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ABSTRACT

Secondary metabolites can be viewed as a chemical language, facilitating communication between microorganisms. From
an ecological point of view, this metabolite exchange is in constant flux due to evolutionary and environmental pressures.
From a biomedical perspective, the chemistry is unsurpassed for its antibiotic properties. Genome sequencing of
microorganisms has revealed a large reservoir of Biosynthetic Gene Clusters (BGCs); however, linking these to the secondary
metabolites they encode is currently a major bottleneck to chemical discovery. This linking of genes to metabolites with
experimental validation will aid the elicitation of silent or cryptic (not expressed under normal laboratory conditions) BGCs.
As a result, this will accelerate chemical dereplication, our understanding of gene transcription and provide a
comprehensive resource for synthetic biology. This will ultimately provide an improved understanding of both the
biosynthetic and chemical space. In recent years, integrating these complex metabolomic and genomic data sets has been
achieved using a spectrum of manual and automated approaches. In this review, we cover examples of these approaches,
while addressing current challenges and future directions in linking these data sets.
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INTRODUCTION

Recent improvements in the identification of BGCs has rev-
olutionised our capacity to understand secondary metabolite
production. Over the last few years, there has been a sig-
nificant effort to link genomic data to secondary metabolite
data for microorganisms, in particular bacteria. The first sec-
tion of this review focuses on the creation of both biosynthetic

and chemical data sets used for this purpose. The term link-
ing in this review will cover all aspects of associating BGCs
with the metabolite they encode. This linking process is divided
into two main sections. The first is targeted approaches to link-
ing, comprising the subsections, targeted genome mining link-
ing, whereby strains are selected based on BGC information
for further chemical analysis and multi-targeted linking, encom-
passing genome mining with bioactivity, metabolomics and
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proteomics approaches. The second is automated approaches,
which is further divided into correlation-based and feature-
based. Correlation-based approaches identify putative links via
correlation of strain inclusion in clusters of spectra and BGCs.
Feature-based approaches score individual spectra against indi-
vidual BGCs based on shared properties. At the same time,
we appreciate that studies rarely fall into these binary cate-
gories and that in reality, linking is often a spectrum using both
approaches. In this review, we have selected recent studies to
exemplify the discovery angle of each approach. We conclude
with examples of experimental validation of these links through
synthetic biology methods and a section on current challenges.

BIOSYNTHETIC AND CHEMICAL DATA SETS
FOR LINKING

This section covers how data sets are made from the predic-
tion of BGCs and detection of metabolites. This is a crucial step
as the quality of the data sets will directly impact the suc-
cess of linking across data sets. Predicting BGCs from bacte-
rial genomes is a fairly mature discipline. Tools such as anti-
SMASH (Blin et al. 2017) and SMURF (Khaldi et al. 2010) pro-
vide BGC predictions by matching curated statistical models
based on sequences of protein family domains (PFAM domains)
to genomic sequences (Coggill, Finn and Bateman 2008). Such
techniques typically exhibit high specificity (low numbers of
false positives) at the expense of low sensitivity (high numbers
of false negatives). For users wishing higher sensitivity, more
speculative algorithms such as ClusterFinder (Cimermancic et al.
2014), MIDDAS-M (Umemura et al. 2013) or MIPS-GC (Umemura,
Koike and Machida 2015) exist. An in-depth review of BGC detec-
tion is beyond the scope of this article – please refer to Chavali
and Rhee 2018 (Chavali and Rhee 2018) for a detailed review –
as are the community-driven comparative metabolomics plat-
forms such as molecular networking, based on tandem-mass
spectrometry data (Wang et al. 2016) and data bases such as
NP Atlas (www.npatlas.org). While cross-referencing data bases
has been the status quo for secondary metabolite identification,
facilitating this through automation would greatly accelerate
discovery.

TARGETED LINKING

Targeted genome mining approaches to linking

In this section, strains prioritised for chemical investigation
based on genome mining information, for example the pres-
ence of specific BGCs, will be discussed. This linking is often a
manual process and requires specialist biosynthetic and chemi-
cal knowledge. The first step involves the dereplication, or strain
prioritisation (or strain elimination due to the presence of previ-
ously discovered metabolites), within complex biosynthetic and
chemical data sets. Dereplication has been greatly aided by the
data analysis platforms mentioned previously, resulting in new
metabolite discovery (Fig. 1) (Duncan et al. 2015; Kaweewan et al.
2017; Schneider et al. 2018; Son et al. 2018; Ueoka et al. 2018;
Xu et al. 2018). For example, two new peptides, the halogenated
curacomycin (1) and its dechlorinated derivative dechlorocura-
comycin (2), produced by Streptomyces curacoi and Streptomyces
noursei respectively, were discovered through a genome mining
approach using antiSMASH to identify the presence of trypto-
phan halogenase genes in proximity to a nonribosomal peptide
synthetase (NRPS) BGC (Kaweewan et al. 2017). Further genomic
investigation of S. curacoi led to the discovery of an additional

new cytotoxic peptide, curacozole, produced by a gene analo-
gous to that of curacomycin (Kaweewan et al. 2019). Using a
similar approach, the novel lanthipeptide tikitericin (3) was iso-
lated from a thermophilic bacterium, Thermogemmatispora sp. by
detecting a lanthionine synthetase, homologous to a class II lan-
thipeptide BGC (Xu et al. 2018). The putative BGC consisting of
10 genes encoding a new lasso peptide was observed through
genome mining of the rare actinomycete Actinokineospora sphe-
ciospongiae and led to the isolation of actinokineosin, a new pep-
tide with promising antibacterial activity (Takasaka et al. 2017).
In another study, the product of the lasso peptide BGC uld from
the genome of Streptomyces sp. KCB13F003 was targeted using a
One Strain Many Compounds (OSMAC) approach, in which each
strain was grown in multiple media in an attempt to elicit a
wide range of BGC expression, resulting in the isolation of the
new metabolite ulleungdin (4) (Son et al. 2018). Recently, a plant-
associated Gynuella sunshinyii strain was prioritised based on the
presence of several unassigned BGCs and six trans-AT PK clus-
ters. Further investigation led to the isolation of four metabolites
of which three, the polyketides lacunalide A and B (5, 6) and the
cyclodepsitripeptide sunshinamide (7)-represented novel scaf-
folds. Further manual genome mining resulted in two ergoyne
analogues, ergoyne A and B, revealing the importance of com-
plementing automated genome mining with manual curation
(Ueoka et al. 2018).

Multi-targeted linking

In the last five years, comparative metabolomics has been linked
with comparative genome mining, proteomics and bioactiv-
ity to accelerate discovery. For example, genome mining of a
lichen-associated Streptomyces sp. with metabolites bioactive
against Bacillus subtilis revealed a BGC encoding a lantibiotic.
By connecting the inactivation of the BGC to the loss of the
observed bioactivity, a new 35-membered macrocyclic thiopep-
tide antibiotic geninthiocin B (8) was isolated (Schneider et al.
2018). Natural product proteomining – a quantitative proteomics
platform – was introduced by Gubbens et al., for the identifi-
cation of BGCs for targeted secondary metabolites by apply-
ing the OSMAC approach, metabolomics and quantitative pro-
teomics. This approach allowed correlations between quanti-
tative metabolomics or bioactivity data and protein expression
profiles. A new juglomycin derivative was isolated from a soil-
isolated Streptomyces sp. by applying this quantitative multi-
omics approach (Gubbens et al. 2014).

Using pattern-based BGC genome mining combined with
comparative metabolomics through molecular networking, the
relationship between BGCs and the corresponding metabolites
across 35 Salinispora strains was assessed. This resulted in
an uncharacterised PKS BGC being linked to the previously
reported metabolite arenicolide A, in addition to linking an
uncharacterised NRPS BGC (NRPS40) to retimycin A (9), a new
quinomycin-like depsipeptide (Duncan et al. 2015). The increas-
ing complexity and scale of these combined data sets, often con-
sisting of tens to thousands of both genomes and spectra, has
resulted in the need to automate this process.

AUTOMATED LINKING

Two major tracks can be observed in the automated linking
of BGCs to secondary metabolites. The first approach, feature-
based linking, involves linking chemical features predicted from
genomic information. For example, neutral losses indicative of
amino acid residues, with the observed metabolomic data. The
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Figure 1. Chemical structures discovered as a result of manual linking of gene clusters and metabolites, including curacomycin (1), dechlorocuracomycin (2), tikitericin

(3), ulleungdin (4), lacunalide A and B (5, 6), sunshinamide (7), geninthiocin B (8) and retimycin A (9).

second approach, correlation-based linking, makes use of data
sets where genomic and metabolomic data are available for a
large number of strains. Related BGCs assembled into gene cluster
families (GCFs) can be correlated with spectra belonging to molec-
ular families (MFs) based on the occurrence of their source strains
across the data set, with the assumption that true links would
have high source strain correlations.

Feature-based linking

A fruitful approach for linking BGCs to secondary metabolites
has been to predict the structural properties of the molecules
based on genomic information to directly detect correspond-
ing features in mass spectra (Fig. 2). For example, tools such as
SANDPUMA (Chevrette et al. 2017) can predict substrate speci-
ficity for adenylation domains in NRPS BGCs. These predic-
tions can be matched to amino acid residue-derived MS/MS
fragmentations. This approach, using molecular properties pre-
dicted from genomic information to guide the search in chemi-
cal space, termed peptidogenomics by Kersten et al. (Kersten et al.
2011), has been used to link peptidic natural product BGCs to
metabolites. These include stendomycin I (10) and the riboso-
mal lantipeptide. A similar technique has been described by Pan-
ter et al. (Panter, Krug and Müller 2019) for polyketides, which
facilitated the discovery and structure elucidation of fulvuthi-
acene A and B (11, 12). Other examples of tools intended to
predict detectable features from genomic information include
RODEO (Tietz et al. 2017), which is focused on RiPPs, although
this has not yet been integrated with mass spectrometry data;
PRISM (Skinnider et al., 2015, 2017), which focuses on NRPs and
type I and II PKSs but is limited to LC-MS (but not LC-MS/MS
data); GNP (Johnston et al. 2015), which links NRPS and PKS
BGCs to LC-MS/MS spectra, Pep2path (Medema et al. 2014), which
focuses on peptidic natural products, RippQUEST (Mohimani

et al. 2014a) and NRPquest (Mohimani et al. 2014b), which detect
RiPP and NRPS BGCs, respectively, and predict possible fragmen-
tation patterns for their products.

Also relevant are tools that have been developed for derepli-
cation. For example, DEREPLICATOR (Mohimani et al., 2017,
2018) predicts possible fragmentation patterns for peptidic nat-
ural products. By linking spectra to peptides, and identifying
the BGCs responsible for the production of those peptides in
databases such as MIBiG (Medema et al. 2015), similar BGCs
from the organism can be tentatively linked to the spectra. This
approach was used, for example, in Mohimani et al. 2018 (Mohi-
mani et al. 2018), to link the polyketide antibiotic C35H56O13,
which is structurally similar to chalcomycin, to its producing
BGC.

Correlation-based linking

Another major approach is based on matching patterns of
source strain occurrence between GCFs and MFs. The assump-
tion that similar BGCs in different strains will produce similar
molecules can be used to compute a score for the link between
a GCF and a MF. This builds upon early work by Lin and co-
workers (Lin, Zhu and Zhang 2006) on clustering homologous
BGCs (structurally similar clusters that have a shared ancestry),
which was then verified by comparison with known clusters of
homologous genes. Later work on clustering BGCs (Cimermancic
et al. 2014; Doroghazi et al. 2014; Navarro-Muñoz et al. 2018) has
usually involved explicit verification of the GCF, i.e. that the BGCs
being grouped together are, in fact, producing related metabo-
lites, by heterologous expression or gene knockout, but follow
a similar pattern of defining novel distance functions between
BGCs and constructing a clustering based upon these distances.
The distances are usually defined at least partly in terms of the
composition of BGCs by protein family domains, (Lin, Zhu and
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Figure 2. Chemical structures discovered as a result of automated linking of gene clusters and metabolites, including stendomycin I (10), fulvuthiacene A and B (11,
12), tambromycin (13), tyrobetaine (14), macrobrevin (15), and indolmycin (16).

Zhang 2006; Navarro-Muñoz et al. 2018) but are often composed
of multiple factors which can include everything from direct
sequence similarity (Navarro-Muñoz et al. 2018) to the output
score of sequence alignment algorithms (Doroghazi et al. 2014).

The clustering of spectra into Molecular Families by molecu-
lar networking is incorporated into tools such as GNPS (Wang et
al., 2016). The similarity between any two spectra in a data set
is computed using a modified cosine similarity score, to account
for certain structural modifications; as a result, two spectra are
taken to belong to the same MF if their score exceeds a user-
defined threshold.

Once the BGCs have been clustered based on the distance
measurements, the shared source strains of GCFs and MFs can
be used as a starting point to correlate between BGCs and prod-
ucts (Doroghazi et al. 2014; Goering et al. 2016) in an approach
known as metabologenomics. A linking score between a GCF and
a MF is computed, which is dependent on the degree of strain
overlap, penalising strains being present in one side (GCF or MF)
and not the other. Since the presence of a BGC in a strain does
not guarantee that it will be active in all circumstances (cryp-
tic BGCs), this penalty is often asymmetric, with a low penalty
applied for strains that contribute to the GCF but not to the spec-
tra, while strains that contribute to the spectra and not to the
GCF are highly penalised. A new chlorinated antiproliferative
compound named tambromycin (13) was discovered by applying
this approach to a set of 178 actinomycete strains (Goering et al.
2016). Moreover, a new class of natural products and their BGC
were discovered when metabologenomics was combined with

molecular networking. As a result, six tyrobetaines (14) bear-
ing an unusual N-terminal trimethylammonium were identified
and their BGC was confirmed through heterologous expression
(Parkinson et al. 2018). This approach was also used by McClure
et al. to link the rimosamide family of natural products to their
corresponding BGCs (McClure et al. 2016).

Hybrid approaches

Even though we have described two distinct approaches, they
are not mutually exclusive. Clustering BGCs can be used in con-
junction with previously established links to infer the product
from the known link to the other BGCs in the cluster (Nguyen
et al. 2013). This can also be done with databases of known BGCs,
such as MIBiG, to determine which BGCs are likely to produce
already known compounds (Helfrich et al. 2018). Clustering can
therefore complement the matching of BGCs and metabolites
based on predicted spectral features.

Similarly, the mutual strain information between a cluster
of BGCs and a metabolite is not enough on its own to estab-
lish a correspondence between the two, especially for novel sec-
ondary metabolites. Instead, the strain content has been used to
prioritise the potential links for further verification. This verifi-
cation has, for instance, taken the form of predictions of com-
mon structural elements of the products. These have then been
searched for in the metabolomic data (Parkinson et al. 2018). For
example, the creation of knockout strains was used to verify the
linking of macrobrevin (15) to its BGC, or the correspondence of
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parts of the BGCs with known parts of the pathway for the prod-
uct from other organisms (Helfrich et al. 2018). An example of the
last approach is the discovery of indolmycin (16) (Maansson et al.
2016), where publicly available databases and machine learning
were used to create an integrated mining approach for linking
gene clusters, biosynthetic pathways and secondary metabolites
for 13 closely related strains of Pseudoaltreomonas luteoviolacea.
In these strains, close to 10% of the total genes encode for sec-
ondary metabolites. This percentage is considerably higher com-
pared to studies conducted on other Pseudoaltreomonas strains
(Médigue et al. 2005; Thomas et al. 2008) and is corroborated by
the high degree of chemical complexity reported in Maansson
et al. 2016 as only 2% of the molecular features were shared
between the investigated strains. Indeed, novel analogues of
thiomarinols were detected in the molecular network of strains
that were characterised as biosynthetically diverse.

VALIDATION OF LINKS

In this section, we focus on approaches to experimentally val-
idate links between a BGC and a secondary metabolite using
synthetic biology techniques, such as genetic manipulation of
BGCs. One of the most common approaches to validate the
link between BGCs and metabolite is heterologous expression,
the experimental details of which are outside the scope of this
review. The reader is referred to Huo et al. for a detailed descrip-
tion of heterologous expression of bacterial secondary metabo-
lite pathways (Huo et al. 2019).

The advent of new methods such as CRISPR/Cas9-based edit-
ing (Tao et al. 2018), λ-red mediated recombination (Gust et al.
2003), overexpression of positive regulators (Bergmann et al.
2010) and promoter engineering (Myronovskyi and Luzhetskyy
2016) have recently been applied to GC-rich actinomycetes. For
instance, Gomez-Escribano et al. engineered S. coelicolor M145
strains specifically for the heterologous expression of BGCs to
simplify the metabolite profiles and eliminate antimicrobial
activity. This was achieved by deleting the actinorhodin, prodig-
inine, CPK and CDA BGCs and adding point mutations into the
rpoB and rpsL genes to increase the production of secondary
metabolites. The point mutations in rpoB and rpsL increased the
production of chloramphenicol and congocidine by 40- and 30-
fold, respectively, therefore validating the BGC-metabolite link
(Gomez-Escribano and Bibb 2011). In another example, genome
mining was recently used to confirm the presence of a lasso
peptide BGC in the genome of a marine Streptomyces sp. SCSIO
ZS0098 strain that was known to produce the antimicrobial type
I lasso peptide aborycin. In this study, the utility of strain engi-
neering was used to validate this link through the heterologous
expression of the candidate aborycin BGC in S. coelicolor M1152
(Shao et al. 2019).

Genetic manipulations can also be applied in combina-
tion with genome mining to induce metabolite production. For
example, genome mining of a marine Streptomyces strain pre-
viously known to produce anthracenes and xiamycin A also
revealed an ansamycin BGC. By removing the anthracenes and
xiamycin A BGCs, the mutant strain was found to produce two
new napthoquinone macrolides, olimyicn A and B (Maansson
et al. 2016; Sun et al. 2018). A conserved set of five regulatory
genes previously characterised by Sidda et al. were used as a
query to both search and identify atypical BGCs in Streptomyces
sclerotialus NRRL ISP-5269 (Sidda et al. 2014; Alberti et al. 2019).
This approach was then used to identify an atypical scl BGC

which was transferred and heterologously expressed in Strep-
tomyces albus, resulting in the production of scleric acid, a sec-
ondary metabolite with moderate activity against Mycobacterium
tuberculosis and inhibitory activity on the cancer-associated
enzyme NNMT (Alberti et al. 2019). An additional example of
genome mining combined with heterologous expression and
chemical analysis, was a study of the fungal strains Arthrinium
sp. NF2194 and Nectria sp. Z14-w, which resulted in the isolation
of eight new meroterpenoids, two of which exhibited immuno-
suppressive bioactivity (Zhang et al. 2018).

CURRENT CHALLENGES

While genome mining and the application of genomic tech-
niques have hugely benefited the genome-led secondary
metabolite discovery pipeline, there are still important chal-
lenges that need to be addressed in order to maximise the poten-
tial that these approaches offer. Arguably, the bottleneck in dis-
covery is our narrow understanding of the total biosynthetic and
chemical space of microbial secondary metabolites. While pre-
diction pipelines like SMURF (Khaldi et al. 2010) and antiSMASH
(Medema et al. 2011; Blin et al. 2017) greatly facilitate the char-
acterisation of BGCs, our knowledge of secondary metabolites is
impeded as a result of up to 90% of BGCs being cryptic or silent
(Abdelmohsen et al. 2015; Rutledge and Challis 2015; Baltz 2017;
Machado, Tuttle and Jensen 2017). The lack of global transcrip-
tome and translation data therefore makes it difficult to distin-
guish between BGCs that are transcriptionally silent and those
that are actively transcribed but lack a link with their products
(Jeong et al. 2016). A recent comparative transcriptomics study
focused on four Salinispora strains to assess the effect of gene
expression in the production of secondary metabolites. Only 13
out of the 49 BGCs were previously linked to their products,
whereas the remaining were considered cryptic gene clusters.
However, global transcriptome analyses at exponential and sta-
tionary phase revealed that more than half of the BGCs were in
fact expressed (Amos et al. 2017). Further knowledge of protein
translation will enable greater understanding of transcription
levels and metabolite detection.

Another issue commonly encountered in secondary metabo-
lites research is the lack of metabolite detection due to extrac-
tion constraints or the analytical technique limitations. For
instance, studies have demonstrated the impact of extrac-
tion solvent on the detection of metabolites (Floros et al.
2016; Crüsemann et al. 2017). Although advances in instru-
ment sensitivity (mass spectrometry and NMR spectroscopy)
could arguably remedy problems of detection (Bouslimani et al.
2014), the use of limited experimental conditions can greatly
impact the number and diversity of metabolites detected. These
include, for example, culture conditions, media composition,
growth stage and extraction solvent (Romano et al. 2018). If not
taken into consideration, these variables could undermine the
biosynthetic potential of the studied organism, complicating the
linking process further.

The high rediscovery rate of molecules is another setback
commonly encountered in secondary metabolite research. The
efficient prioritisation of strains and extracts using combined
comparative genomic and metabolomic approaches has proven
to be a useful strategy to avoid this. For example, using an inte-
grated approach of combining metabolomic and genomic tech-
niques, Ong and co-workers identified novel metabolites with
anti-quorum sensing activity from five bacterial strains isolated
from subtidal marine samples (Ong et al. 2019). Their work is a
good example of the application of molecular networking-based
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dereplication in the discovery of secondary metabolites. Effec-
tive dereplication greatly relies on the availability of compre-
hensive, curated, chemical databases and several commercially
available databases to this effect are already in place, including
AntiBase (Laatsch 2017), Dictionary of Natural Products (Buck-
ingham 1994) and MarinLit (‘MarinLit’). However, data analysis
using this approach is often complex and manual. The recent
development of the Global Natural Products Social Molecular
Networking (GNPS) platform represents a step-change that facil-
itates community-driven data curation, enabling open access
analysis and sharing of MS/MS spectra (Wang et al. 2016). The
expansion of such data sets will greatly facilitate our under-
standing of chemical space.

FUTURE DIRECTIONS AND CONCLUDING
REMARKS

Currently, researchers are biased towards the study of puta-
tive BGCs that encode variants of already known compounds or
biosynthetic pathways, consequently biasing discovery towards
analogues of known natural products. Efforts to overcome this
include a trend towards the creation of datasets built upon
increasing numbers of strains. Recently, a dataset consisting of
genomic and metabolomic data for 363 bacterial strains was
published and it is likely that more datasets of increasing size
will become available (Navarro-Muñoz et al. 2018). As they do,
the performance of automated linking approaches will improve.

Data sets are also likely to increase in terms of the data
modalities they cover. Already, large datasets connecting bioac-
tivity with genomics exist. For example, a recently published
study linked genomic data for 224 bacterial strains (found on
the leaves of Arabidopsis plants) to bioactivity data for the same
strains (Helfrich et al. 2018). As high-throughput bioactivity
screening becomes standard (Pye et al. 2017), it is likely that data
sets combining metabolomics, genomics and bioactivity will
become available, in turn, motivating the development of new
computational techniques capable of analysing them. Cryptic-
ity of BGCs will always be a challenge in this domain. Transcrip-
tomic analysis can indicate activity of BGCs (Amos et al. 2017),
and the coupling of transcriptomic data with metabolomics,
genomics and bioactivity is now possible. This would be par-
ticularly powerful when coupled with data generated using the
OSMAC approach.

In conclusion, as data sets increase in strain coverage
and modalities, increasingly advanced bioinformatics tools are
required for their analysis. We believe that modern comput-
ing techniques, such as machine learning and artificial intelli-
gence, have a key role to play in elucidating the links between
genomes, transcriptomes, metabolomes and phenotypes. Com-
putational tools to date have largely focused on modular sec-
ondary metabolites (e.g. NRPS and RIPPs), reflecting the rela-
tively repetitive nature of their biosynthesis. The creation and
continued growth of ground-truth data sets such as MiBIG
(Medema et al. 2015) provides the necessary infrastructure
for the development of tools based upon recent advances in
machine learning, that are able to learn mappings between
genomic information and molecular structure (as observed in
mass spectrometry data). Current research is biased towards
areas of the BGC space for which much is known about biosyn-
thesis. Machine learning tools may be able to uncover pat-
terns that help us illuminate larger, unknown areas of both the
biosynthetic and chemical space.
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