters influence the com-
position, temporal dynamics, and performance of microbial communities in intermit-
tently operated biosand filters. We operated lab-scale biosand filters, adding daily in-
puts from two contrasting water sources with differing nutrient concentrations and
found that total coliform removal increased and became less variable after 4 weeks,
regardless of water source. Total effluent biomass was also lower than total influent
biomass for both water sources. Bacterial community composition, assessed via
cultivation-independent DNA sequencing, varied by water source, sample type (influ-
ent, effluent, or sand), and time. Despite these differences, we identified specific taxa
that were consistently removed, including common aquatic and wastewater bacteria.
In contrast, taxa consistently more abundant in the sand and effluent included pred-
atory, intracellular, and symbiotic bacteria.

IMPORTANCE Although microbial activities are known to contribute to the effective-
ness of biosand filtration for drinking water treatment, we have a limited under-
standing of what microbial groups are most effectively removed, colonize the sand,
or make it through the filter. This study tracked the microbial communities in the in-
fluent, sand, and effluent of lab-scale, intermittently operated biosand filters over
8 weeks. These results represent the most detailed and time-resolved investigation
of the microbial communities in biosand filters typical of those implemented at the
household level in many developing countries. We show the importance of the mi-
crobial food web in biosand filtration, and we identified taxa that are preferentially
removed from wastewater-impacted water sources. We found consistent patterns in
filter effectiveness from source waters with differing nutrient loads and, likewise,
identified specific bacterial taxa that were consistently more abundant in effluent
waters, taxa that are important targets for further study and posttreatment.
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Biosand filtration is a process central to drinking water treatment at a range of scales,
from household bucket systems (1, 2) to community-scale slow sand filters at

municipal water works (3). Effective removal of pathogens relies on the activity of the
microbial community that develops inside the sand filter (hence the term “biosand”
filter) (4–6), and yet, there remain large gaps in our understanding of the microbial
ecology of these systems. While a few studies have evaluated microbial removal from
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realistic source waters (7–10), most studies have focused on the removal of specific
pathogens (11, 12) or indicator species (13–16) with pure cultures added at concen-
trations many orders of magnitude above what might be encountered during typical
operation (5, 7, 11, 12). These studies have led to the identification of several important
removal mechanisms for individual microorganisms, including physical filtration (17,
18), predation by protozoa (13, 19, 20), and lysis induced by viruses or reactive oxygen
species (13). Because natural source waters contain complex microbial communities, it
is necessary to understand microbial removal in a community context to inform the
design, operation, and monitoring of these filtration systems.

The diversity and composition of the microorganisms in biosand filters have been
characterized across a broad range of operating conditions. Most previous work on the
microbial communities in biosand filters has focused on continuously operated systems
representative of municipal-scale systems (5, 8, 13, 21–25), while only limited work
focused on intermittently operated filters, typical of household-scale systems (26–28).
This gap in our knowledge of the microbial communities in intermittently operated
biosand filters is important given that many intermittently operated filters are imple-
mented in conditions with less monitoring and often without posttreatment disinfec-
tion steps (2). Haig et al. (29) showed that similar microbial communities developed in
both lab- and full-scale filters continuously operated with the same source water. Other
studies have highlighted the importance of filter medium type for community diversity
and filter performance (21, 23). These studies have found Planctomycetes, Bacteriodetes,
Alphaproteobacteria, and Betaproteobacteria to be the most abundant bacterial taxa in
drinking water filtration systems (8, 21–25, 29). While these studies have provided
much-needed insight into which microorganisms are found in filtration systems, we
lack information about how key operational decisions, including start-up time and
source water inputs, impact filter performance and microbial community composition
changes over time in intermittently operated household filters.

While filter performance has been shown to improve over time after start-up (9, 14),
most operational guidelines are driven by empirical observations (30), and the factors
that impact microbial succession in these filters have not been well-studied. High
variability between filter replicates and overall low levels of replication have also limited
the conclusions that can be drawn from previous studies (15, 28, 31). In a study of two
full-scale sand filters, Haig et al. found that improvements in the performance of
continuously operated filters over time correlated with increases in community even-
ness and the relative abundance of particular genera (including Sphingobium, Acineto-
bacter, and Halomonas) (9). These findings highlight that microbial colonization and
successional dynamics are important to filter operation, but we lack the relevant
information needed to optimize these processes. Start-up times around 30 days are
common (30) but pose a challenge for adoption and implementation of these systems.
Efforts to reduce this start-up time require a more detailed understanding of microbial
dynamics that occur after start-up. Previous studies in natural environments have
shown that nutrient levels and microbial community composition can lead to differ-
ences in successional trajectories in microbial communities (32, 33). Nutrient levels have
also been shown to influence protist grazing in freshwater reservoirs (34) and microbial
turnover in wastewater (35) and other ecosystems (33). Similarities in successional
patterns may also arise due to the benefits of different functional traits at different
stages of colonization (36) or common selection pressures within the sand filters (as has
been observed in wastewater communities [37, 38]).

We hypothesized that source water nutrient levels (nitrogen and phosphorous) and
microbial community composition would influence microbial succession patterns and
the performance of biosand filters. We also expected that similarities observed between
filters receiving different water sources would reflect common selection pressures, for
example favoring biofilm formation within the sand filter. To test these hypotheses, we
tracked microbial community succession and performance of intermittently operated
lab-scale biosand filters over an 8-week period. We compared the influence of using
two source waters with different nutrient levels on filter performance and microbial
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dynamics using both culture-based and culture-independent approaches. We also
identified taxa that were preferentially removed during the filtration process, identify-
ing groups with higher relative abundances in either the influent or effluent samples.

RESULTS AND DISCUSSION

To investigate the microbial community dynamics and performance of biosand
filters receiving contrasting water sources, 80 lab-scale biosand filters received daily
water inputs from either a pristine, low nutrient mountain reservoir or an industrially
and agriculturally impacted high nutrient river water, spiked with dilute wastewater for
8 weeks. As expected, influent water, including the dilute wastewater, from the high
nutrient source had higher total organic carbon nitrate, ammonia, total P, and pH than
influent from low nutrient sources (see Table S1 in the supplemental material). Average
values over the 8-week experiment for total organic carbon were 3.2 and 2.3 mg C
liter�1 for high and low nutrient influents, respectively. Average nitrate and ammonia
were 2.55 and 0.16 mg N liter�1 for high nutrient and 0.01 and 0.03 mg N liter�1 for low
nutrient. The average total P was 0.27 and 0.06 mg P liter�1 for high and low nutrient
sources, respectively. The average pH of the high nutrient water was 7.9, while low
nutrient water was 7.3.

Biosand filter performance. The overall performance of the biosand filters (mea-
sured by total coliform removal) improved over time and was similar between the two
water sources. Effluent coliform concentrations became lower over time, reaching their
lowest at week 4 for both water sources (Fig. 1a). The highest total coliform removal
occurred later, at week 7 for low nutrient (87%) and week 8 for high nutrient (96%) (Fig.
1b). Over time, the variability in total coliform removal between filter replicates also
decreased in both water sources (Fig. 1a). This improvement in the efficacy and
consistency of coliform removal over time is in line with typical recommendations for
a 30-day start-up time for “filter ripening” in intermittently operated biosand filters,
commonly deployed in developing countries (30). Our results are also consistent with
lab studies of larger biosand filters removing pure culture E. coli (14). Overall measures
of biomass, based on DNA yield, showed that effluent DNA was, on average, 70% lower
than influent DNA indicating overall removal of microorganisms as source water passed
through the biosand filters (Fig. 1c). Microbial biomass in the sand filters also increased
over time in both water sources (Fig. 1d). Filters receiving high nutrient river water
accumulated biomass at a higher rate and reached higher total amounts of biomass
(Fig. 1d), which can be explained by the higher nutrient levels.

Microbial community includes common water and biofilm-forming bacteria.
Results from 16S rRNA gene sequencing of filter influents, effluents, and sand show that
microbial communities differentiate by water source, sample type, and time. As a
previous comparison of full-scale and much smaller lab-scale biosand filters have
shown highly reproducible microbial communities regardless of filter size (29), we
anticipate that the microbial community results observed here would be broadly similar
to what would be seen in full-scale systems. Water source explained a significant
portion of the variation among all samples (ADONIS R2 � 0.18, P � 0.001) when
comparing the microbial communities from all sample types and time points (Fig. 2a).
Low nutrient reservoir samples typically had larger amounts of Actinobacteria, Sphin-
gobacteriia, and Saprospirae than that of the high nutrient river water (Fig. 3). The most
abundant Actinobacteria include unclassified taxa in the family ACK-M1, which are
commonly found in lakes (39). In contrast, high nutrient water had larger amounts of
Alphaproteobacteria and Betaproteobacteria (Fig. 3). One of the most abundant genera
in high nutrient influent was Methylotenera which has been implicated in denitrification
(40) and would be consistent with the higher levels of nitrate in the high nutrient
source which averaged �2.5 mg N liter�1, compared with �0.01 mg N liter�1 in the
low nutrient source (see Table S1 in the supplemental material).

Sample type (influent, effluent, or sand) explained as much of the variation in
microbial communities as water source (ADONIS R2 � 0.19, P � 0.001) (Fig. 2a). The
influent samples had higher relative abundances of Flavobacteriia, including the genera
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Flavobacterium, a common aquatic organism (41), and Arcobacter, a genus often used
as a marker of wastewater-impacted water sources (42). Other common aquatic bac-
teria that were higher in relative abundance in the influent include the groups in the
classes Cytophagia (43, 44) and Sphingobacteriia (22, 45, 46). Compared with other
sample types, sand samples had higher relative abundances of Proteobacteria (see Fig.
S3 in the supplemental material), including the genera Zoogloea (47), Pseudomonas
(46), and Dechloromonas (48), groups previously found in water filter biofilms. High
nutrient sand filters harbored higher relative abundances of Aquabacterium (from the
class Betaproteobacteria), another common water bacterium found in biofilms (49).
Effluent samples had higher relative abundances of groups from the class Rhodospiril-
lales. Within the class Rhodospirillales, low nutrient samples had higher relative abun-
dance of Azospirillum, while high nutrient effluents had higher relative abundances of
Novispririllum. Within the Deltaproteobacteria, low nutrient effluent had a higher
relative abundance of members of the order Spirobacillales, which are commonly
found in freshwater samples and are thought to be involved in the degradation of
complex organics (50, 51).

Time explained a smaller, but still significant, fraction of the overall variation in
microbial communities (ADONIS R2 � 0.10, P � 0.001) (Fig. 2b to e). The changes over

FIG 1 Average total coliform concentrations over time in the influent and effluent waters (a) and average
percent total coliform removal (b) of filters receiving low and high nutrient source waters. Microbial
biomass measured by DNA yield over time in the influent and effluent (c) and sand (d) samples. Each
point represents the mean, and error bars represent the standard deviation across five replicate samples
of source water (influents) or five replicate biosand filters (effluents and sand). Gray lines indicate the
detection limits.
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time in influent samples were due to natural variation in source waters between weeks,
except for the unplanned switch in water sources for low nutrient filters at weeks 5 and
7 (see Fig. S4 in the supplemental material). The variation in the sand and effluent
samples likely reflect the selective pressures inside the sand filter that favor the growth
or colonization of some microorganisms and the removal of others. As observed during
microbial succession in other environments (9, 52), the richness and evenness of the
sand and effluent samples increased over time for both water sources (Fig. 4; see Fig.
S5 in the supplemental material). Zoogloea spp. increased in relative abundance in the

FIG 2 Principal-coordinate analyses (PCoA) of microbial communities based on pairwise Bray-Curtis dissimilarity, comparing sample type and water source
across all samples (a) and over time for high nutrient effluent (b), high nutrient sand (c), low nutrient effluent (d), and low nutrient sand (e). PCoA of influent
microbial communities over time shown in Fig. S4. Note that the low nutrient influent was from a different source during weeks 5 and 7 (see Fig. 4).
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sand filters receiving either source water over time. Rhodospirillales spp. increased in
relative abundance in both the effluent and sand as well. Sequences classified to the
class Chlamydiia increased in relative abundance over time, especially in the effluent. All
known organisms in this class are obligately intracellular bacteria and have previously
been identified from drinking water sources using amoeba coculture (53, 54). The
family Comamonadaceae increased in relative abundance in both the sand and effluent
for both water types and are commonly found in drinking water filtration and distri-
bution systems (22). In contrast, members of the Cytophagia and the Betaproteobacteria
(mostly Burkholderiales) groups decreased in relative abundance in the effluent over
time. The unplanned switch in water sources for the low nutrient biosand filters during
week 5 and 7 did result in distinct influent communities for those weeks (Fig. 3).
Likewise, the effluent communities during those weeks (5 and 7) and the weeks
following (6 and 8) were also slightly different compared with weeks 1 to 4 (Fig. 3). The
sand communities showed less variation as a result of this switch, likely because the

FIG 3 Relative abundance of the 19 most abundant classes over time for the low nutrient (left) and high nutrient (right) water sources for samples from the
influent (top), sand (middle), and effluent (bottom) over time. Each bar represents combined data from four to five replicates (results from individual replicates
are presented in Fig. S2). * indicates that the low nutrient influent was from a different source during weeks 5 and 7.
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microbial communities had already been established and the amount of biomass
contributed in the new influent was insufficient to shift the sand microbial community
that had developed over the preceding 4 weeks (55).

Differential relative abundances at the class level show similar trends across
water sources. Comparing the ratios of relative abundance of microorganisms be-
tween the influent and the effluent at the class level allowed us to identify taxa that are
preferentially found in either sample type for both water sources. Of the 65 most
abundant classes (relative abundance, �0.01%), 44 classes have the same trend (i.e.,
more abundant in the effluent or influent across all time points) for both water sources
(Fig. 5). Given the observed differences in community composition based on water
source, this consistency in the taxa found preferentially in either the influent or effluent
waters is noteworthy. These trends are also largely consistent across time (see Fig. S6
in the supplemental material), although the magnitude varies across time for individual
taxa. Taxa that were removed consistently even at the earliest time points likely include
taxa removed by physical processes, i.e., those taxa that were preferentially removed by
passage through the filter or simply unable to survive within the filter. For other classes,
including Epsilonproteobacteria and Flavobacteriia, the decrease in relative abundance
in the effluent over time (Fig. 3 and Fig. S6) indicates that biological factors related to
microbial community succession within the filters are likely important for their removal.

Overall reductions in relative abundances across the filters, combined with the
measured reduction in total DNA (Fig. 1c), indicate that certain bacterial taxa are
preferentially removed from influent source waters. Other taxa that have consistently
higher relative abundances in the effluent include taxa that pass through the filter or
colonize the sand. Note that some taxa with higher relative abundance in the effluent
may not necessarily reflect higher total abundances and could result from the removal
or decrease in relative abundance of other groups. However, the largely consistent
differences in the community composition between the influent and effluent observed
here (Fig. 2) indicate that the filtration process does not remove all microbial groups
equally and that passing influent waters through the biosand filters shapes the effluent
microbial community in a largely predictable manner.

FIG 4 Boxplot of richness, measured by the number of observed exact sequence variants (ESVs) at a rarefied sequencing depth of 2,122 reads
per sample for each water source, sample type, and week. *, indicate that the low nutrient influent was from a different source during weeks 5
and 7.
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Groups with higher relative abundances in the influent across both water sources
included common aquatic and wastewater-associated bacteria. Flavobacteriia (mostly
the genus Flavobacterium) and several other classes in the phylum Bacteroidetes are
common aquatic bacteria (41), indicating preferential removal of these groups. A

FIG 5 Differential relative abundances between the influent and effluent of the most abundant microbial
classes (�0.01% relative abundance) for each water source across all time points (for time resolved data see
Fig. S6), ordered by the average differential relative abundance for both water sources. Bolded text labels
indicate classes with the same trend in differential abundance between the two source waters. Stars indicate
statistically significant differences (FDR, �1%). Text label colors indicate specific phyla of interest.
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reduction in the relative abundance of Flavobacteriia and Bacteroidetes spp. has also
been seen in other studies of sand filtration (8, 26). Bacteria from groups commonly
associated with fecal matter that appear to be preferentially removed (higher relative
abundance in the influent than the effluent) include Epsilonproteobacteria (the most
abundant genus was Arcobacter) (42, 56), Fusobacteriia (57, 58), Bacilli (most abundant
groups include Streptococcaceae and Carnobacteriaceae) (59, 60), and Verruco-5 (61).
The class Coriobacteriia, which contains facultative anaerobes (62), was also more
abundant in the influent than the effluent. Possible explanations for the removal of
these groups include preferential grazing by protists, as has been shown for Flavobac-
terium and other Bacteroidetes spp. (34), or an inability of these taxa to survive the
aerobic conditions found in the biosand filters.

Taxa that were found to have higher relative abundances in the effluent of filters
from both water sources included groups containing known bacterial predators,
symbionts, and obligately intracellular bacteria. While protozoan grazing has been
shown to be an important removal pathway for E. coli in sand filters (13), other work
has shown that amoebae and other protists can harbor potentially pathogenic
microorganisms, effectively bypassing water treatment processes (63, 64). All of the
bacteria in the class Chlamydiia identified here were within the order Chlamydiales,
a group containing obligately intracellular bacteria that have been previously
recovered by amoeba coculture from river water and other drinking water sources
(53, 54). Several classes within candidate phyla (including OD1) and TM6 phyla were
also found to be higher in relative abundance in the effluent. Although little is
known about bacteria in these candidate phyla, several metagenome-based studies
have found evidence that these organisms are likely to be symbionts (65–67). A
similar pattern in the relative abundance of OD1 and other candidate phyla was also
observed in previous studies of full-scale drinking water filters (22, 23). Several
classes within the phylum Armatimonadetes were found to be selected for in filter
effluents, a trend that has also been reported in activated carbon filters (45).
Alphaproteobacteria were also higher in relative abundance in the effluent in both
water sources, although different orders were more abundant in each water source.
Deltaproteobacteria were preferentially found in effluent water communities, and
their relative abundance increased in both the sand and effluent samples over time
(Fig. 2), a trend that has been observed previously in slow sand filters (8, 29) and at
a full-scale drinking water treatment plant (22). This class includes known predatory
groups that were identified in these samples, including the genus Bdellovibrio and
members of the order Myxococcales (order-level relative abundances of Deltapro-
teobacteria shown in Fig. S7 in the supplemental material) (68). While bacterial
grazing may also contribute to the removal of these groups, we note that some of
these groups (including OD1 and Bdellovibrio) can be quite small (�0.4 �m), and
therefore, some of the increase in relative abundance of these groups could be due
to physical size exclusion of larger bacteria within the filter (51) or size selection
biases during protozoan grazing (69). Groups that were relatively more abundant in
both the sand (see Fig. S8 in the supplemental material) and the effluent (Fig. 5)
than the influent are likely colonizers of the sand and include the classes Deltapro-
teobacteria, Elusimicrobia, and Holophagae. These groups are likely to play a key role
in the microbial community structure of filtered water (22).

These results show that biosand filters receiving distinct water sources can achieve
similar levels of performance, as measured by total coliform and microbial biomass
removal. Water source did significantly impact the microbial communities and the rate
of accumulation of microbial biomass over time within the biosand filters. Microbial
communities were also distinct depending on sample type (influent, effluent, and sand)
and time. Despite these differences, there were consistent patterns in the microbial taxa
that were selectively removed by filtration, mainly aquatic and wastewater-associated
bacteria. The microbes found in biosand filter effluents was more likely to contain
bacteria that were intracellular, symbiotic, or predatory. These findings support earlier
studies with indicator organisms that found predation to be a key removal pathway
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during biofiltration and further highlight bacterial predation as an important area of
study. While this study focused on the start-up of small-scale intermittently operated
sand filters, the fundamental microbial dynamics are expected to be informative for a
range of filtration applications. This work provides a foundation for understanding
microbial succession, as it relates to improving filter performance, representing the
most replicated and time resolved study of microbial communities in biosand filters to
date. These results can be used to guide future efforts to predict and model the
changes in microbial communities expected from biosand filtration during drinking
water treatment. Such next steps should involve more detailed investigations of the
interactions between trophic levels within complex communities. Likewise, by identi-
fying the taxa that were preferentially found in biofilter effluents, our work guides
improvements for posttreatment and monitoring strategies that target these groups of
small and possibly intracellular bacteria.

MATERIALS AND METHODS
Biosand filter setup and water sources. Eighty biosand filters were constructed from 2.54-cm-

diameter PVC pipe with a 0.48-cm-diameter outlet tube that kept the water level 4 cm above the
10.5-cm-high sand bed at all times (Fig. 6). The bottom of each filter was filled with 18 cm3 of 3- and
6-mm-diameter glass beads. Then, 50 cm3 of commercial grade medium sand was added to each filter.
The sand had an effective size of 0.17 mm and uniformity coefficient of 1.77 (Quickrete, Atlanta, GA, USA),
corresponding to the smaller size range recommended for sand filters (16). The time to filter 22 ml at the
start of the experiment was 36 minutes, corresponding to a filter loading rate of 366 liters h�1 m�2, which
aligns with the suggested loading rate of �400 liters h�1 m�2 (30). We chose a shorter column length
than typical of most full-scale filters to keep the experimental system manageable with high replication
and to enable collection of biomass from the entire sand volume, as previous studies have shown
differences in microbial community composition with depth (27, 29). Previous studies have also shown
that the majority of microbial growth and activity takes place in the upper centimeters of the sand (12,
28, 70, 71). Glass beads and sand were washed with 10% HCl, rinsed with deionized water, and
autoclaved twice before the start of the experiment.

Low nutrient source water was collected weekly from the Lakewood Reservoir (39°59=24�N,
105°30=W) and high nutrient source water from the Platte River (39°48=29�N, 104°57=32�W). Primary
effluent from the Boulder Wastewater Treatment Plant was also collected weekly. Water sources and
wastewater were stored at 4°C to limit growth over time. Due to construction, we could not collect
Lakewood Reservoir water on weeks 5 and 7. During those weeks, Boulder Reservoir water (40°4=37�N,
105°13=12�W) was used as a low nutrient source water. Daily influent was made by adding 1 ml of
wastewater (collected from the aeration basin influent) to 1 liter of each water source (low or high
nutrient). The diluted wastewater was used as a source of coliforms and other wastewater-associated
bacteria, targeting a final influent coliform concentration approximating values measured in the field (72,
73). The source waters spiked with wastewater were mixed thoroughly before adding 22 ml of each
water (low or high nutrient) to each filter every 24 hours for the 8-week-long experiment. These filters
were designed to be small, lab-scale versions of intermittently operated household biosand filters that
process water in batches on a daily basis (30). The 8-week-long operation time was selected to cover the

FIG 6 Schematic of the experimental setup. Eighty replicate biosand filters (2.54-cm diameter with a
10.5-cm filter bed depth) were constructed from PVC pipes with a standpipe to keep water 4 cm above
the sand bed. Daily water inputs were added from either of two water sources (with high or low
nutrients), each spiked with diluted wastewater. Samples for DNA extraction, sequencing, and biomass
estimation were collected weekly from five replicate filters, including influent, sand, and effluent. Weekly
coliform removal was also measured over 8 weeks.
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typically recommended 4-week start-up time for household biosand filters and so the filters could be
operated for an additional 4 weeks without the need for cleaning during the study time frame (30).

Each day, five replicate samples of influent and effluent water from five filters for each water source
were collected in 50-ml centrifuge tubes and stored frozen at �20°C for nucleic acid extractions. Coliform
counts were measured using freshly collected water from five replicate samples of influent and filter
effluents for each water source on the last day of each week. Total coliforms were measured using
Petrifilm coliform count plates (3M, Maplewood, MN, USA) (74) according to the manufacturer’s instruc-
tions. Weekly sand filter biomass samples were collected by destructively sampling five filters from each
water source. For each sand sample, 60 ml of sterile 10 mM phosphate-buffered saline (PBS) was used
to wash the entire volume of sand and glass beads, using two 25-ml washes with 2 minutes of vortexing
with each wash to dislodge any biofilm-associated microbes. The PBS-suspended biomass was then
filtered onto a 0.2-�m filter using a Nalgene analytical test filter (Thermo Fisher Scientific, Sunnyvale, CA,
USA). PBS controls were created each week by filtering the same volume of sterile PBS buffer through
a clean (unused) filter. Weekly composite biomass samples were created by thawing the daily samples
for each influent and effluent stored at the �20°C and combining 18 ml from each daily sample onto the
same filter of a Nalgene analytical test filter for each week. This resulted in five replicate composite
samples for the influent and effluent from each water source for each of the 8 weeks.

Influent water chemistry. Influent water quality was measured each week, after the primary effluent
had been added to each water source, to compare the nutrient levels. Total organic carbon, total
phosphorous, nitrate, and ammonia were measured according to standard methods 5310B, 4500-P-E,
4500-NO3-D, and 4500-NH3-F, respectively (75). Water pH was measured using an accumet basic AB15
pH probe (Fisher Scientific).

DNA extraction, sequencing, quantification, and community analysis. DNA was extracted from
the biomass collected on filter paper using the DNeasy PowerSoil HTP 96 kit (Qiagen Inc., Valencia, CA,
USA), as detailed previously (76). The V4-V5 region of the bacterial and archaeal 16S rRNA gene was PCR
amplified in pooled duplicate reactions using GoTaq hot start colorless master mix (Promega Corpora-
tion, Madison, WI) with 515F and barcoded 806RB (77) primers that included 12-bp error-correcting
barcodes and the appropriate Illumina sequencing adapters (see reference 78 for details). Amplicons
were cleaned and normalized using the SequalPrep normalization plate kit (Thermo Fisher Scientific,
Waltham, MA). Samples were sequenced on an Illumina MiSeq instrument running the V2 2 � 150-bp
chemistry at the University of Colorado BioFrontiers Institute Next-Gen Sequencing Core Facility.

Sequences were demultiplexed, merged (minimum merged length, 200 bp), and quality filtered
using USEARCH10 (79). Sequences with more than 1 error per base call were discarded. Exact 16S rRNA
gene sequence variants (ESVs) were processed using UNOISE3 (80). The Ribosomal Database Project
Classifier (81), trained on the Greengenes database (82) was used to determine the taxonomic affiliations
of each ESV. Reads assigned to chloroplasts or mitochondria were removed. ESVs with fewer than 8 reads
and samples with fewer than 2,000 reads were also removed. Out of 258 samples, 16 failed to meet this
cutoff. These 16 samples included 7 of 16 PBS controls, 2 no template PCR controls, 1 extraction blank,
and 6 experimental samples. The processed sequences and exact sequence variant (ESV) table are
included in the supplemental material. All remaining samples were plotted in a heatmap to compare the
similarity to sequenced controls (83). All of the remaining negative controls (nine PBS controls and one
extraction blank) clustered separately and near only one experiment sample (an influent sample from the
high nutrient source, week 5). This influent sample was subsequently removed from downstream
analysis, as it was suspected to be contaminated with reagent-associated DNA based on similarity to the
sequenced controls.

The changes in the microbial communities were analyzed using R (v3.4.1) (84) and the phyloseq
package (85) with plots generated using the ggplot2 package (86). Community composition was
compared using principal-coordinate analysis based on the Bray-Curtis dissimilarity metric and the
permutational analysis of variance tests were conducted using ADONIS (87) in the R package vegan (88).
To compare differential relative abundances of the most abundant classes (�0.01% relative abundance)
between influent and effluent samples for each water source, the ALDEx2 R package was used to
determine statistically significant differences based on the Welch’s t test with a Benjamini-Hochberg false
discovery rate (FDR) correction of centered log-transformed (base 2) data using 128 Monte-Carlo
instances drawn from the Dirichlet distribution (89, 90).

DNA yield on all samples was measured using the Quant-iT PicoGreen double-stranded DNA (dsDNA)
assay (Invitrogen, Carlsbad, CA) according the manufacturer’s instructions. The detection limit for this
method was determined to be 0.28 ng/�l. The concentration of the 16S rRNA gene was compared with
DNA yield for a subset of samples, using quantitative PCR. The primers were the unbarcoded 515F and
806RB, the same as used for sequencing. The fast plus EvaGreen quantitative PCR (qPCR) master mix
(Biotium, Fremont, CA, USA) was used with PCR conditions as follows: 2 minutes at 95°C; then 40 cycles
of 5 s at 95°C, 5 s at 50°C, and 30 s at 72°C; followed by 60 s at 72°C. Genomic DNA extracted from
Escherichia coli K-12 was serially diluted and used as a standard. Results from DNA yield and qPCR were
well-correlated (see Fig. S1 in the supplemental material); therefore, DNA yield was used as a proxy for
bacterial biomass in these samples. The mass of DNA was normalized by the volume of water or mass
of sand the sample was extracted from. This approach provides a conservative metric of cell concen-
trations as some of the DNA detected is likely extracellular or derived from dead cells (91). Additionally,
reads from chloroplasts and mitochondria made up less than 7% of the 16S rRNA gene reads, indicating
low contributions of eukaryotic organisms to the DNA pools.
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