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Abstract

A strategy for the installation of small alkyl fragments onto pharmaceutically relevant aliphatic 

structures has been established via metallaphotoredox catalysis. Herein, we report that 

tris(trimethylsilyl)silanol can be employed as an effective halogen abstraction reagent that, in 

combination with photoredox and nickel catalysis, allows a generic approach to Csp
3─Csp

3 cross-

electrophile coupling. In this study, we demonstrate that a variety of aliphatic drug-like groups can 

be successfully coupled with a number of commercially available small alkyl electrophiles, 

including methyl tosylate and strained cyclic alkyl bromides. Moreover, the union of two 

secondary aliphatic carbon centers, a long-standing challenge for organic molecule construction, 

has been accomplished with a wide array of structural formats. Last, this technology can be 

selectively merged with Csp
2─Csp

3 aryl–alkyl couplings to build drug-like systems in a highly 

modular fashion.

Recently, it has been reported that the clinical success of small molecule therapeutics can be 

correlated with increasing levels of Csp
3 incorporation within the carbon framework of 

medicinal agents.1 In this regard, small alkyl moieties, and in particular methyl groups, have 

proven to be of significant value in medicinal chemistry due to their capacity to induce 

conformational constraints on aliphatic ring systems while decreasing the available sites for 

P450 metabolism.2 This was demonstrated in the case of the drug Suvorexant, in which 

installation of the aliphatic C-7 methyl group led to improved potency and pharmacokinetic 

properties (Scheme 1).3 As such, new methods for the modular installation of small alkyl 

groups are highly desirable, and the pioneering work of Knochel,4 Fu,5 and others6,7 has 

established that the heterocoupling of Csp
3 centers can be accomplished using 

organometallic alkyl nucleophiles. However, strategies for the reductive cross-coupling of 

two alkyl electrophiles have been slower to develop,8,9 and general methods for the pairing 

of two secondary alkyl centers remain extremely rare.10,11
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Metallaphotoredox catalysis has become a prominent synthetic strategy in medicinal 

chemistry for the coupling of complex molecular fragments via C─C, C─N, C─S, and 

C─O bond formation.12,13 In 2016, our laboratory reported a novel metallaphotoredox 

pathway to achieve the reductive cross-coupling of aromatic Csp
2-halides with aliphatic 

Csp
3-bromides via the catalytic production and application of silyl radicals in combination 

with nickel catalysis.14 We recently questioned whether it would be possible to employ the 

same halogen abstraction mechanism to achieve selective Csp
3─Csp

3 cross-coupling 

between two discrete alkyl bromides, a pathway that might allow the modular installation of 

small alkyl groups onto complex drug-like architectures. Among a number of objectives, we 

hoped to achieve the union of two secondary aliphatic carbon centers, a long-standing 

challenge for all areas of organic molecule construction (total synthesis, medicinal, process 

chemistry, etc.),10 given the associated issues involving oxidative addition of hindered alkyl–

nickel or alkyl–palladium species into secondary aliphatic Csp
3-halide bonds. In particular, 

we hoped that a halogen abstraction/radical-nickel recombination mechanism might bypass 

this oxidative addition problem, thereby rendering a novel cross-coupling pathway for the 

construction of Csp
3─Csp

3 architectures. As an important design criterion, we recognized 

that the use of alkyl halides for both reaction partners would remove the requirement for 

substrate prefunctionalization (e.g., as Grignard, organozinc, or borate salts), thereby 

reducing operational complexity while expanding the scope of available structural 

fragments. Furthermore, the reduction in step count would allow for streamlined synthetic 

sequences and decreased costs.

On the basis of recent work from our lab involving (i) nickel catalyzed aryl-alkylation14 and 

(ii) copper-catalyzed trifluoromethylation,15 we were confident that reductive coupling of 

two alkyl halide partners should be possible using tris-(trimethylsilyl)silane or the 

corresponding silanol in combination with nickel and photoredox catalysis. As shown in 

Scheme 2, we envisioned that visible-light excitation of the Ir(III) photocatalyst 

Ir[dF(CF3)ppy]2(dtbbpy)PF6 (1) would generate the long-lived (τ = 2.3 μs)16 excited-state 

*IrIII complex 2. This species is a powerful single-electron oxidant (E1/2
red [*IrIII/IrII] = 

+1.21 V vs SCE in CH3CN),16 and we presumed it would undergo reduction by the 

silanolate resulting from deprotonation of supersilanol 3 to furnish the reduced Ir(II) catalyst 

4.15 The resultant silyloxy-centered radical is known to undergo bond isomerization to 

produce silyl radical 5,15 which can rapidly17 participate in halogen atom abstraction with 

alkyl bromides such as 6 to furnish the aliphatic radical 7. At the same time, we anticipated 

that single-electron reduction of (dtbbpy)Ni(II)Cl2 by the electron-rich Ir(II) form of the 

photocatalyst 4 would lead to the requisite dtbbpy-ligated Ni(0) complex 8 (E1/2
red [IrIII/IrII] 

= −1.37 V vs SCE in CH3CN, E1/2
red [NiII/Ni0] = −1.2 V vs SCE in DMF),16,18 a Ni(0) 

complex that can readily intercept radical 7.19 Subsequent oxidative addition of this alkyl–

Ni(I) species 9 into methyl bromide (10), generated in situ from methyl tosylate, would then 

lead to the putative dialkyl-organometallic-Ni(III) species 11, which upon reductive 

elimination would generate the Csp
3–Csp

3 bond within the desired fragment-coupled adduct 

12.20,21 At this stage, both catalytic cycles would converge via SET between the resulting 

Ni(I) species 13 and the reduced iridium photocatalyst 4 to reestablish both Ir(III) complex 1 
and Ni(0) complex 8.16,22 As a key design element, we recognized that the use of excess 

quantities of the small aliphatic coupling partner (e.g., methyl tosylate) would be 
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operationally viable given that a competitive homodimerization pathway would lead mainly 

to volatile byproducts (e.g., ethane), thereby allowing facile removal from the desired 

adduct.

The feasibility of this new approach to Csp
3─Csp

3 cross-electrophile coupling was first 

investigated using a drug-like 3-acylpyridinyl piperidine bromide 14 and methyl tosylate in a 

variety of reaction conditions (see Supporting Information for details). While supersilane 

was found to be optimal in our previous alkyl-arylation studies,14 we observed that this 

halogen abstraction agent was generally ineffective in this new Csp
3─Csp

3 coupling 

protocol, mainly due to predominant formation of the dehalogenated alkane byproduct. To 

overcome this halide-reduction problem, we recognized that the use of supersilanol would 

allow the formation of silyl radicals via a photocatalytic silanolate oxidation/silyl migration 

sequence, thereby avoiding the use of a Si–H based reagent that can participate in a 

deleterious hydrogen atom transfer step with alkyl radical intermediates. During the course 

of reaction optimization, we also found that use of tetrabuty-lammonium bromide as an 

additive provided superior yields of the desired methylation adduct. We attribute this 

observation to the importance of rapidly converting methyl tosylate to methyl bromide in 

situ. Control experiments revealed that excluding light, nickel, or photocatalyst resulted in 

no product formation (see Supporting Information for details).

With optimal conditions in hand, we next evaluated the scope of this new Csp
3─Csp

3 

methylation protocol using a wide array of pharmaceutically relevant aliphatic structures. As 

shown in Table 1, the transformation is effective for heterocyclic bromides such as 

substituted piperidine (15–17, 70–73% yield) and tetrahydropyran (THP) (18, 70% yield) 

ring systems, both of which are common motifs within medicinal chemistry.23 Furthermore, 

functionalized cyclohexane rings are also competent in this reaction manifold, providing the 

corresponding methyl-bearing adducts in good yield (19 and 20, 63 and 77% yield, 

respectively). Pyrrolidine, a privileged pharmacophore, can also be alkylated efficiently 

using this catalytic system (21, 71% yield). Notably, in the case of an indane core, an 

adjacent protected alcohol is readily tolerated, giving the desired product with excellent 

diastereoselectivity (22, 42% yield, >20:1 d.r.). Examining more strained systems, we were 

delighted to find that a number of four-membered rings readily undergo methyl coupling in 

this transformation, including spirocyclic cyclobutanes and azetidine systems (23–26, 49–

68% yield). In the context of acyclic systems, we found that both secondary and primary 

centers gave the desired products in good yield (27 and 28, 62 and 70% yield, respectively). 

Surprisingly, anilines such as 16, 25, and 28 are well-tolerated in this protocol, despite their 

established capacity for amine oxidation under photocatalytic conditions.24

Having examined the scope of Csp
3-methylation, we next turned our attention to the capacity 

of this protocol to introduce a range of small alkyl groups onto the drug-like 3-acylpyridinyl 

piperidine bromide 14 (Table 2). From the outset, we were pleased to find that ethyl and 

other primary long-chain aliphatic bromides that incorporate esters, free alcohols, alkenes, 

epoxides, and basic pyridine moieties could be readily implemented in good to excellent 

efficiency (29–34, 44–78% yield). Given the importance of small cyclic systems in 

pharmaceutical synthesis, we were delighted to find that strained cyclic alkanes can be 

readily employed to forge the desired Csp
3─Csp

3 bond between two aliphatic ring systems 
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(35 and 36, 40 and 67% yield, respectively). Moreover, functionalized cyclobutanes and 

four-membered heterocycles can be introduced efficiently, allowing for modular access to a 

variety of strained Csp
3 rich bicyclic motifs (37–40, 50–71% yield). Notably, larger ring 

systems can be readily installed using this new coupling protocol, including cyclopentyl, 

piperidinyl, and THP fragments (41–43, 45–57% yield). Perhaps most important, we were 

able to couple an isopropyl group (44, 42% yield) without the formation of isomeric alkyl 

products. As a critical aspect of this experiment, the use of a tridentate PyBOX (L1)-ligated 

Ni(II) catalyst successfully prevented metal–alkyl bond isomerization, which frequently 

leads to the predominant formation of n-propylated adducts in palladium and nickel 

catalyzed cross-couplings.25 Indeed, given the difficulty of coupling two secondary aliphatic 

centers, we were pleased to observe that this catalytic protocol can be extended to a range of 

methine-bearing halides of varying structural complexity (35–44). As further demonstrated 

in Table 3, the reaction was generically successful for strained ring systems, such as 

azetidine and oxetane (45 and 46, 50 and 60% yield, respectively), as well as for larger six- 

and five-membered rings (47–49, 56–58% yield). Remarkably, coupling of two acyclic 

secondary centers was also possible using this technology (50, 62% yield). We believe that 

these results demonstrate the first broadly general approach to crosselectrophile coupling of 

two secondary aliphatic carbon centers.

Finally, we sought to investigate the capacity to iteratively build drug-like molecular 

complexity in a highly expeditious yet modular fashion via the combination of aryl–alkyl 

and alkyl–alkyl cross-electrophile technologies. To this end, we prepared compound 51, 

which contains both an aromatic and an aliphatic bromide moiety (Scheme 3). Using the 

conditions previously published by our lab for metallaphotocatalytic halogen abstraction 

Csp
2─Csp

3 coupling,14 it was possible to selectively and efficiently introduce a pyrrolidine 

ring onto the aromatic ring (compound 52, 61% yield), while leaving the aliphatic bromide 

group intact. Subjection of the resulting alkyl bromide 52 and 4-bromotetrahydropyran to 

the protocol outlined herein, resulted in selective Csp
3─Csp

3 coupling to give the drug-like 

adduct 53 in useful yield. These results further demonstrate the exquisite functional group 

tolerance and chemoselectivity of photocatalytic cross-electrophile coupling as well as its 

potential for application to complex target synthesis.
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Scheme 1. 
Small Alkyl Group Installation via Halide Coupling
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Scheme 2. 
Plausible Mechanism for Reductive Methylation

Smith et al. Page 9

J Am Chem Soc. Author manuscript; available in PMC 2019 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 3. 
Iterative Coupling Sequence
a Only a small amount (<5%) of homodimerization of the limiting reagent was observed. 1:1 

d.r.
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Table 3.

Scope for Coupling of Secondary Aliphatic Centers
a

a
Yields isolated unless otherwise noted. Only a small amount (<5%) of homodimerization of the limiting reagent was observed. Reactions 

performed with 2–5 equiv small halide, 3 equiv Na2CO3 and 2–3 equiv supersilanol. See SI for experimental details.

b
GC yields.
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