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Summary:

Analyzing the spatial organization of molecules in cells and tissues is a cornerstone of biological 

research and clinical practice. However, despite enormous progress in molecular profiling of 

cellular constituents, spatially mapping them remains a disjointed and specialized machinery-

intensive process, relying on either light microscopy or direct physical registration. Here, we 

demonstrate DNA microscopy, a distinct imaging modality for scalable, optics-free mapping of 

relative biomolecule positions. In DNA microscopy of transcripts, transcript molecules are tagged 

in situ with randomized nucleotides, labeling each molecule uniquely. A second in situ reaction 

then amplifies the tagged molecules, concatenates the resulting copies, and adds new randomized 

nucleotides to uniquely label each concatenation event. An algorithm decodes molecular 

proximities from these concatenated sequences, and infers physical images of the original 

transcripts at cellular resolution with precise sequence information. Because its imaging power 

derives entirely from diffusive molecular dynamics, DNA microscopy constitutes a chemically 

encoded microscopy system.
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In Brief

DNA microscopy is an optics-free imaging method based on chemical reactions and a 

computational algorithm to infer spatial organization of transcripts while simultaneously 

preserving full sequence information.

Graphical Abstract
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Introduction

The spatial organization of cells with unique gene expression patterns within tissues is 

essential to their function and is at the foundation of differentiation, specialization, and 

physiology in higher organisms. For example, neurons of the central nervous system express 

protocadherins and neurexins in highly diverse spatial patterns across neural tissue that 

govern cells’ intrinsic states, morphology, and synaptic connectivity (Lefebvre et al., 2012; 

Schreiner et al., 2014). Spatial co-localization of B- and T-lymphocytes in the immune 

system that express diverse immune receptors – genetically distinct due to somatic mutations 

– permits signaling feedback critical for immune clonal selection (Victora and Nussenzweig, 

2012). In the gut, epithelial, immune, endocrine, and neural cells are spatially distributed in 
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specific ways that impact how we sense and respond to the environment, with implications 

for autoimmune disease, food allergies, and cancer. And in the tissue context of disease, cell 

microenvironments may be critical for tumorigenesis (Herishanu et al., 2011; Joyce and 

Fearon, 2015), immune surveillance and dysfunction, invasion, and metastasis. In tumors in 

particular, genes with different mutations are expressed in distinct cells, impacting 

tumorigenesis and leading to neoantigens presented to the immune system (Schumacher and 

Schreiber, 2015).

Although imaging of cells and tissues has been a cornerstone of biology ever since cells 

were discovered under the light microscope centuries ago, advances in microscopy have to 

date largely not incorporated the growing capability to make precise measurements of 

genomic sequences. While microscopy illuminates spatial detail, it does not capture genetic 

information unless it is performed in tandem with separate genetic assays. Conversely, 

genomic and transcriptomic sequencing do not inherently capture spatial details.

One strategy to bridge this gap by spatially quantifying genes of known sequence are 

hybridization methods (Lubeck et al., 2014; Chen et al., 2015; Moffitt et al., 2016). 

However, somatic mutation, stochastic gene splicing, and other forms of single-nucleotide 

variation that is not known a priori play a central role in the function and pathology of 

spatially complex systems (such as the nervous, immune, gastrointestinal and tumor 

examples above). As a result, single-nucleotide sequencing and microscopy must be fully 

integrated to ultimately understand these systems. Recent approaches to do so rely on optical 

readouts that require elaborate experimental systems (Lee et al., 2014), physical registration 

and capture of molecules on grids (Junker et al., 2014; Ståhl et al., 2016), or an assumption 

of similarity among multiple samples so that distinct experiments performed on distinct 

specimens may be correlated (Satija et al., 2015; Achim et al., 2015). These approaches 

closely mirror the two ways in which microscopic images have been acquired to date: either 

(1) detecting electromagnetic radiation (e.g., photons or electrons) that has interacted with or 

been emitted by a sample, or (2) interrogating known locations by physical contact or 

ablation (e.g., dissection).

Here, we propose a distinct third modality for microscopy, which requires neither optics nor 

physical capture from known coordinates, but rather relies on image reconstruction from the 

relative physical proximity of individual molecules (Figure 1) and focuses on obtaining 

precise genetic information at high spatial resolution. This principle, of determining 

coordinates not in relation to an absolute coordinate system but instead in relation to one 

another, has previously been used in other contexts. For example, in the theory of sensor 

localization distances between points are explicitly measured and then their relative 

positions are estimated from these distances (Aspnes et al., 2006). Numerical work has 

further shown that such estimates can be made using sparse and noisy measurements 

(Singer, 2008). Here, we build on and adapt the same theoretical concept of “point-to-point 

communication” through biochemistry to allow position reconstruction from co-localization 

data of biomolecules to demonstrate a novel form of microscopy, called DNA microscopy. 

DNA microscopy reconstructs the positions of molecules from the stochastic output of a 

stand-alone chemical reaction. We confirm that DNA microscopy is able to resolve the 2D 

physical dimensionality of a specimen, and then demonstrate that it is able to accurately 
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reconstruct a multicellular ensemble de novo without optics or any prior knowledge of how 

biological specimens are organized. Finally, we demonstrate the ability of DNA microscopy 

to resolve and segment individual cells for transcriptional analysis.

Results

Principle of DNA microscopy for spatio-genetic imaging

DNA microscopy generates images by first randomly tagging individual DNA or RNA 

molecules with DNA-molecular identifiers. Each deposited DNA-molecular identifier then 

“communicates” with its neighbors through two parallel processes. The first process 

broadcasts amplifying copies of DNA-molecular identifiers to neighbors in its vicinity via 

diffusion. The second process encodes the proximity between the centers of overlapping 

molecular diffusion clouds: DNA-molecular identifiers undergo concatenation if they belong 

to diffusion clouds that overlap. Finally, an algorithm infers from these association rates the 

relative positions of all original molecules.

DNA microscopy is premised on the notion that DNA can function as an imaging medium in 

a manner equivalent to light. In the same way that light microscopy images molecules that 

interact with photons (either due to diffraction or scattering or because these molecules emit 

photons themselves) and encodes these images in the wavelengths and directions of these 

photons, DNA microscopy images molecules that interact with DNA (including DNA, RNA, 

or molecules that have been tagged with either DNA or RNA) and encodes these images in 

the DNA sequence products of a chemical reaction.

With this analogy in mind, we can imagine superposing two distinct physical processes: a 

fluorophore radially emitting photons at a specific fluorescence wavelength, and a DNA 

molecule with a specific sequence undergoing PCR amplification, and its copies diffusing 

radially. Optical microscopes use lenses to ensure that photons hitting a detector or the 

human eye will retain some information regarding their point of origin, based on where they 

hit. However, the “soup” of DNA molecules generated in a DNA microscopy reaction does 

not afford this luxury. We therefore need a different way to distinguish the identities of point 

sources so that all data is encoded into the DNA itself.

To molecularly distinguish point sources we rely on Unique Molecular Identifiers, or UMIs 

(Kinde et al., 2011), consisting of randomized bases that tag a molecule before any copy of 

it has been made (Figure 1A). Because the diversity of UMIs scales exponentially with their 

length, we have high confidence that when one long UMI tags a molecule, no other molecule 

in the rest of that sample has been tagged with that same long UMI. We can now use overlap 

extension PCR to concatenate the diffusing and amplifying copies of these UMIs (with any 

biological DNA sequences they tag simply carried along). The rate at which they 

concatenate will reflect the distance between their points of origin.

However, once we sequence the final DNA products, we are still left with the problem of 

how to quantitatively read out these concatenation rates from DNA sequence alone. Using 

read-abundances belonging to concatenated DNA products carries serious drawbacks. For 

example, trace cross-contamination between samples could easily introduce artifactual UMI-
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UMI associations, and biases in downstream DNA library preparation could heavily distort 

association frequencies. Most serious, however, is PCR chimerization: any ex situ 
amplification of the DNA library would necessarily introduce template-switching at some 

rate that would corrupt the data.

We reasoned that if the overlap extension primers contained randomized bases that did not 

participate in priming themselves, then although each priming event would result in 

replacement of this randomized sequence, each overlap extension event would fix the new 

bases in between the now-concatenated sequences (Figure 1B). The concatenated sequences 

would then carry these randomized bases forward, intact, as they amplified. These bases 

would from then on be a unique record of that individual concatenation event. We called 

these new concatenated randomized sequences Unique Event Identifiers, or UEIs, and used 

them to encode molecular positions into the DNA microscopy reaction.

Experimental assay for DNA microscopy to encode relative positions of molecules in cells

To demonstrate DNA microscopy, we aimed to image transcripts belonging to a mixed 

population of two co-cultured human cell lines, GFP-expressing MDA-MB-231 cells and 

RFP-expressing BT-549 cells. As an initial proof of concept we aimed to recover images that 

appear cell-like and where GFP and RFP transcripts are positioned in mutually-exclusive 

cells, whereas GAPDH and ACTB, expressed in both cell lines, are ubiquitous.

In the first step of the experiment, we tag with Unique Molecular Identifiers (UMIs) cDNA 

synthesized in situ. We designed reaction chambers to both grow cells and perform all 

reactions (Figure S1A–C, STAR Methods). We cultured the cells, and, following fixation 

and permeabilization, synthesized cDNA by reverse transcription from GFP, RFP, GAPDH, 

and ACTB gene transcripts (Tables S1–S2), with primers tagged with 29nt long UMIs 

(Figure 1A, Figure S1D). Notably, we designed the reaction to distinguish two types of 

UMI-tagged cDNA molecules: “beacons”, synthesized from ACTB (chosen as a universally 

expressed gene whose sequence would not be analyzed in later stages), and “targets” 

(everything else). We achieved this distinction between beacon and target amplicons by the 

artificial sequence-adapters assigned to the primers annealing to each.

In the second step of the experiment, we allow beacon-cDNA and target-cDNA molecules, 

along with the UMIs that tag them, to amplify, diffuse, and concatenate in situ in a manner 

that generates a new UEI distinct for each concatenation event (Figure 1B and S1D) through 

overlap-extension PCR (Turchaninova et al., 2013). By design, target amplicon-products will 

only concatenate to beacon amplicon-products, thereby preventing self-reaction. The middle 

of each overlap-extension primer includes 10 randomized nucleotides, such that each new 

concatenation event generates a new 20-nucleotide UEI. Paired-end sequencing of the final 

concatenated products generates reads each containing a beacon UMI, a target UMI, and a 

UEI associating them (Figure 1C).

The key to DNA microscopy is that because UEI formation is a second order reaction 

involving two UMI-tagged PCR amplicons, UEI counts are driven by the co-localization of 

UMI concentrations, and thus contain information on the proximity between the physical 

points at which each UMI began to amplify (Figure 1D). In particular, as UMI-tagged cDNA 
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amplifies and diffuses in the form of clouds of clonal sequences that overlap to varying 

extents, the degree of overlap (Figure 1D, circle intersection) – and thus the probability of 

concatenation and UEI formation – depends on the proximity of the original (un-amplified) 

cDNA molecules (Figure 1D, small dark circles). UMI-diffusion clouds with greater overlap 

generate more UEIs/concatemers, whereas those clouds with less overlap generate fewer 

UEIs/concatemers. Although individual diffusion clouds may differ in form, their collective 

statistical properties will nevertheless allow for original UMI coordinates to be inferred by 

consensus, given the constraint that positions must occupy the low (two- or three-) 

dimensionality of physical space.

To obtain reliable estimates of UEIs between every pair of UMIs, we must address sources 

of noise, such as sequencing error. We cluster beacon-UMIs, target-UMIs, and UEIs by 

separately identifying “peaks” in read-abundances using a log-linear time clustering 

algorithm (STAR Methods, Figure S2A) in a manner analogous to watershed image 

segmentation, but in the space of sequences. For target UMIs, this allows us to aggregate 

biological gene sequences originating from single target molecules and achieve low error 

rates (0.1%−0.3%/bp across ~100 bp) by taking a consensus of the associated reads (Figure 

S2B). We then assign each identified UEI a single consensus beacon-UMI/target-UMI pair 

based on read-number plurality, and prune the data (by eliminating UMIs associating with 

only one UEI) to form a sparse matrix whose elements contain integer counts of UEIs 

pairing each beacon-UMI (matrix rows) and each target-UMI (matrix columns) (Figure 1E, 

STAR Methods). The resulting UEI matrices, containing on the order of 105 −106 total 

UMIs among which we estimate <1/1000 false-positives, have on average ~10 UEIs per 

UMI (Tables S3, S4, Figure S3), and form the data sets upon which we built an engine for 

image inference.

A two-part computational strategy to infer DNA microscopy images

Next, we developed an algorithmic approach to use UEI prevalence to infer UMI proximity 

and reconstruct an image of the original sample and its transcripts (Figure 1F). We follow a 

two-step approach. We first partitioned the data into smaller subsets to gauge how well local 

information between UMIs had been encoded into the UEI matrix. This entailed applying 

spectral graph theory (in a manner agnostic to the physics of the experiment) to the problem 

of cutting the data matrix into highly connected sub-matrices, allowing us to both analyze 

and visualize local structure and dimensionality. We then devise a more general solution to 

achieve DNA microscopy inference over large length scales. To do this, we constructed a 

physical model that used our preliminary linear analysis of the data matrix to constrain a 

non-linear maximization of the probability of observing the DNA microscopy data given 

underlying molecular coordinates.

A “zoom” function infers local spatial encodings from UEI matrices

We first appreciate that if the UEI matrix had successfully encoded relative UMI 

coordinates, these coordinates would be reflected in the rows and columns of the matrix. The 

matrix rows and columns would span a space having a dimensionality scaling with the total 

number of UMIs. However, if they encoded UMI coordinates within a sample, they would 
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collectively sweep out a curve of far smaller dimensionality, only equal to the physical 

dimensionality of the sample.

As a toy example, consider a comparison between three systems in which a single target 

UMI (“2”) is in each of three positions in one dimension relative to two beacon UMIs (“1” 

and “3”) with which it forms UEIs (Figure 2A). The target UMI begins closest to one of the 

two beacon UMIs, and as a result, its diffusion cloud overlaps most with that beacon UMI’s 

diffusion cloud. Thus, its reaction rate with that beacon UMI is relatively higher (Figure 2B) 

and results in a correspondingly larger number of UEIs (Figure 2C). If the target UMI is 

further away, the balance of overlaps between diffusion clouds changes. Indeed, plotting 

expected UEI matrix elements for the target UMI on two axes, we see that its trajectory 

remains one-dimensional (Figure 2D).

Extending to a large population of target UMIs across many positions, these new target 

UMIs, just like the target UMI in the toy example, also interact with the same two beacon 

UMIs. Therefore, we can also plot them on the same two axes, and wherever they land, we 

could expect them to scatter around the same one-dimensional manifold followed by the 

target UMI of the original example. It is important to note that although the variation of 

points across these axes may in fact all be equivalent, inspection of their axial projections 

allows visualization of their underlying dimensionality.

In any real data set, UEI count is affected not only by position but also by additional 

variables (such as amplification biases and diffusion rates), each potentially adding to the 

data’s total dimensionality. However, these sources of variation would be suppressed along 
the principal dimensions of a UEI matrix so long as their effect on neighboring UMIs is not 

systematically correlated.

To identify the principal dimensions of the UEI matrix, we can analyze the graph of UMI 

vertices and weighted UEI count edges by constructing a Graph Laplacian matrix from the 

raw UEI matrix (with its diagonal elements set so that each row sums to zero). The Graph 

Laplacian eigenvectors with the smallest-magnitude eigenvalues would visualize the most 

systematic forms of variation in the DNA microscopy data (STAR Methods) and illuminate 

the low-dimensional manifold, if any, it occupied. However, even a low-dimensional 

manifold could be folded in complex ways in the high-dimensional space formed by a full 

UEI matrix, making it difficult to analyze the manifold’s shape over large distances, 

especially in areas of the manifold that are sparsely populated. Analyzing the UEI matrix 

manifold therefore first requires analyzing UMI subsets corresponding to local regions of the 

original sample. We return to global relations in subsequent sections.

To perform this local investigation, we developed a “zoom” function for DNA microscopy 

data by applying a recursive graph-cut algorithm, identifying putative cuts by using the 

spectral approximation to the cut of minimum-conductance (Shi and Malik, 2000) (STAR 

Methods). This criterion separates sub-sets of UMIs exhibiting small UEI-flux relative to the 

number of UMIs they comprised. The algorithm first finds the sparsest cut to the entire data 

set, then the sparsest cuts to the resulting halves, and so on until a further sparse cut cannot 

be made (STAR Methods). We then visualize each of these sub-regions by the eigenvectors 
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corresponding to the smallest-magnitude eigenvalues of their UEI-Graph Laplacian sub-

matrix.

Successful inference of local structure identifies cell-like structures with specific marker 
expression

Strikingly, and consistent with our theoretical reasoning, although the UMIs in these sub-

sets fully spanned at least all three eigenvector dimensions, the manifolds swept out by the 

UMIs appeared only two-dimensional when represented in three-dimensional scatter plots 

(Figure 2E–H). We further quantified the UEI data manifold’s local dimensionality by 

performing principal component analysis (PCA) on the spread of UMIs forming UEIs with 

each individual UMI (Figure 2I,J, STAR Methods). When highly connected UMIs 

(associating with at least 100 other UMIs) were analyzed individually over the first 100 

eigenvectors of the UEI-Graph Laplacian matrix, their covariance matrix eigenvalues 

decayed quickly. However, when their covariance matrices were averaged, the eigenvalues of 

the resulting matrix decayed slowly. These observations confirmed a low dimensionality of 

the UEI data manifold, consistent with neighborhoods of UMIs with low spatial 

dimensionality having been successfully encoded into the UEI data matrix.

The two-dimensional manifolds exhibited clusters of UMIs with indications of cellular 

resolution, by recapitulating the genetic composition of the cell lines used in the experiment: 

a pervasive distribution of the constitutively expressed ACTB and GAPDH sequences, but a 

mutual exclusion between GFP and RFP (Figure 2E–H). Even on average across the data 

set, UEIs formed 3 to 5 times more frequently via an intermediary beacon UMI between two 

GFP or RFP target UMIs and GAPDH target UMIs than between GFP and RFP (Figure 

2K,L). Thus, an observer unaware of the spatial dimensionality of the specimen or that cells 

even existed could discover both by analyzing the DNA microscopy sequencing data alone. 

Together, these two observations confirmed both cellular and local supra-cellular resolution 

in DNA microscopy.

Inference of global molecular positions from DNA microscopy data

Next, we expanded our inference beyond the local scope of a few thousands of proximal 

transcript molecules, by developing a framework for evaluating the likelihood of a global 

position-estimate solution.

We reasoned that each UEI’s occurrence is analogous to a “coin-toss” experiment performed 

on every UMI-pair, with each pair’s “occurrence” probability proportional to the 

corresponding reaction rate (Figure 3A, STAR Methods). We modeled the reaction rate 

between a beacon UMI and a target UMI as an isotropic Gaussian function of the distance 

separating them. Because, like in a coin-toss experiment, the probability of observing a 

given data set is contingent on the probabilities of all possible outcomes together, our 

diffusion model of a Gaussian “point-spread function” imposed constraints on the 

probabilities of UMIs in aggregate, not on each UMI individually.

In this probability function, UEIs in DNA microscopy act in the same manner as photons do 

in optical super-resolution localization microscopy (Hell, 2009): both narrow a point-spread 

function governed by a physical length scale (wavelength in the case of light, diffusion 
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distance in the case of DNA) as they accrue by dividing that length scale by the square-root 

of their total number (Figure 3B,C, STAR Methods). In real data sets, UEIs increase 

progressively with increasing read depth, whereas UMIs saturate more quickly (Figure 

3D,E). In this way, read depth in DNA microscopy constitutes a dial to increase the number 

of UEIs per UMI, enhancing an image’s resolution.

Unlike its optical counterpart, however, DNA microscopy resolves a molecule’s position by 

orienting it relative to other molecules, and its uncertainty is therefore a function of these 

relationships. A relationship between two UMIs may come in two forms: those that are 

direct and involve UEIs linking them, and indirect relationships that occur via 

intermediaries. The latter emerges in the structure of the data, but will not strongly influence 

UMI positions if these positions are optimized independently. This may be seen in the 

logarithm of the UEI-count probability function (Figure 3F). This log-probability is the sum 

of two components (Figure 3F, top): (1) a sum of squared-differences between positions, 

weighted by individual UEI counts; and (2) a function of total UEI counts and total expected 

reaction rates (which are themselves functions of UMI positions) across the entire data set. 

In order to still calculate the log-probability as a whole in a way that scales linearly with 

data size, we implemented the Fast Gauss Transform (Greengard and Strain, 1991) (Figure 

S4A,B).

If each UMI’s position is updated independently to maximize this log-probability function, it 

will experience two forces, corresponding to the function’s two added components: the first 

pulls together UMIs that have directly formed UEIs between them, and the second repels all 

UMIs from all other UMIs. The likelihood of the position-solution is maximized when these 

two forces balance. During the maximization’s update-process, the only way in which an 

indirect relationship between UMIs will influence their position-solution is if intermediary 

UMIs that directly form UEIs with them separately have already changed position.

To ensure that large length scale optimization captures these indirect UMI relationships 

encoded in the data, we developed a new maximum likelihood framework, which we called 

spectral maximum likelihood estimation or sMLE, to generate global representations of the 

DNA microscopy data. First, we note that because maximizing the first component of the 

log-probability entails minimizing the magnitude of the sum of squared-differences, it can 

be individually solved by identifying the smallest-magnitude eigenvalue/eigenvector pairs of 

the UEI Graph Laplacian introduced earlier (Figure 3F, bottom, STAR Methods). Each 

eigenvector represents a distinct way in which UMIs can be globally rearranged to suit 

orientation requirements expressed by the sum of squared-differences between local points. 

The eigenvector with the smallest-magnitude eigenvalue represents the best arrangement, the 

second smallest-magnitude eigenvalue the second best, and so on. Critically, these 

eigenvectors are not themselves solutions to the global maximum likelihood problem for a 

DNA microscopy data set: they are local and linear solutions, and will individually exhibit 

all of the distortions observed in Figure 2E–H.

However, we reasoned that because sums of eigenvector solutions to the local linear problem 

would produce solutions that would also satisfy local constraints, sum-coefficients of these 

eigenvectors could act as variables in a larger-scale non-linear likelihood maximization. By 
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seeding a solution with the two eigenvectors corresponding to the smallest-magnitude 

eigenvalues, optimizing their coefficients, then incorporating successive eigenvectors and 

repeating, we could find global solutions that were also well-constrained locally. These 

sMLE solutions showed strong advantages in simple simulations over maximizing the 

likelihood while treating every UMI independently, especially when UEI counts were 

limiting (Figure 3G). This effect remained present even when the simulated the form of the 

diffusion profiles deviated from our Gaussian model (Figure S4C).

DNA microscopy correctly recapitulates optical microscopy data

We next sought to apply the sMLE inference framework to determine whether DNA 

microscopy could resolve supra-cellular coordinates compared to optical microscopy. To this 

end, we constructed reaction chambers with glass slides (Figure S1B,C) and plated GFP- 

and RFP-expressing cells in a highly localized pattern within the chamber (Figure S1C). We 

then imaged GFP- and RFP-expression in cells across the entire area of the reaction chamber 

using an epifluorescence microscope before the DNA microscopy reaction (Figure 4A,B), 

sequenced the resulting DNA library to saturation (Figure 4C), and applied the sMLE 

inference algorithm.

Strikingly, the resulting image recapitulates optical microscopy data without systematic 

distortion (Figure 4D), and recapitulates both the shape of the cell population boundary as 

well as the distribution of GFP- and RFP-expressing cells within it. Importantly, the inferred 

image preserves the correct aspect ratio: the individual axes only needed to be rotated and 

reflected, but did not need to be independently re-scaled. This demonstrated that DNA 

microscopy is capable of generating accurate physical images of cell populations.

Large length scale optimization and the folded manifold problem

We applied DNA microscopy to optimization at larger length scales. Applying sMLE 

inference to the original data from several hundred cells used to generate the original 

eigenvector representations (Figure 2) gave images that reproduced the individual cell 

compositions of the earlier visualizations (Figure 5). These large-scale optimizations were 

also robust to data down-sampling (Figure S5).

However, the reconstructed images exhibited “folding” that indicated how the process of 

projecting large and curved high-dimensional manifolds onto two-dimensional planes was 

vulnerable to distortions. The causes for this “manifold folding” problem are illustrated by 

how low-dimensional manifolds come into being within a high-dimensional UEI data matrix 

(Figure 2A–D). The eigenvector calculation (Figure 3F) involves identifying hyperplanes 

that can be drawn through these low-dimensional manifolds that maximally account for 

variation in the UEI data. It does this in a manner similar to linear regression, balancing the 

advantage of fitting certain parts of the data with the costs of not fitting other parts of the 

data.

This balancing can yield errors in several ways. If a large number of UMIs in one part of the 

data set rotate the top calculated eigenvectors (with the smallest-magnitude eigenvalues) 

away from UMIs in a different part of the data set, then projecting the global data set onto 

these eigenvectors will cause these neglected UMIs to fold on top of one another. This will 
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produce the type of “folding” artifact observed for large scale optimization (Figure 5). If we 

avoid eigenvector calculation entirely and optimize each UMI’s position independently 

(Figure S6A,B) we avoid such defects, but obtain close-packed images, as predicted by 

simulation (Figure 3G), that do not preserve empty space. This highlights the distinct nature 

of DNA microscopy’s imaging capabilities compared to light microscopy’s: while in light 

microscopy density is the key challenge, in DNA microscopy it is sparsity that can be 

challenging.

Cell segmentation can be performed on the UEI matrix based on diffusion distance

We next analyzed the degree to which the UEI matrix could be used to segment cells and 

analyze single cell gene expression. Importantly, up to this point, no step in the process – 

experimental or computational – had knowledge that cells even exist. To perform 

segmentation, we applied the same recursive graph cut algorithm as used earlier (Figure 2E–

H) to generate local eigenvector visualizations of the data. By increasing the conductance-

threshold dictating whether segments of the data should be left intact, we assigned 

transcripts to putative cells (Figure 6A,B, S6C,D), again without regard to transcript identity 

(i.e., GFP vs. RFP). To quantify segmentation quality, we calculated the probability that, 

within each putative cell, the minority fluorescent gene transcript would occur at or lower 

than its current value, given its prevalence in the data set. We found the median p-value 

decayed rapidly, over a range of conductance thresholds, to <10−10, with increased numbers 

of reads and of resolved cells analyzed (Figure 6C,D).

This analysis remained agnostic to inferred molecular positions, and demonstrated that 

modularity within the raw UEI data matrix was sufficient to perform rough segmentation of 

individual cells. In order to observe the degree to which inferred molecular positions could 

help improve cell segmentation, we quantified, for each UEI-connected UMI pair belonging 

to the same spectrally-segmented cell, the fraction of their respective position uncertainties 

that overlapped (STAR Methods). We assigned this UMI overlap-fraction the symbol g, 

which could vary between 0 and 1. We then separated sub-sets of UMIs into distinct cells if 

no pair of UMIs connecting these sets had a value of g of at least a specified threshold. We 

analyzed GFP and RFP sequestration across cells with either the initial position-independent 

segmentation (g=0), or with fraction-overlap threshold g=0.75 or 0.9 (Figure 6E,F) using 

sMLE-inferred UMI coordinates. Increasing the threshold g enhanced the sequestration 

between GFP and RFP transcripts among cells, demonstrating the usefulness of applying 

inferred positions to the task of de novo cell segmentation.

Imaging large numbers of different transcripts in DNA microscopy

To demonstrate that DNA microscopy and its associated cell segmentation could be 

extended to larger numbers of genes, we synthesized cDNA by reverse transcription from up 

to 20 additional genes that have been previously shown to be differentially enriched 

(although not exclusively expressed) in MDA-MB-231 and BT-549 cell lines (Klijn et al., 

2015) (Tables S5, S6, STAR Methods). We performed global image inference (Figure 

S6E,F) and applied our recursive graph-cutting cell segmentation algorithm (Figure S6G,H). 

Rarefaction analysis demonstrated rapid saturation of UMI and UEI counts (Figure S6I,J). 

Pearson correlations between the GFP-fraction per spectrally-segmented cell (out of total 
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transgene transcripts per cell) and fraction of endogenous genes expected to be enriched in 

the GFP cell line (out of total endogenous gene transcripts enriched in either cell line) gave r 
= 0.29–0.41 (n=764 and 265) for two experiments, respectively (p-value<10−6, permutation 

test). This demonstrated that the transgenes labeling these cell types retained information 

about cell type-specific endogenous expression, and that this information could be read out 

from DNA microscopy data. Moreover, because DNA microscopy measure of full amplicon 

sequences, it can readily distinguish transcript variants for example from two different 

alleles, such that each localized transcript is assigned to a specific allele, without the need 

for any a priori known allele-specific primers (Figure S6K,L).

To more directly compare between the DNA microscopy data and bulk RNA profiling data 

for these genes, we classified each putative cell in our data set as MDA-MB-231 if it had 

more GFP UMIs than RFP UMIs, and as BT-549 otherwise, and then compared these cell’s 

profiles to previously measured ones. We found a good correlation between UMI counts and 

read counts among endogenous genes for each putative cell type individually (Spearman 

rs=0.54–0.64, Figure S6M,N), further matching DNA microscopy quantitation with bulk 

RNA-seq data. The data further provided the opportunity to analyze the contribution of gene 

insert size to average UEI formation distance. In the context of the DNA microscopy 

experiment and over the range of gene insert sizes measured (200–300 bp), we observed this 

effect to be minimal (Figure S6O–R).

Discussion

The fundamental advance of DNA microscopy is to physically image biological specimens 

using an unstructured and stand-alone chemical reaction without optical information, 

making it a distinct microscopic imaging modality. We have drawn a close technological 

analogy between DNA microscopy and optical super-resolution microscopy: both take 

advantage of stochastic physics to reduce measurement uncertainty beyond what may seem 

superficially to be a physically imposed limit.

However, the two differ in several fundamental ways and as a result are highly 

complementary. Optical super-resolution microscopy relies on the quantum mechanics of 

fluorescent energy decay. DNA microscopy, however, relies entirely on thermodynamic 

entropy. The moment we tag biomolecules with UMIs in the DNA microscopy protocol, the 

sample gains spatially stratified and chemically distinguishable DNA point sources. This 

tagging process thereby introduces a spatial chemical gradient across the sample that did not 

previously exist. Once these point sources begin to amplify by PCR and diffuse, this spatial 

gradient begins to disappear. This entropic homogenization of the sample is what enables 

different UMI diffusion clouds to interact and UEIs to form. It is therefore this increase in 

the system’s entropy that most directly drives the DNA microscopy reaction to record 

meaningful information about a specimen, including both the UMI coordinates and 

differences in spatial impedances that each UMI diffusion cloud experiences as it evolves.

Detection of these spatial barriers, achieved by comparing UEI formation rates at different 

length scales, is central to cell segmentation in DNA microscopy and offers an important 

distinct tool for analyzing biological morphology. The use of a low-pass spectral filter to 
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perform cellular segmentation from UEI data matrices further clarifies the parallels between 

DNA microscopy and light microscopy, in which low-pass filters permit morphology to be 

inferred from high-variance pixel intensities.

However, one key weakness of DNA microscopy remains the resolution of empty space, and 

future work will be needed to eliminate this obstacle to produce high-quality reconstructions 

of samples over large lengths where there are gaps in molecular density. There are two 

potential solutions to this problem: an experimental one and an analytical one. First, a 

“landmark”-based experimental approach, in which specific DNA sequences are deposited at 

known physical locations to assist in the image reconstruction process, may ultimately prove 

the most cost-effective way to achieve this. Second, better analytical techniques to correct 

for large length scale distortions may prove equally effective, without complicating the 

experiment itself.

DNA microscopy offers a distinct form of optics-free imaging that leverages the large 

economies of scale in DNA sequencing. The technology does not require sacrificing spatial 

resolution for sequence accuracy, since it benefits, rather than suffers, from high signal 

density and it does not hinge on optical resolution of diffraction-limited “spots” in situ. By 

using chemistry itself as its means of image acquisition, DNA microscopy decouples spatial 

resolution from specimen penetration depth (otherwise linked by the properties of 

electromagnetic radiation) and thereby sidesteps a tradeoff imposed by the physics of wave 

propagation. Furthermore, by virtue of capturing an image of a sample through a volumetric 

chemical reaction, DNA microscopy may provide an ideal avenue for three-dimensional 

imaging of intact whole mount specimens.

Because DNA microscopy does not rely on specialized equipment and can be performed in a 

multi-well format with normal lab pipettes, it is highly scalable, such that a large number of 

samples can be processed in parallel. It is fully multiplex-compatible (imaging any PCR 

template) and uses sequencing-depth as a dial to enhance genetic detail, through the accrual 

of UMIs (including those belonging to low-abundance transcripts, in a manner equivalent to 

any traditional sequencing assay) and spatial detail through the accrual of UEIs.

Moreover, because DNA microscopy reads out single-nucleotide variation in the biological 

DNA or RNA sequences it targets, it spatially resolves the astronomically large potential 

variation that exists in somatic mutations, stochastic RNA splicing, RNA editing, and similar 

forms of genetic diversity in cell populations. We demonstrated that DNA microscopy 

achieves this at high sequencing accuracy (99.7–99.9%/bp) over long read lengths (~100 bp) 

(Figures S2 and S6), such that transcripts from different alleles are uniquely positioned, 

without the need to know a priori the extent of genetic diversity. In this way, DNA 

microscopy is a compelling approach to study the tissue organization of cells such as 

lymphocytes, neurons, or mutated cancer cells, where somatic mutation, recombined gene 

segments, and other sources of nucleotide-level variation endow unique molecular identities 

with important physical consequences.

Our development of a chemically encoded microscopy system lays the foundation for new 

theoretical and experimental applications and extensions of the technology. Future 
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experimental and computational enhancements should better resolve large length scales that 

include large spatial gaps between groups of molecules. Furthermore, the UEI, by effectively 

functioning in these experiments as a DNA analog of the photon, has illuminated a wider 

potential role for DNA as a medium for artificial precise biological recordings of chemical 

kinetics. Most directly, the principle of DNA microscopy can be applied beyond the 

transcriptome, for example directly to DNA sequences or to proteins detected with DNA-

labeled antibodies. Looking to the future, a full exploration of individual and idiosyncratic 

biological spatial structures by encoding them into DNA bases, instead of pixels, as 

demonstrated here, may complement existing grid-capture and wave-based imaging methods 

and reveal new and previously inaccessible layers of information.

STAR METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Joshua A. Weinstein (jwein@broadinstitute.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experiments were performed on female human cell lines BT-549-RFP (Cell Biolabs 

AKR-255) and MDA-MB-231-GFP (Cell Biolabs AKR-201). All sub-culturing was 

performed at 37 C under 5% CO2 in growth medium containing 10% FBS (Seradigm 1500), 

1% NEAA (Thermo Fisher 11140), 1% pen-strep (Thermo Fisher 15140) in DMEM 

(Thermo Fisher 10569).

METHOD DETAILS

Bead-plate reaction chambers—Reaction chambers for large cell populations in 

samples 1–2 and 4–5 (Figure S1A) were designed in order to maximally adhere cells while 

providing a thermally robust container for PCR thermo-cycling. 3 mm glass beads (Sigma 

Z265926) were acid washed in 1 M HCl at 50–60 C for 4–5 hours in a glass beaker with 

occasional agitation and then kept sealed in 90% ethanol at room temperature until further 

use. After an initial rinse in acetone, beads were treated for 60 seconds in a 2% solution of 

(3-aminopropyl)triethoxysilane/APTES (Sigma 440140) in acetone. Beads were then rinsed 

4 times in ddH2O, rinsed in isopropanol, and allowed to dry in a laminar flow hood 1 hour in 

a polystyrene petri dish. Dried beads were kept sealed at room temperature until further use.

PDMS (R.S. Hughes RTV615) was mixed at a ratio of 1:10 w/w cross-linker:potting 

reagent, and mixed/degassed 3 minutes at 2000 rpm. Uncured PDMS was immediately 

dispensed into PCR plate wells (Axygen PCR-96-HS-C) at ~ 20 ul in volume. Plates were 

then spun down at 500 xg for 1 minute. Volumes were carefully equalized across wells, and 

the plate was spun down again. APTES-treated glass beads were then placed into each 

PDMS-filled well of the PCR plate using plastic tweezers. The PCR plate was then spun 

down again at 500 ×g for 5 minutes, and beads were checked to ensure a small amount of 

surface was exposed above the PDMS. Bead-plates (illustrated in Figure S1A) were then 

cured at 80 C for 2 hours, and stored sealed at room temperature until further use.
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Glass-slide reaction chambers—Reaction chambers for imaged cells in sample 3 are 

shown in Figure S1B–C. PDMS was mixed at a ratio of 1:10 w/w cross-linker:potting 

reagent as before, and mixed/degassed 3 minutes at 2000 rpm. Uncured PDMS of mass 33–

35 g was immediately dispensed into 10 cm petri dishes and degassed under vacuum for 1 

hour. PDMS was then cured at 80 C for 150 minutes, and holes were punched using Integra 

biopsy punches with diameter 6 mm in the pattern indicated (Figure S1B). Cut PDMS 

blocks were then bonded with oxygen plasma to plain glass slides (VWR 16004–422) and 

cured at 80 C for 3 hours. 100–120 ul of mineral oil (Sigma M5904) was then added to all 

wells and degassed 45 minutes. Slides were then baked at 80 C for 5 hours, then allowed to 

cool, and mineral oil was aspirated. Slides were washed heavily with acetone and 

isopropanol to get rid of residual mineral oil and allowed to dry. 2% APTES solution was 

prepared in acetone as above, and the bottom of the wells were immersed with 35 ul of this 

solution for 60 seconds. Wells were immediately rinsed 5 times with 120 ul water, 2 times 

with isopropanol, allowed to dry, and stored sealed at room temperature until further use.

Cell seeding—Before cell seeding, bead-plates were rinsed twice with 70% EtOH and 

allowed to dry 45 minutes under UV in a cell culture hood. All wells were then washed once 

with 100 ul DPBS (Sigma D8537). A fibronectin solution (Sigma F1141) was then prepared 

at a 1:100 dilution in DPBS and used to cover wells, which were left at room temperature for 

1 hour. BT-549-RFP (Cell Biolabs AKR-255) and MDA-MB-231 -GFP (Cell Biolabs 

AKR-201) cell lines were then resuspended at 5000 cells/ml and 2500 cells/ml, respectively, 

in medium containing 10% FBS (Seradigm 1500), 1% NEAA (Thermo Fisher 11140), 1% 

pen-strep (Thermo Fisher 15140) in DMEM (Thermo Fisher 10569). After aspirating 

fibronectin, 50 ul of this cell suspension (totaling ~250 and 125 cells of the two cell lines, 

respectively, because the latter had a higher growth rate) was then added to the bottom of 

each beat-plate well.

For glass-slide reaction chambers, 85 ul of growth medium (without cells) was added, and 

parafilm was used to cover the top of the reaction chamber assemblage. Holes were cut in 

the middle of cell culture wells (the four interior wells in Fig S1B). 10 ul pipette tips were 

then cut (Fig S1C) and cell suspension was added from the wide end so that it traveled to the 

narrow end, and was held in place by capillary action. Parafilm was then added to wide end 

to create suction that would hold the cell suspension in place after the pipette tip was placed 

into growth medium. Pipette tips containing cell suspension and covered by parafilm were 

then placed vertically into the slide reaction chambers, and cells were allowed to settle. Cells 

in all reaction chambers were then cultured 36–48 hours.

In situ preparation—After culturing, growth medium was removed and cells were 

washed once with 1x PBS (prepared from Thermo Fisher AM9625). Cells were fixed in 4% 

formaldehyde (prepared from Thermo Fisher 28906) in 1×PBS for 15 minutes at room 

temperature. Formaldehyde solution was aspirated and replaced by 3 ×PBS, and left for 10 

minutes. Samples were washed twice for 10 minutes in 1× PBS, and then permeabilized 

with a solution of 0.25% Triton X-100 (Sigma 93443) in 1 × PBS for 10 minutes. Samples 

were then washed twice in 1 × PBS, treated with 0.1 N HCl (VWR BJ318965) for 2–3 
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minutes and then washed an additional three times in 1 × PBS. Samples were then kept at 4 

C during preparation of the reverse transcription reaction.

Immediately before reverse transcription, samples were rinsed once in ddH2O. After 

aspiration, reverse transcription mixes were added containing 400 uM dNTP (Qiagen 

N2050L), Superase-In (Thermo Fisher AM2696) at 1 U/ul, Superscript III (Thermo Fisher 

18080) at 10 U/ul, 1× Superscript III buffer, and 4 uM DTT. RT ultramers containing UMI’s 

(Table S1 for 4- plex, Table S5 for 24-plex) were included at 850 nM (for Samples 1–2) or 

100 nM (for all others) each. These reactions were then incubated 60 C for the 3 minutes, 

followed by 42 C for 1 hour, and then held at 4 C. After aspiration, samples were washed 

three times in 1 ×PBS, and kept at 4 C in the final wash overnight. Samples were rinsed with 

ddH2O, and after aspiration, 40 ul of an enzymatic digestion mix was added including 1× 

exonuclease-I buffer (NEB B0293S) and 1.4 U/ul exonuclease I (NEB M0293). Reactions 

were incubated at 37 C for 40 minutes, and then washed three times in 1 ×PBS.

Amplification mixes were prepared that included 400 nM each of primers OE1a and OE4b, 

300 nM each of primers psbs12s (Lbs12s for 24-plex samples, Table S6) and s8B, 30 nM 

each of LF-primers (Table S2, or for 24-plex amplification, 10 nM each of the sF-primers in 

Table S6), 1.6 mM MgCl2, 200 uM dNTP, 0.5 mg/ml BSA (NEB B9000S), 8% v/v glycerol 

(Thermo Fisher 15514011), Platinum Taq DNA polymerase (Thermo Fisher 10966018), 

1×Platinum Taq PCR buffer, a 4-arm acrylate PEG (Laysan Bio 4ARM-PEG-ACRL-10K) at 

64 ug/ul, and a 2-arm thiol PEG (Laysan Bio SH-PEG-SH-3400) at 44 ug/ul. Solutions were 

prepared in two parts, one containing the 2-arm thiol PEG, BSA, and glycerol, and one 

containing all other components. Following an additional sample rinse with ddH2O and 

aspiration, these two distinct components were mixed by pipetting and immediately added in 

20 ul volumes (as a combined mixture) to the sample to allow for a 10.8% w/v hydrogel to 

polymerize for 1 hour at room temperature. This hydrogel would slow diffusion during the 

amplification reaction (Xu et al., 2016).

Samples were then thermo-cycled at 95 C 2 min, 10×(95 C 30 s, 68 C 1 min), 2× (95 C 30 s, 

55 C 30 s, 68 C 1 min), 16× (95 C 30 s, 60 C 30 s, 68 C 1 min), 68 C 1 min, 4 C. For 24-

plex samples, samples were instead thermo-cycled 95 C 2 min, 1 × (95 C 30 s, 55 C 30 s, 68 

C 1 min), 10 ×(95 C 30 s, 68 C 1 min), 1 × (95 C 30 s, 55 C 30 s, 68 C 1 min), 16 × (95 C 30 

s, 60 C 30 s, 68 C 1 min), 68 C 1 min, 4 C. The initial sets of 10 cycles at high temperature 

in these programs were designed to prime only one end of the cDNA amplicon. This would 

thereby confine initial amplification to increasing molecule copy numbers linearly with time, 

rather than exponentially. It would thereby minimize the effect of potentially stochastic 

amplification start-times. Following in situ amplification, samples were stored at −20 C until 

further use.

Library preparation—Frozen amplified samples were allowed to thaw on ice. A PEG-

dissolution mix containing 460 mM potassium hydroxide (VWR BJ319376), 100 mM 

EDTA (Sigma 03690), and 40 mM DTT (Thermo Fisher P2325) was added directly on top 

of the hydrogel at 4 ul per sample while the sample was still on ice, and left for 2 hours at 

that temperature. Samples were then heated to 72 C 5 minutes, and mixed by pipetting 10 

times. 4 ul of a neutralization solution made by combining 400 ul 1N HCl (Sigma H9892) 
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and 600 ul 1M Tris-HCl pH 7.5 (TekNova T5075), adding this to the samples, and 

immediately mixing the solution again by pipetting. 11.1 ul of a proteinase mix was then 

added that contained 0.35% v/v Tween 20 (Sigma P9416) and 0.35 mg/ml proteinase K 

(NEB P8107) in 10 mM Tris-HCl pH 8 (TekNova T1173). After mixing the samples by 

pipetting, incubation was performed at 50 C for 25 minutes.

55 ul of 10 mM Tris-HCl pH 8 was then added to each sample, and mixed by pipetting. 85 ul 

of the mixture was transferred to a new PCR plate, and 0.65 × volumes of Ampure XP beads 

(Beckman Coulter A63881) were added, mixed by pipetting, and left to incubate at room 

temperature 10 minutes. After twice washing with 70% ethanol, DNA was eluted into 35 ul 

10 mM Tris-HCl pH 8. Product was then diluted 1:2 into a PCR reaction containing final 

concentrations of 300 nM SBS3LC primer, 300 nM rev-ill-214 primer, 3.3 uM each of 

10T-0E-P and 10T-OEc-P interference primers (following on the strategy employed in 

Turchaninova et al 2013 to prevent new concatemers from forming), 0.02 U/ul Platinum Taq 

HiFi DNA polymerase (Thermo Fisher 11304029), 1× Platinum HiFi Buffer, 1.5 mM 

MgS04, and 200 uM dNTP. Reactions were thermo-cycled 95 C 2 min, 20× (95 C 30 s, 68 C 

2 min), 4 C.

Reaction products were Ampure XP-purified just as before, with 0.65 × volumes of Ampure 

XP beads added, and eluted into 40 ul 10 mM Tris-HCl pH 8. As part of a final sequence-

barcoding step, 10 ul of sample eluent was added to a reaction containing 300 nM forill-

sbs3, 300 nM rev-ill-X (with a sample-specific barcode where indicated on the sequence),

0.02 U/ul Platinum Taq HiFi DNA polymerase, 1 × Platinum HiFi Buffer, 2 mM MgS04, 

and 200 uM dNTP. Reactions were then thermo-cycled 95 C 2 min, 5× (95 C 30 s, 58 C 30 

s, 68 C 2 min), and 1–5 × (95 C 30 s, 68 C 2 min), 4 C in order to obtain sufficient DNA 

library for sequencing.

Sequencing—Following a final Ampure XP purification as above, with 0.7 × volumes of 

Ampure XP beads added, NGS libraries were sequenced on an Illumina NextSeq 550 

instrument using manufacturer- standardized protocols for paired-end sequencing. 

Sequenced reads were demultiplexed using the Illumina bcl2fastq pipeline using the 8nt 

sequence-barcode included 5’- adjacent to the SBS12 adapter 5 ‘ -GT 

GACTGGAGTTCAGACGT GT GCT CTTCCGATCT-3 ‘ (Figure S1, Table S2). Paired-end 

reads were sequenced from the SBS3 sequencing primer 5 ‘ -ACACT CTTTCCCT 

ACACGACGCT CTT CCGAT CT-3 ‘ to 103 bp, and from the SBS12 sequencing primer to 

either 57 bp or 151 bp, as indicated in Tables S1 and S5, depending on whether full 

amplicon sequences were intended to be captured (instead of simply a minimum number of 

identifying bases).

UMI/UEI design—The number of N’s to use in a UMI/UEI will depend on the expected 

diversity of molecules and/or events being tagged. Assuming an upper-bound for this 

diversity is known, the question reduces to the so-called “birthday-problem”. Given a 

UMI/UEI length ℓ (with each of ℓ bases having all 4 base possibilities), the probability that 

two randomly-drawn UMIs/UEIs will match (assuming uniform base-distributions) is P0(ℓ) = 

4−ℓ. Similarly, the probability that there will be another UMI/UEI within 1 bp is
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P ≤ 1(𝓁) = 1 + 3𝓁
4𝓁 (1)

because there is 1 way for a randomly drawn sequence to be precisely the sequence of a 

previously drawn sequence, and 3ℓ ways for it to be the same except for exactly 1 mismatch.

The probability that no two UMIs/UEIs out of N will overlap in this way is

Prob(0 overlap ) = 1 − P ≤ 1(𝓁) 1 − 2P ≤ 1(𝓁) ⋯ 1 − (N − 1)P ≤ 1(𝓁)

Define Ncrit(ℓ) through the relation

1/2 = 1 − P ≤ 1(𝓁) 1 − 2P ≤ 1(𝓁) ⋯ 1 − Ncrit(𝓁) − 1 P ≤ 1(𝓁)

Then Ncrit(ℓ) is the maximum diversity of templates beyond which it becomes likely that at 

least 1 pair of UMI/UEI sequences will be within 1 bp of one another. For UMI/UEI 

sequences in which there are ℓ4 bases that are randomly selected across all 4 nucleotides and 

ℓ2 bases that are randomly selected across 2, we can re-write our original expression for 

P≤1(ℓ):

P ≤ 1 𝓁4, 𝓁2 =
1 + 3 × 𝓁4 + 1 × 𝓁2

4
𝓁4 × 2

𝓁2

Since the UMIs used in our experiments (Table S1, Table S5) have ℓ4 = 20 and ℓ2 = 9, this 

gives us Ncrit = 3.3 × 106 for each beacon- and target-UMI data set presented here.

Note that for UEIs, the picture is far simpler. Because a UEI brings together exactly two 

UMIs, two UEIs that are grouped together will get one vote (assigned via plurality). 

Therefore, the less abundant indistinguishable UEI will simply be ignored. From here we 

can see that we can bring UEI diversity far closer to the upper limit of that which is 

physically possible (4ℓ, or in our case ~1012) without substantial problems.

Note furthermore that even for UMIs, things get easier if the target sequences are used to 

separate out UMIs (this is not done for any data-set presented here). For a set of target 

sequence frequencies (p1;p2,…,ps}(normalized to sum to one) of S distinct sequence-types 

labeled by UMIs, the probability that two randomly selected sequences will be the same is 

λ = ∑i pi
2. This measure, also known as Simpson’s diversity index, affects the calculation 

above by multiplying P≤1. The more diverse and distributed the population of sequences, the 

smaller the product λP≤1 and the larger the value of Ncrit(ℓ).

Remark on reagent quality control—Although reagent quality control is crucial for 

every protocol, PEG reagents used for the in situ PCR step are especially sensitive to 
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variation. Basic precautions that must be taken include desiccation with Drierite (Sigma 

238961) or a similar agent in a sealed bag at −20 C. Lot- to-lot variation must be controlled 

by keeping a careful log of the lots used for each experiment. We found that in general this 

variation could be pre-checked by performing routine bulk PCR’s within the hydrogel, and 

comparing the results on a gel. UV/Vis comparison may also be used as a way to compare 

inorganic salt content that may have carried over from manufacture.

QUANTIFICATION AND STATISTICAL ANALYSIS

Read parsing—Reads were parsed by first gating out those with a mean quality score of 

less than 30 on either the forward or reverse read. Forward and reverse reads were then 

checked for inclusion of primer and stagger sequences, depending on the primers used and 

indicated in Tables S1 and S5. Capitalized bases were used to indicate those base positions 

intolerant of a single mismatch, whereas consecutive stretches of lower-case bases were used 

to indicate pieces of sequence that were permitted to contain mismatches up to the indicated 

maximum of 0.06 as a fraction of total. For 4-plex data, 5 bases after gene-specific primer 

sequences were used to gate reads in order to remove unrecognized gene inserts. Read 

counts and fractions retained for each data set are shown in Table S3.

UMI/UEI clustering—In order to identify UEI and UMI sequences in a way that would 

make efficient use of the data available and in a manner specifically accommodating to long-

tailed distributions of PCR error, we developed a simple clustering algorithm, which we here 

on refer to as EASL, or Extended Abundance Single-Linkage. EASL relies on single-

mismatch alignments alone to identify clouds of erroneous sequences that decay in density 

the further in sequence-space they exist from an abundant, putatively correct, original 

sequence.

EASL clustering (Figure S2A) initiates by grouping every UMI/UEI (from each read 

location separately, so that it disregards the rest of that read) within a data set by perfect 

identity. The abundance (by read-count) is assigned to each UMI/UEI sequence. Each pair of 

UMIs/UEIs is compared by un-gapped alignment. This may be performed by local similarity 

hashing in a way that permits full pairwise comparison in O(NL2) time, where N is the 

number of unique UMIs/UEIs, and L is the length of the UMI/UEI sequence. In brief, this 

may be achieved by generating L hash-tables/dictionaries of UMI/UEI sequences, where 

each of these dictionaries has a specific sequence-position removed. For each dictionary, the 

full collection of L — 1 length UMI/UEI sequences generated by removing that 

corresponding position are added to the dictionary. Those found grouped together will be 

those sets related by a single base mismatch.

EASL clustering then proceeds as follows (Figure S2A). UMI/UEI i directionally links to 

UMI/UEI j if and only if the read-abundance of UMI/UEI i is greater than or equal to the 

read- abundance of UMI/UEI j. Read number densities (RNDs) are calculated for each 

UMI/UEI sequence by summing read-abundances belonging both to the sequence itself and 

to all sequences (of equal or lower abundance) it links to. Each UMI/UEI data set is then 

independently sorted by decreasing RND, and accordingly clustered independently, as 

follows.
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The UMI/UEI with the largest RND initiates clustering as the first cluster-seed. All UMIs/

UEIs to which this seed links by the aforementioned criterion are accepted into its cluster. 

The algorithm then proceeds to the UMI/UEI with the next largest RND that has not already 

been assigned a cluster. This UMI/UEI becomes a new cluster seed and all UMIs/UEIs not 

yet assigned to a prior cluster are accepted to that belonging to the new seed. This process 

proceeds among all un-assigned UMIs/UEIs down the RND-sorted list. When no un-

assigned UMIs/UEIs remain, the algorithm terminates.

UEI-UMI pairing—After clustering, UMIs were accepted to further analysis if they 

associated with at least two reads (UMIs and UEIs remaining after this preliminary filtering 

step are represented by the upper-curves in the rarefaction plots in Figures 3–4 and 5). UEI 

clusters were then matched with the beacon UMI/target UMI cluster-pair to which they were 

found to associate with the most reads in the original data. This filtering was intended to 

remove incorrect associations between beacon UMIs and target UMIs caused by, among 

other things, PCR chimera formation during downstream library preparation steps (we 

reasoned that the original UMI-UEI-UMI pairings would have a head-start before late-stage 

amplification - once a new and incorrect UMI-UEI- UMI pairing would form, it would begin 

amplifying from a quantity of 1 molecule later in downstream amplification).

The resulting “consensus” UMI-UEI-UMI pairings were then iteratively filtered by 

eliminating UMIs associating with fewer than 2 UEIs. After the initial set of UMIs were 

removed on account of having too few UEIs, the UEIs they associated with were removed, 

the matrix was re-filtered to exclude UMIs that no longer had at least 2 UEIs, and so on, 

until no remaining UMIs could be found associated with fewer than 2 UEIs. The resulting 

pruned data set is shown in the lower-curves of the rarefaction plots in Figures 3–4 and 5.

The target sequences grouped by UMI-clustering further allowed errors owing to PCR and 

sequencing to be suppressed. Aggregating the votes at every position for the reads grouped 

under a particular target UMI gave quality scores (−10 log10 Prob(incorrect)) that mostly 

stuck to Q=30 until 60–70 bp after the end of the primer, after which Q hovered between 

25–30 until it ended nearly 100 bp into the transcript (Figure S2B).

Estimating a false positive rate—The EASL algorithm ensures that all UMI sequences 

within 1 bp will be grouped, unless there is a dip in read-abundances that would indicate a 

disjoint cluster of sequences has been encountered. DNA microscopy sequence analysis also 

removes UMIs associating with fewer than 2 UEIs. Taken together, we can estimate the rate 

at which “false positive” UMIs arise. The probability that a UMI is included in the final 

image inference that does not truly exist can be written

FPR=∑r Prob (UMI mistakenly identified with r reads) × Prob
(r reads belonging to UMI consist of  ≥  2 UEIs of  ≥  2 reads each)

(2)
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≈ ∑r ∑
k ≥ 2

(Prob(error UMI k nt away exists) × Prob(error UMI k nt away has r reads))

× Prob (r reads belonging to UMI consist of  ≥  2 UEIs of   ≥  2 reads each)

(3)

where

Prob(error UMI k nt away exists) ≈ 1 − e
−μk

with μk being the average number of UMI-variants per EASL-clustered UMI found at k 
nucleotides away from the most abundant UMI-variant and

Prob(error UMI k nt away has r reads) ≈ e
−μR, kμR, k

r /r!

where μR,k is the average number of reads associated with a UMI variant at k nucleotides 

away from the most abundant UMI-variant. The final probability in the summand (that r 
reads belonging to UMI will consist of ≥2 UEIs of ≥2 reads each) is an empirically 

determined quantity, which in Table S4 is measured through 10 random draws for each UMI 

in each data set (sample-standard deviations from these random draws are also shown). 

Plugging these quantities into to equation 3 gives a false-positive rate ranging between 10−3 

– 10−4 as a fraction of UMIs that we can expect to be duplicates of other UMIs. It is 

meanwhile worth noting that this quantity will be an upper bound in the sense that it does 

not account for the likely outcome that even if an erroneous UMI with at least 2 UEIs does 

make it to the final analysis, that it will not form a contiguous data set with the main body of 

the data.

Image inference

Formalization—Consider the evolving concentration distribution of products of a single 

UMI with index i, centered at position x i′, during a DNA microscopy reaction. This can be 

modeled as isotropic diffusion using the Gaussian profile for concentration at position x ′ at 

time t:

ci x i′, x ′, t ∝ t−d /2e
− x ′ − x i′

2/4dDt + At
(4)

where d is the dimensionality (of physical space), D is the diffusion constant, and A = log 2 /

Δt where Δt is the time-scale of a PCR cycle. The rate of UEI/concatemer formation between 

UMIs i and j with the same diffusion constant will then be the volume-integral
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wi j(t) ∝ ∫
x ′

ci x i′, x ′, t c j x j′, x ′, t dV (5)

∝ t−de
− x i′ − x j′

2/8dDt + 2At∫
x ′

e
− x ′ − x i′ + x j′ /2 2/2dDt

dV (6)

∝ t−d /2e
− x i′ − x j′

2/8dDt + 2At
(7)

Note that although the UEI formation rate is time-dependent - and that therefore the total 

observed reaction rate is in fact a sum of functions above from each PCR cycle — provided 

amplification happens quickly, prior time-dependence to some final reaction time τ will be 

swamped out by the reaction rate at that time τ. Therefore, for the sake of simplicity, we will 

drop the time dependence from our probability model, and say that UMIs i and j located at t 
= 0 at positions x i ≡ x i′/ 8Ddτ and x j ≡ x j′ / 8Ddτ, respectively, will have an expected 

cumulative reaction rate of

wi j ∝ e
− x i − x j

2 + Ai + A j (8)

where Ai and Aj, are amplification “biases”, ie the cumulative effective amplitudes of the 

UMIs’ diffusion profiles. The length scale above is denoted

L diff  ≡ 8Ddτ

in the main text.

The probability of observing UEI counts {nij} for each UMI-pair <i,j> is then the 

multinomial expression

 Pr  ni j wi j x i, x j ∝ ∏
i j

wi j
w..

ni j
(9)

where dots “·” represent index summation (so that w.. = ∑ijwij). From this, we can write the 

log-likelihood
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ℒ = ∑
i j

ni jlog
wi j
w.. + const

and, relying on the functional form from equation 8, we can write its gradient with respect to 

UMI position x k as consisting of two added sums:

1
2

∂
∂ x k

ℒ = − ∑
j

nk j x k − x j + n..
w.. ∑j

x k − x j wk j (10)

The first sum (“sum #1”) is linear and sparse, in the sense that most values of nkj are zero. 

The second sum (“sum #2”), however, is non-linear and dense, in the sense that no value of 

wkj is exactly zero. A solution to the above occurs when the gradient is zero for every x k, 

and where contributions from equation 10 sums #1 and #2 balance. These two sums differ in 

several important ways.

The first difference is the role they play: sum #1 dictates how to center each UMI relative to 

one another, and attracts all UEI-associated UMIs together, whereas sum #2 regulates how to 

separate them, by repelling all UMIs from all other UMIs at the strengths dictated by the 

intrinsic length scale of the function wij. Second is the ease of calculation: sum #1 involves 

summing only the UEIs observed in the experiment, the summation is sparse in the same 

way our observations are sparse; sum #2 meanwhile makes no distinction between UEIs that 

are observed and UEIs that are not, and requires the summation over all UEIs that are 

possible. Finally, the two sums differ in the length scales over which they operate. 

Optimization over small length scales containing minimal point density variation will make 

sum #2 in equation 10 approach zero, since it involves the summation of repulsive forces 

pointed in all directions. In these circumstances, sum #1 will dominate. However, over long 

distances in which large-scale point densities may vary, sum #2 will contribute heavily.

Local linearization of the image inference problem—We can write sum #1 of 

equation 10 as −nk ⋅ x k + ∑ jnk j x j = N x , where x is now a solution to all UMI positions 

simultaneously, and where we’ve defined the zero row-sum UEI matrix, or what in the main 

text is referred to as the UEI Graph Laplacian:

Ni j ≡
−ni . , i = j

ni j, otherwise

Note that N is a sparse square matrix (all UMIs × all UMIs), re-written from the rectangular 

form in Figure 1E, which has exclusively beacon UMIs as rows and exclusively target UMIs 

as columns. N will always have a “trivial” eigenvector of all 1’s (with eigenvalue 0) that 

solves the equation by making all positions equal. Solving equation 10 part #1, by obtaining 

the non-trivial solution nearest to 0 means setting x =  argmin  x TN x  s.t.  x T x = 1 , and 
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amounts to maximizing the numerator of the multinomial probability in equation 9. We will 

write the solution to this eigenvalue problem in a row-normalized form

x =  argmin  x T Λ−1 N x  s.t.  x T x = 1 (11)

where we use the diagonal matrix

Λi j ≡
−ni . , i = j

0 otherwise

to equalize contributions to the gradient by each UMI.

Because the solution to the maximum likelihood problem is only linear locally, we need a 

way to zoom in on local portions of the data in order to use it. We can do this by applying 

simple and approximate graph cut/spectral partitioning algorithms previously described (Shi 

and Malik, 2000). Specifically, we take the symmetric normalized form of the UEI Graph 

Laplacian, Λ−1/2NΛ−1/2, and find its second smallest-in-magnitude (after the trivial solution) 

eigen- value/eigenvector pair. We then perform a sweep of possible cuts within that 

eigenvector to minimize the conductance between the resulting UMI sub-sets A and B: 

N(A,B)/ min(N(A),N(B)), where N(A,B) is the number of UEIs associating UMI sub-sets A 
and B, and N(A) and N(B) are the total number of UEIs belonging to those two UMI sub-

sets, respectively.

Minimizing this conductance value allows for the “sparse cut” described in the main text. By 

iteratively cutting the matrix, re-forming the matrix Λ−1/2NΛ−1/2, and continuing until the 

minimum available conductance-cut is above a threshold, we can obtain local linear data 

subsets depicted in Figure 2E–H.

Setting the threshold higher provides for more extensive cutting, and results in the cell 

segmentation shown in Figure 6A–B. The accompanying binomial p-values in Figure 6C–D 

present, for putative cells with ≥50 UMIs and at least one ACTB and one GAPDH transcript:

p ≡ ∑
k = 0

k′ m
k

qk(1 − q)m − k

where k′ is the number of UMIs belonging to the minority transgene (GFP or RFP) within 

that putative cell, m is the total number of transgene UMIs observed, and q is the frequency 

of the minority transcript within the entire data set. It therefore describes the probability of 

observing the cell as-is under a random partitioning hypothesis.

Curating spectral segmentation using inferred UMI positions—We say that a UEI 

connecting UMIs i and j satisfies a spatial overlap threshold g (in Figure 6E–F) if given their 

respective positions x i and x j:
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g ≤ ∫ d x e
− x − x i

2ni ⋅e
− x − x j

2n ⋅ j

∫ d x e
−2 x − x i

2ni ⋅

1
2

∫ d x e
−2 x − x i

2n ⋅ j

1
2

=
2(ni ⋅n ⋅ j)

−1/2

ni ⋅
−1 + n ⋅ j

−1

d /2
e
− x i − x j

2 /(ni ⋅
−1 + n ⋅ j

−1)

where d = 2 (the dimensionality of physical space in this manuscript), 1
2 (ni .−1 + n . j

−1) is 

the sum of position likelihood variances derived under the section Resolution and UEI count, 

ni. and n.j are the total UEIs belonging to UMIs i and j , respectively. Note that it will always 

be true that 0 ≤ g ≤ 1 by the Cauchy- Schwarz Inequality. We may then apply this criterion 

to the problem of cell segmentation by asserting that all sub-sets of UMIs that are part of the 

same putative cell must be connected, via UEIs, by some chain of sufficiently overlapping 

UMI-UMI pairs.

Global likelihood maximization—Moving to larger length scales means dealing with 

sum #2 of equation 10. In order to handle the large-scale summation of every pair of UMIs 

(otherwise prohibitive due to its quadratic scaling), we adapted the Fast Gauss Transform 

(Greengard and Strain, 1991) that allowed calculation of this sum with bounded error in 

linear time. Error bounds were parametrized as the maximum possible fraction of the 

calculation of the weight-sum wk for each UMI. This was set to 30%, which sufficed to 

constrain actual error levels to orders of magnitude smaller (Figure S4).

Point-MLE solution—The most straightforward way solve equation 10 is to randomly 

initialize the global solution with an “educated guess” of what the global solution might look 

like and perform a gradient ascent of the global likelihood function using each UMI position 

as an independent variable. Since the eigenvector solutions to equation 11 satisfy local 

constraints, they provide a logical starting-point to initialize this solution. To this end, we let 

the top 100 eigenvectors of the full data-set’s row-normalized UEI matrix Λ−1N be columns 

in the matrix Z. The d-dimensional (with all samples here having d = 2) initial UMI 

positions x  init  were then defined through the linear combination

x init = Z y rand

where y  rand  was a d-column matrix, with each row corresponding to a different 

eigenvector, and its elements being linear coefficients used to sum the columns of 

eigenvectors in Z. The elements of y  rand  were normally distributed coefficients generated 

from ,𝒩(μ = 0, σ = n../100. Amplitudes Ai were set to log ni (an approximation asserting 

that, on average, UMI density was uniform at the length scale of diffusion) and gradient 
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ascent proceeded using the calculation from equation 10 (and applying the L-BFGS 

optimization method from the SciPy library). This point-MLE approach was applied in 

Figure 5A–H.

These global solutions illustrate, however, the difficulty in capturing information on empty 

space when each point is being optimized independently. Clusters of points are unable to 

separate by more than the length scale Ldiff indicated by grid-lines (which is defined as the 

unit-less value of 1.0 in the physical model of equation 8).

Spectral MLE (sMLE) solution—In order to capture more information on empty space 

than the point-MLE solution allows, we can expand on the local linear solutions previously 

described, and require our global solutions to remain linear combinations of the top 

eigenvectors of the full data-set’s row-normalized UEI matrix Λ_1N. Again assembling these 

top eigenvectors as columns in the matrix Z, the global d- dimensional (with all samples 

here having d = 2) solution x  of size M × d for all M UMIs was then defined as the linear 

combination

x = Z y (12)

where, as before, y was a d-column matrix, with each row corresponding to a different 

eigenvector, and its elements being the linear coefficients used to sum the columns of 

eigenvectors in Z. Using equation 12 made y  a low-dimensional variable set that we could 

optimize directly. The coefficients in y therefore dictated the UMI positions x  and the 

gradients of each UMI in x  were then calculated using equation 10. These individual UMI 

gradients were then projected back onto the linear eigenspace defined by Z, allowing y to be 

updated accordingly. Because eigenvectors in Z were not orthogonal, the back-projection of 

high-dimensional gradient Δx to low-dimensional gradient Δy was defined (through equation 

12) by ZTZ −1ZT Δ x .

We approached this low-dimensional optimization within the eigenspace Z in as incremental 

a way as possible. We called this incremental approach “spectral maximum likelihood 

estimation”, or sMLE. On iteration 1 of sMLE, the first 2 eigenvectors of matrix Z were 

taken in isolation (corresponding to the non-trivial eigenvalues with smallest magnitude), 

and performing a gradient-ascent optimization of equation 10 with their coefficients alone 

gave optimal coefficients for generating a solution x  from a linear combination of these two 

eigenvectors alone. On iteration 2, the eigenvector with the next smallest-magnitude 

eigenvalue/eigenvector pair in Z was added to those allowed to contribute to the solution x , 

thereby adding to the number of optimizable coefficients in y . This larger vector y  was 

then optimized for the now 3 eigenvectors. This was repeated until all top eigenvectors 

(numbering 100 in the presented data sets) were integrated into the linear combination 

defining solution x .

The outputs are plotted in Figures 4–6 and - for down-sampled read counts - in Figure S5A–

F. It should be noted that the two parameters that need to be fixed for this algorithm are the 
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scaling factor that multiplies the initial 2 eigenvectors that seed the solution and the choice 

of total eigenvectors after which the algorithm terminates (Figure S5G–J). Although 

alterations in the initial scaling factor result in isomorphic images (due to their using a 

common set of eigenvectors to construct a solution), certain manifold folding-defects can be 

mitigated by scaling factor choice. A comparison is made between initializing y in equation 

12 to the identity matrix I (applied to solutions in the main text and Figures S5A and S5D) 

versus initializing y  to I n.., where n.. is the total UEI count (applied to Figures 4, S5G, and 

S5I). The total number of eigenvectors at which the sMLE algorithm terminates (shown at 

50 in Figures S5H and S5J, compared to 100 everywhere else) similarly alters manifold 

folding by freezing out certain degrees of freedom the solution can use to maximize the 

position likelihood function.

Resolution and UEI count—The relationship between the uncertainty of a UMI’s 

position given its neighbors’ can be understood as the equivalent of the standard-error in a 

statistical average (namely, the standard- deviation divided by the square-root of the number 

of independent measurements). However, we sketch it out explicitly here in the context of 

the solution-likelihood function in equation 9. If we assert that in regions where the local 

linear conditions previously discussed apply (gradients in point density at the diffusion 

length scale Ldiff are small), a solely varying UMI k has solution-likelihood at position X k

about some maximal likelihood x k

Prob X k e
− X k − x k

2/2σ2

then we can simply calculate

σ = − ∂2

∂X k
2 logProb  X k

−1/2

Since under the local linear conditions, the multinomial probability in equation 9 becomes a 

simple product of Gaussians, we get

logProb X k ≈ ∑
j

nk jlogwk j + const = −
∑ j nk j x k − x j

2

L diff 
2 + const

where we’ve retained the physical length Ldiff in equation 8. From this we can finally write

σ =
2nk .
Ldiff

2

−1/2
=

Ldiff / 2
nk . (13)
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meaning a UMI’s positional uncertainty will shrink with the square root of the total number 

of UEIs with which it associates. This relationship is highlighted in Figure 3B–C.

Simulation—The efficacy of the sMLE algorithm was evaluated in a more controlled 

setting using simulated data exhibited in Figure 3G.

Simulations proceeded as follows. For each UMI i, molecular-copy numbers mi(t) at 

amplification cycle t was initiated at mi(t = 0) = 1. For discrete linear amplification cycles t 
= 1,2, …,τlin, with τlin being the total linear-amplification cycle number, the total molecular- 

copy numbers were updated as

mi(t + 1) mi(t) +  Binom  mi(t = 0) = 1, pdup

where 0 < pdup ≤ 1 was the efficiency at which each template (UMI-tagged cDNA) molecule 

was copied. As in the experimental protocol, linear amplification was followed by 

exponential PCR amplification, in which molecular-copy numbers were updated as

mi(t + 1) mi(t) +  Binom  mi(t), pdup

for t = τlin + 1, τlin + 2,…, τlin + τexp. Meanwhile, during exponential PCR cycles t = τlin 

+ 1, τlin + 2,…, τlin + τexp. the expected rate of UEI formation wij(t) between every beacon i 
and target j was calculated according to the previously derived equation 7

wi j(t) ∝ t−d /2e
− x i − x j

2/8dDt
mi(t)m j(t)

where the expectation values of the total molecular abundance of beacon UMI i and target 

UMI j are here explicit - mi(t) and mj(t), respectively. For a given total final UEI count N, we 

then calculated an expected UEI count for time t

ni j(t) = N
wi j(t)

∑iht′wi j(t′)

The number of actual UEI formation events for every triplet (i,j,t) were then assigned 

randomly using Poisson statistics

ni j(t)  Pois  ni j(t)

The kth UEI forming event generated by UMI-UMI pair (i, j), would then come into 

existence at its time-of-creation t ׳ with a molecular count aijk(t = t′) = 1. That abundance 

would evolve in time until the end of the reaction t = τlin + τexp according to the iteration 

relation
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ai jk(t + 1) ai jk(t) +  Binom  ai jk(t), pdup

Each UEI’s final read-abundance, given an expected total read depth Ω, was then assigned

wi jk τlin + τexp Pois Ω
ai jk τlin + τexp

∑i′ j′k′ai′ j′k′ τlin + τexp

Image inference algorithms were then applied to this simulated data set in Figure 3G. Here, 

freely diffusing products from 5000 beacons and 5000 targets, incorporating amplification 

stochasticity and sparse UEI sampling (50000 UEIs). “Original” coordinates are ground 

truth. UEIs in simulation are generated from an amplification reaction the same as in the 

experiment (see section In situ preparation), with 10 linear amplification cycles and 16 

exponential amplification cycles. Amplification stochasticity was introduced by making each 

molecular duplication event 5% likely to not occur at all (pdup = 0.95). Each cycle taking 

place over Δt = 1 with a D = 1 diffusion constant: both of these are in arbitrary units, with 

ground-truth positions normalized to the length scale L diff  = 8 × 1 × 3 × 26 (the length scale 

from equation 7), since D = 1, d = 3, and τ = τlin + τexp = 26 (note that diffusion is still 

simulated in 3 dimensions, even if molecules are initiated on a 2-dimensional surface). 

Image inferences from simulations are re-scaled and registered (rotation/reflection) relative 

to ground-truth.

DATA AND SOFTWARE AVAILABILITY

Python code developed for this work is available for download at https://github.com/

jaweinst/dnamic. Raw data is available for download from the short-reads archive (https://

www.ncbi.nlm.nih.gov/sra) under SRA project number PRJNA487001.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• DNA microscopy is a distinct imaging modality that encodes physical images 

into DNA

• A stand-alone reaction first writes inter-molecular proximities into DNA

• An algorithm then reconstructs a supra-molecular image from this DNA-

recording

• DNA microscopy thereby constitutes a chemically encoded microscopy 

system
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Figure 1. DNA microscopy.
(A–B) Method steps. Cells are fixed and cDNA is synthesized for beacon and target 

transcripts with randomized nucleotides (UMIs), labeling each molecule uniquely (A). In 
situ amplification of UMI-tagged cDNA directs the formation of concatemer products 

between beacon and target copies (B). The overhang-primers responsible for concatenation 

further label each concatenation event uniquely with randomized nucleotides, generating 

unique event identifiers (UEIs). Paired-end sequencing generates read-outs including a 

beacon-UMI, a target-UMI, the UEI that associates them, and the target gene insert (C). A 

bird’s-eye view of the experiment (D) shows the manner in which the DNA microscopy 

reaction encodes spatial location. Diffusing and amplifying clouds of UMI-tagged DNA 

overlap to extents that are determined by the proximity of their centers. UEIs between pairs 

of UMIs occur at frequencies determined by the degree of diffusion cloud overlap. These 

frequencies are read out by DNA sequencing, and inserted into a UEI matrix (E) that is then 

used to infer original UMI positions (F).
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Figure 2. Encoding and decoding molecular localization with DNA microscopy.
(A-D) Expected behavior of UEI counts. Diffusion profiles with length scale Ldiff· belonging 

to different amplifying UMIs overlap to degrees that depend on the distance between their 

points of origin (A). Greater overlaps between diffusion profiles result in larger reaction 

rates (B), which in turn result in higher UEI formation frequencies (C). Because UEI counts 

are therefore proper functions of position, as a UMI relocates, it sweeps out a curve along 

the UEI count axes equal to the dimensionality of space it occupies (D). (E–H) Data 

segmentation permits individual sets of 104 strongly interacting UMIs to be visualized 

independently. The top three non-trivial eigenvectors for the largest data segments of 

samples 1 (E–F) and 2 (G–H) are shown, along with a different, magnified view of the same 

plot. Transcripts are colored by sequence identity: grey = ACTB (beacons), white = 

GAPDH, green = GFP, red = RFP. (I–J) Quantitative assessment of manifold dimensionality. 

PCA spectra from local (black) or averaged-local (cyan) covariance matrices formed from 

the global UEI matrix eigenvector-coordinates of UMIs in samples 1 (I) and 2 (J). 

Covariance matrices were constructed for each UMI forming UEIs with at least 100 other 

UMIs, using the first 100 eigenvector coordinates belonging to these associating UMIs 

alone. (K–L) Average coupling frequencies for each beacon with different target amplicons 

in samples 1 (K) and 2 (L). A coupling frequency between amplicon types k and l is defined 

as the average across all beacon UMIs i of the product PikPil, where pik = ∑ j ∈ Sik
ni j/∑i′ni′ j. 

Here, nij is the number of UEIs associating beacon UMI i with target UMI j, and Sik is the 

set of all target UMIs of amplicon type k associating with beacon UMI i.
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Figure 3. Image inference from DNA microscopy data.
(A) Modeling diffusion of amplifying UMIs as isotropic across length scale Ldiff allows the 

likelihood of a UMI-position solution to be evaluated given observed UEI counts. (B,C) 

Uncertainty in DNA vs. super-resolution microscopy. Given its reacting partners’ positions, 

DNA microscopy (left) defines a UMI’s uncertainty as a physical length scale (DNA 

diffusion distance, Ldiff) divided by the square-root of the number of individual quanta 

measured (UEIs) in a manner analogous to quanta (photons) in super-resolution microscopy 

(right). (D,E) Rarefaction of UMI and UEI data. Shown are curves with an upper-bound, 

indicating total UMI/UEI counts, and a lower-bound, indicating those from the final pruned 

UEI matrix, for samples 1 (D) and 2 (E). (F) The sMLE algorithm uses eigenvector 

solutions to part of the position-probability function to identify a linear basis for the solution 

to the full likelihood function. (G) sMLE enhances performance in free-diffusion simulation 

tests. From left: original image, results from point-MLE on simulated images with 100 or 10 

UEIs/UMI, and from sMLE with 10 UEIs/UMI.
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Figure 4. Accurate reconstruction by DNA microscopy of fluorescence microscopy data.
(A,B) Optical imaging of co-cultured cells. (A) Full reaction chamber view of co-cultured 

GFP- and RFP-expressing cells (scale bar = 500 um). (B) Zoomed view of the same cell 

population (scale bar = 100 um). (C,D) DNA microscopy of co-cultured cells. (C) 
Rarefaction of UMIs and UEIs with increasing read-sampling depth. (D) sMLE inference 

applied to DNA microscopy data, reflected/rotated and rescaled for visual comparison with 

photograph. Transcripts, sequenced to 98 bp, are colored by sequence identity: grey = ACTB 

(beacons), white = GAPDH, green = GFP, red = RFP. Grid-line spacings: diffusion length 

scales (Ldiff), emerging directly from the optimization (STAR Methods).

Weinstein et al. Page 36

Cell. Author manuscript; available in PMC 2020 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Inferred large scale DNA microscopy images preserve cellular resolution.
Inference using the sMLE global inference approach for sample 1 (A–E) and sample 2 (F–
J), with each transcript type shown separately (A–D, F–I) or together (E and J) (although 

inferences are performed on all transcripts simultaneously and are blinded to transcript 

identity). Grid-line spacings: diffusion length scales (Ldiff), emerging directly from the 

optimization (STAR Methods).
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Figure 6. Segmentation of DNA microscopy data recovers cells de novo.
(A,B) Data segmentation recovers putative cells without a priori knowledge. Cell 

segmentation for samples 1 (A) and 2 (B) by recursive graph-cutting of the UEI matrix is 

shown with a random color assigned to each inferred cell, qualifying if it contained at least 

50 UMIs and had at least one transcript each of ACTB and GAPDH. The minimum 

conductance threshold was set to 0.2. Surface height and color opacity scale with likelihood 

density, normalized to the maximum value within each putative cell. (C,D) Segmentation 

performance. The effects of cell segmentation for samples 1 (C) and 2 (D) with minimum 

conductance thresholds 0.14 (black), 0.2 (cyan), and 0.26 (magenta) are shown on binomial 

p-values quantifying segmentation fidelity (solid lines) and putative cell count (dotted lines). 

(E,F) Inclusion of position information from sMLE inferences improves performance. 

Shown is the separation of fluorescent protein transgenes among decreasing numbers of 

identifiable cells for samples 1 (E) and 2 (F), with GFP UMI fraction and RFP UMI fraction 

shown in green and red shades, respectively.
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