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Abstract

The role of mentorship in protégé performance is a matter of importance to academic, business 

and governmental organizations. Although the benefits of mentorship for protégés, mentors and 

their organizations are apparent1–9, the extent to which protégés mimic their mentors’ career 

choices and acquire their mentorship skills is unclear10–16. The importance of a science, 

technology, engineering and mathematics workforce to economic growth and the role of effective 

mentorship in maintaining a ‘healthy’ such workforce demand the study of the role of mentorship 

in academia. Here we investigate one aspect of mentor emulation by studying mentorship 

fecundity—the number of protégés a mentor trains—using data from the Mathematics Genealogy 

Project17, which tracks the mentorship record of thousands of mathematicians over several 

centuries. We demonstrate that fecundity among academic mathematicians is correlated with other 

measures of academic success. We also find that the average fecundity of mentors remains stable 

over 60 years of recorded mentorship. We further discover three significant correlations in 

mentorship fecundity. First, mentors with low mentorship fecundities train protégés that go on to 

have mentorship fecundities 37% higher than expected. Second, in the first third of their careers, 

mentors with high fecundities train protégés that go on to have fecundities 29% higher than 

expected. Finally, in the last third of their careers, mentors with high fecundities train protégés that 

go on to have fecundities 31% lower than expected.

A large literature supports the hypothesis that protégés and mentors benefit from the 

mentoring relationship1,2. Protégés that receive career coaching and social support, for 

instance, are reportedly more likely to have high performance ratings, a higher salary and 
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receive promotions1,3. In return, mentors receive fulfilment not only by altruistically 

improving the welfare of their protégés, but also by improving their own welfare4,5,10. 

Organizations benefit as well, because protégés are more likely to be committed to their 

organization6,7 and to exhibit organizational citizenship behaviour6. These benefits are not 

obtained only through the traditional dyadic mentor–protégé relationship, but also through 

peer relationships that supplement protégé development8,9.

The benefits of mentorship underscore the importance of under-standing how mentors were 

in turn trained to foster the development of outstanding mentors. It might be suspected that 

protégés learn managerial approaches and motivational techniques from their mentors and, 

as a result, emulate their mentorship methodologies; this suggests that outstanding mentors 

are trained by other outstanding mentors. This possibility is sometimes formalized as the 

rising-star hypothesis11,12; it postulates that mentors select up-and-coming protégés on the 

basic of their perceived ability and potential and past performance10,13,14, including 

promotion history and proactive career behaviours12. Rising-star protégés are reportedly 

more likely to intend to mentor, resulting in a ‘perpetual cycle’ of rising-star protégés that 

emulate their mentors by seeking other rising stars as their protégés15.

However, there is conflicting evidence concerning the rising-star hypothesis16, so the extent 

to which protégés mimic their mentors remains an open question. Indeed, we are unaware of 

any studies that systematically track mentorship success over the entire career of a mentor, 

so the validity of the rising-star hypothesis has yet to be fully explored. Here we investigate 

whether protégés acquire the mentorship skills of their mentors, by studying mentorship 

fecundity, that is, the number of protégés that a mentor trains over the course of their career. 

This measure is advantageous as it directly measures an outcome of the mentorship process 

that is relevant to sustained mentorship, allowing us to quantify the degree to which mentor 

fecundity determines protégé fecundity.

Scientific mentorship offers a unique opportunity to study this question because there is a 

structured mentorship environment between advisor and student that is, in principle, readily 

accessible18,19. We study a prototypical mentorship network collected from the Mathematics 

Genealogy Project17, which aggregates the graduation date, mentor and protégés of 114,666 

mathematicians from as early as 1637. This database is unique in its scope and coverage, 

tracking the career-long mentorship record of a large population of mentors in a single 

discipline (see the MPACT Project (http://ils.unc.edu/mpact/) for a smaller database of 

theses on information and library sciences and references therein). From this information, 

we construct a network in which links are formed from a mentor to each of his k protégés, 

where k denotes mentorship fecundity. We focus here on the 7,259 mathematicians who 

graduated between 1900 and 1960,because their mentorship record is the most reliable 

(Methods).

Although the mentorship records gathered from the Mathematics Genealogy Project provide 

the most comprehensive data source available for the study of academic performance 

throughout a mathematician’s career, there are obviously other plausible metrics for 

evaluating academic performance20–22. We have also compared the mentorship data against 

a list of publications for 4,447 mathematicians and a list of 269 inductees into the US 
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National Academy of Sciences (NAS; Methods). We find that mentorship fecundity is much 

larger for NAS members than for non-NAS members (Fig. 1a). We further find that the 

number of publications is strongly correlated with fecundity, regardless of whether or not a 

mathematician is an NAS member (Fig. 1b). These results demonstrate that although 

fecundity is not a typical measure of academic performance, it is closely related to other 

measures of academic success. Thus, even though our investigation concerns how fecundity 

is correlated between mentor and protégé, our results also address questions in the academic 

evaluation literature concerning the success of a mathematician.

We first investigate whether it is possible to predict the fecundity of a mathematician by 

modelling the empirical fecundity distribution, p(k|t), as a function of graduation year, t. 
Considering that some mathematicians remain in academia throughout their careers whereas 

others spend only a portion of their careers in academia, it might be expected that there are 

two types of individual when it comes to academic mentorship fecundity—’haves’ and 

‘have-nots’—in the sense that mathematicians from these types respectively have or have not 

had the opportunity to mentor students throughout their career.

If each mentor chooses to train a new academic protégé with probability ξh or ξhn, and stops 

training academic protégés otherwise, depending on whether they are a ‘have’ or, 

respectively, a ‘have-not’, then we would expect that the resulting fecundity distribution is a 

mixture of two discrete exponential distributions

p(k Θ) = πhp k κh + 1 − πh p k κhn (1)

where πhis the probability that a mathematician is a ‘have’ and p(k|κh) and p(k|κhn) are 

discrete exponential distributions p(k |κ) = e−k /κ 1 − e−1/k  with respective average 

fecundities κh = 1/ln ξh
−1  and κhn = 1/ln ξhn

−1  for ‘haves’ and ‘have-nots’. We estimate the 

parameters Θ = πh, κh, κhn  of this distribution from the empirical data using expectation 

maximization23. Using Monte Carlo hypothesis testing (Methods), we have found that 

equation (1) cannot be rejected as a candidate description of the fecundity distribution p(k|t) 
(Fig. 2a–c). For an alternative description of p(k|t), see Supplementary Discussion and 

Supplementary Fig. 1.

As might be expected, the probability, πh, that an individual is a ‘have’ experiences drastic 

changes over time as a result of historical events, such as the First and Second World Wars, 

the beginning of the Cold War and considerable increases in academic funding (Fig. 2d). In 

contrast, the average fecundities of ‘haves’ and ‘have-nots’ do not exhibit systematic 

historical changes, suggesting that these quantities offer fundamental insight into the 

mentorship process among mathematicians (Fig. 2e, f). For the sixty year period considered, 

we find that κh = 9.8 ± 0.4 and κhn = 0.47 ± 0.03, where the overbar indicates a time average 

of the respective average fecundity.

The stationarity of κh and κhn also provides a simple heuristic for classifying an individual 

as a ‘have’ or a ‘have-not’; by maximum likelihood, an individual is a ‘have’ if k ≥ 2 and is a 
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‘have-not’ other-wise. These results raise the possibility that similar features, perhaps with 

different characteristic scales of fecundity, may be present in other mentorship domains.

Although our description of the fecundity distribution has high-lighted a fundamental 

property of mentorship among mathematicians, it is not predictive of the behaviour of 

individual mathematicians in the sense that fecundity, according to this model, is a random 

variable drawn from the distribution in equation (1). We next test whether protégés mimic 

the mentorship fecundity of their mentors, by comparing protégé fecundity with a suitable 

null model that does not introduce correlations in fecundity. As in the study of genealogical 

trees, we perform comparisons of the empirical data with networks generated from 

uncorrelated branching processes in our investigation of the mathematician genealogy 

network. Here graduation date is equivalent to birth date and mentors and protégés are 

equivalent to parents and children, respectively.

In a branching process24, a parent p, born at time tp, has kp children. Child c of parent p is 

born at time tc and subsequently has kc children. The fecundity, k, of each individual is 

drawn from the conditional fecundity distribution p(k|t) for an individual born at time t. 
Networks generated from this type of branching process are therefore defined by the birth 

date of each individual, t, the fecundity distribution p(k|t), and the chronology of child 

births, {tc}, for each parent (Fig. 3a).

We compare the mathematician genealogy network with two ensembles of randomized 

genealogies from the branching process family. Random networks from ensemble I retain 

the birth date of each individual, the fecundity of each individual and the chronology of 

child births for each parent (Fig. 3b), as above. Random networks from ensemble II 

additionally restrict parent–child pairs to have the same age difference, tc − tp, as parent–

child pairs in the empirical network (Fig. 3c). All other attributes of these networks are 

randomized using a link-switching algorithm25,26 (Methods), so neither of these random-

network ensembles introduces correlations between parent fecundity and child fecundity or 

temporal correlations in fecundity. They therefore provide a suitable basis for comparison 

with the mathematician genealogy network.

To explore the influence of mentor fecundity and age difference on protégé fecundity, we 

partition protégés according to the fecundity of their mentors and the age difference between 

mentor and protégé, tc − tp. Given our findings (Supplementary Discussion and 

Supplementary Figs 2 and 3), it is clear that age differences affect fecundity in a nonrandom 

manner for protégés whose mentors have kp < 3. We partition the remaining protégés, whose 

mentors have kp ≥ 3, into two groups: protégés whose mentors are below-average ‘haves’ (3 

≤ kp < 10) and protégés whose mentors are above-average ‘haves’ (kp ≥ 10).We then 

partition these three groups of protégés according to when they graduated during their 

mentors’ careers. Specifically, we split each group of protégés into terciles, the most fine-

grained grouping that still gives us sufficient power to examine the statistical significance of 

any differences between the empirical data and the null models.

We use the partitioning of children into classes to examine the relationship between the 

average child fecundity, Kc , and the age difference, tc − tp, between parent and child (Fig 
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4a, b and Supplementary Fig. 4a, b). If the data were consistent with a branching process, 

then we would expect Kc  to have no temporal dependence. However, the regressions 

between the Kc  z-score (Methods) and tc − tp deviate significantly (Fig. 4c and 

Supplementary Fig. 4c) from this expectation for both random ensembles, to reveal three 

distinct features. First, mentors with kp < 3 train protégés that go on to have mentorship 

fecundities 37% higher than expected throughout their careers. Second, in the first third of 

their careers, mentors with kp ≥ 10 train protégés that go on to have fecundities 29% higher 

than expected. Finally, in the last third of their careers, mentors with kp ≥ 10 train protégés 

that go on to have fecundities 31% lower than expected.

The fact that mentors with k < 3 train protégés with higher-than-expected fecundities 

throughout their careers is somewhat counterintuitive. From the rising-star hypothesis11,12, it 

might be expected that protégés trained by mentors with k < 3 are likely to mimic their 

mentors and therefore have lower-than-expected fecundities. Our results demonstrate that 

this is not the case. One possible explanation is that mentors with k < 3 are more aware of 

the resources they must allocate for effective mentorship, leading to a more enriching 

mentorship experience for their protégés. An alternative hypothesis is that mentors with k < 

3 select for, or are selected by, protégés that have a greater aptitude for mentorship.

The striking temporal correlations for mentors with kp ≥ 10 are also intriguing. Because 

mentors with kp ≥ 10 represent the upper echelon of mentors in mathematics, these mentors 

were probably ‘rising stars’ early in their academic careers. The fact that these mentors train 

protégés with high fecundities early in their careers supports the rising-star hypothesis.

By the end of these mentors’ careers, however, their protégés have lower-than-expected 

fecundities. Perhaps mentors, who ultimately have high fecundities, spend fewer and fewer 

resources training each of their protégés as their careers progress. Alternatively, protégés 

with high mentorship fecundity aspirations might court prolific mentors early in their 

mentors’ careers whereas protégés with low fecundity aspirations might court prolific 

mentors later in their mentors’ careers. Our findings therefore reveal interesting nuances to 

the rising-star hypothesis.

It is unclear whether the temporal correlations we discover in mentorship fecundity 

generalize beyond mathematicians in academia. Anecdotally, mathematicians are thought to 

perform their best work at a young age27, a perception that may influence how mentors and 

protégés choose each other. Perceptions in other domains, however, may differ and 

subsequently influence mentor and protégé selection in different ways. As data for other 

academic disciplines18,19, business and the government becomes available, it will be 

important to determine whether temporal correlations in fecundity are a general consequence 

of mentorship or are a particular consequence of mentorship for mathematicians in 

academia.

Regardless, our results offer another means of judging academic impact in science as well as 

the impact of managers on their employees, both of which are notoriously complicated and 

risky affairs. These assessments are multidimensional, metrics and expectations are domain 

dependent, and placement of creative output, timescales of impact and recognition vary 
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significantly from field to field. Ultimately, the assessment of individuals for awards and 

promotion is based on painstaking individual analysis by selection committees and peers. 

Although these committees may have varying goals and incentives, it is important that 

collective arguments—the kind of arguments we are making here—be based on sound 

quantitative analysis. Although the extent to which our findings extrapolate to other domains 

may vary, we are confident that the kind of analysis presented here will serve to elevate the 

discourse on scientific and managerial impact.

METHODS SUMMARY

Data acquisition.

We use data from the Mathematics Genealogy Project17 to identify the 7,259 protégé 

mathematicians that are in the giant component28 and graduated between 1900 and 1960, of 

which 4,447 have linked publication records through the American Mathematical Society’s 

research database MathSciNet. We use a text-matching algorithm29 to semi-automatically 

match members of the NAS with mathematicians from the Mathematics Genealogy Project.

Monte Carlo hypothesis testing for p(k|t).

We use Monte Carlo hypothesis testing30 to determine whether equation (1) with maximum-

likelihood23 parameters Θ can be rejected as a candidate model for p(k|t) at the α = 0.05 

significance level.

Random-network generation.

We use a variation of the Markov chain Monte Carlo algorithm25,26 to construct each of the 

1,000 random networks in ensembles I and II. Specifically, we restrict the switching of end 

points of links p→c that belong to the same link class L, where the link classes are defined 

as LI(t) = p c | tc = t  and LII(s, t) = p c | tp = s, tc = t  for networks from ensembles I 

and II, respectively. Each link class can be thought of as a subgraph, which can then be 

randomized in the usual way by attempting 100 switches per link in the class25,26.

Average-fecundity z-score.

By the central limit theorem, the average of variates drawn from p(kc|tc) is normally 

distributed because p(kc|tc) is well described by a mixture of discrete exponential 

distributions that has finite variance. Given a set of child fecundities, Kc = {kc}, we quantify 

how significantly a subset of these child fecundities, Kc* ⊂ Kc, deviates from Kc by 

measuring the z-score of kc , the average child fecundity of all nodes within the subset Kc*, 

compared with kc s
, the average child fecundity computed for children within a subset 

equivalent to Kc* in the synthetic networks. That is, we compute z = kc − μ /σ, where μ is 

the ensemble average of kc s
 and σ is the standard deviation of the ensemble kc s

 over 

the 1,000 realizations generated for our null models.
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METHODS

Mathematics Genealogy Project data.

We study a prototypical mentorship network collected from the Mathematics Genealogy 

Project17, which aggregates the graduation dates, mentors and advisees of 114,666 

mathematicians from as early as 1637. From this information, we construct a mathematician 

genealogy network in which links are formed from a mentor to each of his or her k protégés.

The data collected by the Mathematics Genealogy Project are self-reported, so there is no 

guarantee that the observed genealogy network is a complete description of the mentorship 

network. In fact, 16,147 mathematicians do not have a recorded mentor and, of these, 8,336 

do not have any recorded protégés. To avoid having these mathematicians distort our 

analysis, we restrict our analysis to the 90,211 mathematicians that comprise the giant 

component28 of the network; that is, we restrict our analysis to the largest set of connected 

mathematicians in the mathematician genealogy network.

Although the Mathematics Genealogy Project contains information on mathematicians from 

as early as 1637, this does not necessarily indicate that all of these records are representative 

of the evolution of the network. For example, before 1900 the Project records fewer than 52 

new graduates per year worldwide. Furthermore, because mathematicians often have 

mentorship careers lasting 50 years or more, we are not guaranteed to have complete 

mentorship records for mathematicians who graduated after 1960. We therefore restrict our 

analysis to the 7,259 protégé mathematicians who graduated between 1900 and 1960, for 

whom we believe that the graduation and mentorship record is the most reliable.

MathSciNet data.

Of the 7,259 protégé mathematicians that graduated between 1900 and 1960, 4,447 of them 

have linked MathSciNet publication records, which are used in our analysis.

US National Academy of Science data.

The US National Academy of Science maintains two databases of its membership. The first 

database consists of all deceased members elected to the NAS from as early as 1863. This 

database records the name of the inductee, their election year, their date of death and a link 

to a biographical sketch. The second database consists of all active members of the NAS. 

This database records the name of the inductee, their institution, their academic field and 

their election year.

The challenge to matching this data with the Mathematics Genealogy Project data is that 

there is no direct link between a member of the NAS and the Mathematics Genealogy 

Project, and vice versa. This is further confounded by the fact that some members of the 

NAS have the same name. To circumvent these problems, we use a text-matching 

algorithm29 to semi-automatically detect whether a member of the NAS matches a name in 

the Mathematics Genealogy Project database. We use this procedure to curate the 269 

members of the NAS that definitively match mathematicians in the Mathematics Genealogy 

Project database.
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Monte Carlo hypothesis testing for p(k|t).

Given a model, M, with parameters Θt for the empirically observed fecundity distribution, 

p(k|t), we use Monte Carlo hypothesis testing to determine whether it can be rejected as a 

candidate model for p(k|t) (ref. 30). The Monte Carlo hypothesis testing procedure is as 

follows. First, we calculate the best-estimate parameters, θt, for model M at time t using 

maximum-likelihood estimation23. Second, we compute the test statistic, S (detailed below), 

between the model M(Θt) and the empirical fecundity distribution, p(k|t). Next, we generate 

a synthetic fecundity distribution, ps(k), from model M(Θt) using the best-estimate 

parameters, θt and we treat the synthetic data exactly the same as we treated the empirical 

data: first, we calculate the best-estimate parameters, Θs, for model M from maximum-

likelihood estimation; second, we compute the test statistic, Ss, between the model M(Θs) 

and the synthetic fecundity distribution, ps(k). We generate synthetic fecundity distributions 

and their corresponding synthetic test statistics until we accumulate an ensemble of 1,000 

Monte Carlo test statistics, {Ss}. Finally, we calculate a two-tailed P value with a precision 

of 0.001.Asis customary in hypothesis testing, we reject the model M at time t if the P value 

is less than a threshold value. We select a P-value threshold of 0.05; that is, if less than 5% 

of the synthetic data sets exhibit deviations in the test statistic that are larger than those 

observed empirically, the model is rejected at time t.

Because we are conducting hypothesis tests with the fecundity distribution p(k|t), which is a 

distribution with a discrete support, it is important to use a test statistic S that is appropriate 

for testing discrete distributions. We use the χ2 test statistic whereby we bin p(k|t) such that 

each bin has at least one expected observation according to the model M(Θt). This binning 

prevents observations that are exceptionally rare from dominating our statistical test and 

skewing our results.

Random-network generation.

We use the Markov chain Monte Carlo algorithm25,26 to build random networks from the 

mathematician genealogy network. The standard version of this algorithm inherently 

preserves the fecundity of each individual, but it does not preserve the chronology of child 

births, {tc}, for each parent. To obtain random networks belonging to ensemble I or 

ensemble II, we restrict the switching of end points of links p that belong to the same link 

class L, where the link classes are defined as LI(t) = p c | tc = t  and 

LII(s, t) = p c | tp = s, tc = t  for networks from ensembles I and II, respectively. Each link 

class can be thought of as a subgraph, which can then be randomized using the Markov 

chain Monte Carlo algorithm. Here, we attempt 100 switches per link in each link class, 

which sufficiently alters random networks away from the original empirical network25,26. 

We repeat this procedure 1,000 times to generate a set of 1,000 random networks for each 

ensemble.

Average-fecundity z-score.

The average of variates drawn from p(kc|tc) is normally distributed because p(kc|tc) is well 

described by a mixture of discrete exponential distributions—a distribution with finite 

variance—and, thus, the central limit theorem applies. Given a set of child fecundities, Kc = 
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{kc}, we quantify how significantly a subset, Kc*, of these child fecundities deviates from 

Kc, by measuring the z-score of Kc , the average child fecundity of all nodes within the 

subset Kc*, compared with kc , the average child fecundity computed for children within a 

subset equivalent to Kc* in the synthetic networks. That is, we compute z = kc − μ /σ, 

where μ is the ensemble average of kc s
 and σ is the standard deviation of the ensemble 

kc s
 over the 1,000 realizations generated for our null models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 |. Relationship between mentorship fecundity and other performance metrics.
a, Cumulative distribution of the mentorship fecundity for NAS members (red) and non-

NAS members (black). NAS members have an average fecundity of k NAS = 14, which is 

far greater than the average fecundity of non-NAS members, k non‐NAS = 3.1, indicating that 

fecundity is closely related to academic recognition. Not all mathematicians in the non-NAS 

group were eligible for NAS membership, owing to citizenship and other circumstances. 

This fact makes the result in the figure all the more striking. b, Average number of 

publications as a function of the mentorship fecundity, for NAS members (red) and non-

NAS members (black). NAS members have nearly twice as many publications on average as 

non-NAS members for all fecundity levels. Error bars, 1 s.e.
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Figure 2 |. Evolution of the fecundity distribution.
A–c, Cumulative distribution of the fecundity of mathematicians that graduated during 1910 

(a), 1930 (b) and 1950 (c) (symbols), compared with the best-estimate predictions of a 

mixture of two discrete exponentials (lines). Monte Carlo hypothesis testing confirms that 

this model can not be rejected as a model of the fecundity distribution during every year 

from 1900–1960, as denoted by the P values above the α = 0.05 significance level 

(Methods). d–f, Best-estimate parameters as functions of time, calculated by maximum 

likelihood for a mixture of two discrete exponentials. Dashed lines denote average parameter 

values between 1900 and 1960 and coloured circles indicate the years displayed in panels a–
c. The probability, πh, of being a ‘have’ changes over time, generally in relation to historic 

events (hashed grey shading indicates the First and Second World Wars). In contrast, the 

average fecundities remain stable, with time-average values of κh = 9.8 ± 0.4 and 

κhn = 0.47 ± 0.03, until 1960, the time at which mentorship records become incomplete 

(Methods), and then steadily decrease (grey shaded region).
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Figure 3 |. Branching process null models.
a, Subset of the mathematician genealogy network. Mentors/parents (black circles) are 

connected to each of their protégés/children (white circles). The horizontal positions of 

mathematicians represent their graduation/birth dates, t. The bottom two parents were born 

in 1924, the top two parents were born in 1937, and all four parents have a child born in 

1958. From a parent’s perspective, three essential features of the empirical network must be 

preserved in random networks generated from the two branching process null models: the 

birth date, tp, the fecundity, kp, and the chronology of child births, {tc}. b, Random networks 
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from ensemble I preserve these three essential features. Solid red lines highlight the links in 

the empirical network whose end points can be randomized. Dashed red lines illustrate one 

of the possible randomization moves after switching the corresponding pair of links. We 

note that the age difference between parent and child is not preserved. c, Random networks 

from ensemble II preserve the three essential features as well as the age difference between 

parent and child. Solid blue lines of the same colour highlight the links in the empirical 

network whose end points can be randomized. Dashed blue lines illustrate one of the 

possible randomization moves after switching the corresponding pair of links. Random 

networks for each ensemble are generated by attempting 100 switches per link (Methods).
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Figure 4 |. Effect of age difference between mentor and protégé, tc − tp, on protégé fecundity.
a, Fecundity distribution of children born during the 1910s (for which the average fecundity 

was 1.4) to parents with kp < 3, 3 ≤ kp < 10 and kp ≥ 10, compared with the expectation from 

ensemble I (grey line). We separate children into terciles (early, middle, late) according to tc 

− tp, and denote the average fecundities of the children born early, middle and late in their 

parents’ lives as kE , kM  and kL , respectively. The average fecundity of children born to 

parents with kp < 3 is higher than expected, regardless of whether they were born during the 

early, middle or later part of their parents’ lives. We also note that the average fecundity of 

children born to parents with kp ≥ 10 decreases throughout their parents’ lives. b, We 
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quantify the significance of these trends during each decade (coloured symbols) by 

computing the z-score of the average child fecundity, kc , compared with the average child 

fecundity in networks from ensemble I. This information is summarized by identifying the 

linear regression (solid black line; slope and intercept as shown). The regression lines for 

networks from our null model (grey lines) vary around the expectation of our null model 

(dashed black line). c, Significance of linear regressions in b. We compare the slope and 

intercept of the empirical regression (black circle) with the distribution of the slope and 

intercept of the same quantities computed from the null model. Because these quantities are 

approximately distributed as a multivariate Gaussian, we compute the equivalent of a two-

tailed P value by finding the fraction of synthetically generated slope–intercept pairs that lie 

outside the equiprobability surface of the multivariate Gaussian (dashed ellipse). The slopes 

and intercepts of the regressions for children of parents with low (P = 0.009) and high (P < 

0.001) fecundities are significantly different from the expectations for the null model, 

consistent with the data displayed in a. Comparisons with expectations from random 

networks from ensemble II yield the same conclusions (Supplementary Fig. 4).
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