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Abstract

Understanding the response of solid materials to shock loading is important for mitigating shock-

induced damages and failures, as well as advancing the beneficial use of shock waves for material 

modifications. In this paper, we consider a representative brittle material, BegoStone, in the form 

of cylindrical bodies and submerged in water. We present a computational study on the causal 

relationship between the prescribed shock load and the resulting elastic waves and damage in the 

solid material. A recently developed three-dimensional computational framework, FIVER, is 

employed, which couples a finite volume compressible fluid solver with a finite element structural 

dynamics solver through the construction and solution of local, one-dimensional fluid-solid 

Riemann problems. The material damage and fracture are modeled and simulated using a 

continuum damage mechanics model and an element erosion method. The computational model is 

validated in the context of shock wave lithotripsy and the results are compared with experimental 

data. We first show that after calibrating the growth rate of microscopic damage and the threshold 

for macroscopic fracture, the computational framework is capable of capturing the location and 

shape of the shock-induced fracture observed in a laboratory experiment. Next, we introduce a 

new phenomenological model of shock waveform, and present a numerical parametric study on 

the effects of a single shock load, in which the shock waveform, magnitude, and the size of the 

target material are varied. In particular, we vary the waveform gradually from one that features 

non-monotonic decay with a tensile phase to one that exhibits monotonic decay without a tensile 

phase. The result suggests that when the length of the shock pulse is comparable to that of the 

target material, the former waveform may induce much more significant damage than the latter 

one, even if the two share the same magnitude, duration, and acoustic energy.
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1. Introduction

The response of solid materials and structures to shock loading is a long-standing and active 

research area, motivated mainly by two categories of applications. The first category 

concerns the prevention and mitigation of shock-induced damages and failures, such as the 

design of protective structural materials, coatings, and devices [1, 2, 3, 4]. The second 

category aims to use carefully designed shock waves to achieve desired material 

modifications. Examples include, but are not limited to, shock wave lithotripsy, a first-line 

therapy of urinary stone disease [5, 6], “dynamic fracturing” for oil and natural gas 

extraction [7, 8], and the use of “acoustic sparkers” for biofouling control [9, 10]. A 

common feature in these applications is that the boundary between beneficial effects (e.g., 

fracture of a urinary stone) and detrimental effects (e.g., injury of urinary tissue) is often 

very narrow, which requires a clear understanding and predictive capability regarding the 

shock-material interaction and the resulting material damage and fracture.

The waveform, magnitude, and duration of a shock wave depend critically on the generation 

method, the parameters specified therein, and the surrounding medium. In particular, two 

distinct waveforms are often observed in practical applications: one that features a non-

monotonic decay with a tensile phase (Figure 1(a)), and one that exhibits monotonic decay, 

without a tensile phase (Figure 1(b)). The former waveform can be generated, for example, 

by focusing a planar acoustic wave using a lens and through nonlinear wave propagation 

[11], while the latter can be obtained by inducing a rapid bubble expansion through 

detonation [12] or laser [13]. Previous studies have often focused on analyzing specific 

model problems in which the shock waveform — and in many cases, also the magnitude and 

duration — is fixed (e.g., [14, 15, 16, 17, 18, 19]). Nonetheless, comparing the impact of 

shock waves with different waveforms, magnitude, and duration to solid materials is 

intellectually valuable, and may provide new insights into applications that require “shock 

wave by design”. To this end, we present in this paper a computational study, using a 

representative brittle material, namely BegoStone [20], in the form of a cylindrical body that 

is submerged in water. BegoStone is a commercial dental material, composed of primarily 

gypsum (99%), supplemented with iron and potassium oxides to increase its strength [21]. 

Its acoustic and mechanical properties can be tuned easily by varying the powder-to-water 

ratio [22]. It has been used as a model material for studying shock-induced damages and 

failures, mainly in the context of shock wave lithotripsy [23].

To simulate the shock-dominated fluid-solid interaction problem, we employ a recently 

developed three-dimensional computational framework, referred to as FIVER (a FInite 

Volume method with Exact fluid-solid Riemann solvers) [24, 25, 26, 27, 28]. FIVER couples 

a finite volume compressible fluid solver with a finite element structural dynamics solver 

using a second-order accurate partitioned procedure [24]. It enforces the continuity of 

velocity1 and traction at the fluid-solid interface using an embedded boundary method, 

which features the construction and solution of one-dimensional fluid-solid Riemann 

problems [25, 26]. Because the embedded boundary method operates on non body-fitted 

CFD grids, it is particularly suitable for analyzing shock-induced dynamic fracture. In the 

1in the case of inviscid flow, normal velocity
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past, FIVER has been verified and validated for several shock-dominated fluid-solid 

interaction problems including the collapse and rupture of thin-walled metal structures [29, 

30, 31] and cavitation-induced material damage [32]. It has also been applied to a few other 

problems featuring large structural deformation and unsteady viscous flow [33, 34, 35].

In this work, we extend FIVER to model and simulate shock-induced damage and fracture in 

a brittle material, using a continuum damage mechanics model and an element erosion 

method. The basic idea is to use a scalar damage state variable, D(X, t), to represent small-

scale damages (e.g., microcracks) that cannot be explicitly resolved by the computational 

grid. Accordingly, the material’s elastic modulii are adjusted on the fly to reflect the local 

and gradual degradation caused by the damages. The growth of D in time is modeled using a 

truncated power-law function of maximum principal stress. Once D exceeds a critical value 

within an element, the element is deleted from the structural system [31]. Whereas the 

literature of continuum damage mechanics is rich, and offers more sophisticated models 

[36], the one employed in this work — sometimes referred to as the Tuler-Butcher model 

after [37] — has demonstrated the capability of reproducing experimentally observed 

fracture in plaster of Paris [18], glass [38], and BegoStone [39], when its parameters are 

calibrated using the same experiment. We first show that after calibration, the computational 

framework is capable of capturing the location and shape of the shock-induced fracture 

observed in our laboratory experiment. Based on the computational result, we discuss the 

causal relationship among the shock load, the elastic body and surface waves, and the 

resulting damage and fracture. Next, we present a new phenomenological model of shock 

waveform, which can model the two distinct waveforms mentioned above and allows the 

smooth transition in between. Using this model, we perform a series of parameter studies to 

examine the effects of shock waveform and magnitude, as well as the size of the target 

material.

It should be mentioned that many shock wave applications, including those mentioned 

above, involve cavitation. The detailed effects of cavitation on material damage and fracture 

is still an active research topic (e.g., [40, 41]). In this work, we focus on investigating the 

interaction of a prescribed shock wave and a solid material. Cavitation is not included in the 

computational model. The validation experiment is also designed to suppress shock-induced 

cavitation.

The remainder of this paper is organized as follows. Section 2 summarizes the physical 

model and numerical methods, including the main features of the FIVER framework. 

Section 3 discusses the calibration and validation of the continuum damage mechanics 

model using a laboratory experiment. Section 4 presents the new model of shock waveform. 

Section 5 presents the aforementioned parameter study, and discusses the results. Finally, a 

summary and some concluding remarks are provided in Section 6.

2. Physical Model and Numerical Methods

2.1. Governing and constitutive equations

We consider the model problem illustrated in Figure 2. ΩF and ΩS denote the fluid and solid 

subdomains occupied by liquid water and BegoStone, respectively. Given that this is a 
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shock-dominated problem, the fluid is assumed to be compressible and inviscid, governed 

by the following Euler equations which formulate the conservation of mass, momentum, and 

energy.

∂W x, t
∂t + ∇ ⋅ ℱ W = 0, ∀x ∈ ΩF t , t > 0, (1)

where

W =

ρ

ρV

ρet

is the conservative state vector. t denotes time, ρ the fluid density, and V = [u, v, w]T the 

fluid velocity vector. et = e + 1
2V ⋅ V denotes total energy per unit mass, in which e represents 

internal energy per unit mass.

ℱ = ρV , ρV ⊗ V + pI, ρet + p V T

is the flux vector, where I denotes the 3 × 3 identity matrix.

To close the above system of equations, we adopt the stiffened equation of state (EOS) [42], 

given by

p = γL − 1 ρe − γLpL . (2)

The model parameters γL and pL are set to γL = 6.12, pL = 343 MPa for liquid water, after 

[43] and [32].

The solid material is assumed to be in the form of a cylindrical body, subjected to a 

prescribed shock load along its axial direction (Figure 2). The governing equations of 

dynamic equilibrium are given by

ρsü X, t − ∇ ⋅ σ u,u̇ = b, ∀X ∈ ΩS 0 , t > 0, (3)

where u denotes the displacement of the solid, ρs its density, and σ the Cauchy stress tensor. 

The body force, b, is assumed to be zero in this work. The dot above a variable represents 

partial derivative with respect to time.

Previous studies have shown that fabricated BegoStone models can be considered as 

isotropic, and undergo brittle fracture under shock loading [22, 23]. Therefore, it is modeled 

here as a linear elastic and isotropic solid; and the constitutive equation is given by
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εi j = 1 + v
E σi j − v

E σkkδi j, i, j = 1, 2, 3, (4)

where

εi j = 1
2

∂ui
∂x j

+
∂u j
∂xi

, i, j = 1, 2, 3,

is the infinitesimal strain tensor. E and ν denote the material’s Young’s modulus and 

Poisson’s ratio, respectively.

The fluid-solid interface, ΓFS = ∂ΩS ∩ ∂ΩF, is assumed to be impermeable, and governed by 

two interface conditions,

V − u̇ ⋅ n=0 on ΓFS (5)

and

− pn=σ u, u̇ ⋅ n on ΓFS, (6)

which enforce continuity of normal velocity and traction. n denotes the outward unit normal 

to ΓFS.

The incident shock wave p(t) can be applied either as a boundary condition or as an initial 

condition of the fluid governing equations [44]. The latter method is applied in this work. 

Specifically, p(t) is converted into a pressure distribution in space by replacing t by −x/c0, 

where x is the spatial coordinate in the direction of shock propagation (Figure 2), and c0 is 

the speed of sound in water, calculated using the equation of state (Equation (2)) and the 

ambient fluid state. Then, the x-component of the initial fluid velocity is set by

u =
p − p0

ρc0
(7)

to enforce the incident shock wave, where p0 denotes ambient fluid pressure.

2.2. A continuum damage mechanics model

We introduce a scalar damage state variable, D(X, t) ∈ [0, 1), to represent small-scale 

material damages that cannot be resolved by the computational solid dynamics mesh. The 

two limit values, 0 and 1, indicate the initial undamaged state and the final completely 

damaged state, respectively. In the current context of an isotropic, linear elastic material, the 

constitutive equation is modified by scaling Young’s modulus linearly, i.e.
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E X, t = E0 1 − D X, t , ∀X ∈ ΩS 0 , (8)

where E0 is the Young’s modulus of the material without damage. The material’s Poisson’s 

ratio remains a constant. The growth of damage in time is modeled by a power-law function 

proposed by Tuler and Butcher[37], i.e.

D X, t = ∫
0

t
αmax σ1 X, t − σ∗, 0 sdτ, (9)

where σ1 denotes the maximum principal stress. σ∗, s and α are constant model parameters 

that are usually determined empirically[45, 46, 47, 48]. It is assumed that the material starts 

to fracture when D exceeds a critical value, Dc.

2.3. Numerical methods

In this work, a recently developed computational framework is extended to solve the above 

coupled problem, which couples a finite volume CFD solver with a finite element CSD 

solver using an embedded boundary method and a partitioned procedure. At the embedded 

fluid-solid interface, the kinematic interface condition (Equation (5)) is enforced through the 

construction and solution of a one-dimensional fluid-solid Riemann problem [25], while the 

dynamic condition (Equation (6)) is enforced by transferring distributed fluid-induced loads 

to the finite element model using the method presented in [49].

2.3.1. FIVER: A finite volume method based on exact Riemann solvers—We 

discretize the augmented fluid domain Ω, defined by Ω = ΩF ∪ ΩS ∪ ΓFS, using a finite 

volume mesh, denoted by Ωh (Figure 3), where h designates the resolution of this 

discretization. Ωh is non-interface-conforming in the sense that it does not contain a native 

representation — comprised of element sides or control volume facets — of the solid 

material surface ΓFS.

Integrating Equation (1) over a control volume, Ci, yields

∂W i
∂t + 1

Ci
∑

j ∈ Nei i
∫

∂Ci j
F W ⋅ ni jdS = 0, (10)

where Wi denotes the average of W in Ci, ǁCiǁ denotes the volume of Ci, Nei(i) denotes the 

set of nodes connected to node i by an edge, ∂Ci j = ∂Ci ∩ ∂C j, and nij is the unit normal to 

∂Cij. Notably, when edge i-j intersects the embedded fluid-solid interface, the numerical 

approximation of the surface integral in Equation (10) is based on the exact solution of a 

one-dimensional fluid-solid Riemann problem. Specifically, if node i belongs to the fluid 

subdomain, and j belongs to the solid subdomain (Figure 3), the following one-dimensional 
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Euler equations with a constant initial condition and a moving wall boundary condition is 

introduced.

∂w
∂τ + ∂ℱ w

∂ξ = 0, τ > 0, ξ < u̇0 ⋅ nS τ, (11)

w ξ, 0 = wi, ξ < 0, (12)

v u̇0 ⋅ nS τ, τ = u̇0 ⋅ nS, τ > 0, (13)

where nS denotes the unit normal of ΓFS at its intersection with edge i-j. ξ is the spatial 

coordinate along the one-dimensional axis aligned with nS and centered at the midpoint 

between nodes i and j. The initial state wi is the projection of Wi on nS , i.e.

wi =

ρi

ρi V i ⋅ nS

ρi ei + 1
2 V i ⋅ nS

2

. (14)

v is the velocity component of the 1D fluid state vector w. u̇0 denotes the velocity of the 

solid at τ = 0. The exact solution of this Riemann problem can be derived analytically, and 

the state variable at the fluid-solid interface is plugged into the numerical flux function, 

thereby enforcing the first fluid-solid interface condition, Equation (5). The resulting 

semidiscretization of Equation (1) can be written in a compact form as

dWh

dt + V−1F Wh = 0, (15)

where Wh, V, and F(Wh) denote the vector of semidiscrete fluid state variable, the diagonal 

matrix storing the volume of control volumes, and the vector of numerical flux, respectively.

2.3.2. A Finite Element CSD Solver—A standard Galerkin finite element method is 

applied to semi-discretize the weak form of Equation (3), which yields

M∂2uh

∂t2
+ fint uh, ∂uh

∂t = fext, (16)
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where M denotes the mass matrix, uh denotes the discrete displacement vector. fint and fext 

denote the discrete internal force and external force vector, respectively. The fluid-induced 

forces are computed based on the second fluid-solid interface condition, Equation (6). 

Specifically, at the end of each time step, the nodal values of fluid pressure p are linearly 

extrapolated to the Gauss points of the discretized embedded interface, then integrated over 

each element of the surface. Figure 4 provides an illustration of this method, while 

additional details can be found in Section 3.8.3 of [49].

The initiation and propagation of dynamic fracture are simulated using an element erosion 

method. At any time instance, the scalar damage variable D is assumed to have a constant 

value within each element. When its value exceeds Dc, the stress in this element is set to 

zero and the element is deleted from the finite element model.

2.3.3. Staggered Time-Integration—The semidiscrete fluid and solid governing 

equations, Equations (15) and (16), are integrated using a staggered time-integrator 

presented in [24] (Figure 5). Specifically, the fluid equations are integrated using the explicit 

fourth-order accurate Runge-Kutta scheme, while the solid equations are integrated using the 

second-order accurate explicit central difference method. Notably, the fluid and solid time 

steps are offset by half a step. This feature is designed to allow the coupled time-integrator 

to achieve second-order accuracy, while maintaining numerical stability.

3. Numerical simulation of a shock wave lithotripsy experiment

We apply the computational framework described in Section 2 to simulate a dynamic 

fracture experiment featuring the use of shock waves generated by an electromagnetic (EM) 

lithotripter to break a cylindrical BegoStone submerged in water. The objective is twofold: to 

calibrate the parameters of the continuum damage mechanics model, and to explain, using 

numerical results, the causal relationship of the prescribed shock wave, the shock-induced 

elastic waves in the solid material, and the resulting damage and fracture.

3.1. Experiment

Figure 6 presents a schematic drawing of the experimental setup, with additional details 

provided in the Appendix. An electromagnetic acoustic transducer (EMAT) is used to 

generate pulsed planar waves. Each planar wave is then transformed into a shock wave with 

maximum pressure pmax = 52.0 MPa, using a specially designed focusing lens. The target 

specimen is placed within the focal area of the lens, largely overlapping with the −6 dB focal 

zone, in which the peak pressure exceeds pmax/2. To suppress cavitation, the specimen 

holder is filled with 1,3-butanediol which has similar acoustic properties to water but higher 

viscosity [50].

To characterize the shock waveform within the focal zone, we use a high-resolution fiber 

optic probe hydrophone to measure the pressure history at 41 locations distributed along y- 

and z-axes, shown in Figure 7. The result shows that the shock wave features a non-

monotonic decay and a tensile phase, with a duration of approximately 10 µs. The peak 

pressure of the tensile phase is −11.0 MPa.
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Eight (8) cylindrical BegoStone specimens are fabricated using an established procedure 

[22], with a powder-to-water mixing ratio of 5:1. One example is shown in Figure 8(a). For 

this mixing ratio, the previous study ([22]) has measured the material’s elastic properties and 

tensile strength under static loading. These parameter values, and the dimensions of the 

specimens, are shown in Table 1.

The specimens are tested in a dry condition, that is, without being pre-soaked in water. In 

each test, shock waves of identical waveform are fired at a frequency of 0.5Hz until the first 

fracture, as showed in Figure 8(b), is produced. The frequency is sufficiently low such that 

the successive shock loads do not affect each other. For the 8 samples, 5 ± 2 (mean ± std. 

dev.) loads are required to produce the first fracture. For all of them, the initial fracture is 

found to be approximately planar, perpendicular to the stone axis, at 73 ± 3% of the stone 

length. Additional details are presented in the Appendix. Above all, the demonstrated 

capability of producing repeatable fracture location and shape in a brittle solid material 

through shock loading is remarkable.

3.2. Simulation setup

Figure 9(a) presents the setup of the numerical simulation, designed to simulate the above 

experiment. For the purposes of computational efficiency, a 90° slice of the cylindrical 

BegoStone is modeled, with symmetry boundary conditions applied to the two cut planes. 

Experimentally measured dimensions and material properties (Table 1) are applied. The 

model is discretized by a finite element CSD mesh with 1, 033, 202 nodes and 6, 027, 564 

tetrahedron elements, with a characteristic element size (h) of 0.03 mm. The fluid 

computational domain, also a 90° slice of the actual 3D space, is discretized using a non-

interface-conforming, unstructured CFD mesh with 3, 139, 728 nodes and 16, 246, 504 

tetrahedron elements. In the most refined region — that is, near the solid — the 

characteristic element size is h = 0.05 mm. The far-field boundaries are set to be sufficiently 

far from the solid specimen such that wave reflections at the boundary do not affect the solid 

within the simulation time range.

The incident shock wave is considered axisymmetric, supported by the hydrophone 

measurements shown in Figures 7(c) and 7(d). The waveform along the centerline (i.e. the x-

axis) is prescribed to be the cubic spline fit of the experimental data (Figure 7(b)). The radial 

decay shown in Figures 7(c) and 7(d) are approximated using a fourth-order polynomial,

p r
p 0 = − 5.0 × 10−5r4 + 1.04 × 10−3r3 + 1.65 × 10−3r2 − 1.55 × 10−1r + 1.0 (17)

where r denotes the radial distance measured from the centerline, in millimeters. The shock 

wave is prescribed as the initial condition of the fluid governing equations, shown in Figure 

9(c).

Here, we simulate the response of Begostone specimen subjected to a single incident shock 

wave. Whereas the solver supports varying time-step sizes both in time and between the 

fluid and the solid, a constant time step size of 7.6 × 10−4 µs is used here. This value is 
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chosen to ensure numerical stability of the explicit time-integrators in both sub-systems. The 

Cascades cluster [51] at Virginia Tech is used to performed the simulations presented in this 

paper. Each run consumed around 10,000 core-hours for achieving 10.0 µs simulation time.

3.3. Calibration of parameters in the continuum damage mechanics model

The continuum damage mechanics model introduced in Section 2.2 involves four 

parameters, σ*, Dc, α and s, which are usually determined empirically. We set σ* to be the 

static tensile strength measured in a diametral compression test [22], i.e. σ* = 16.3 MPa. For 

Dc, there is no directly relevant experimental data for BegoStone. We set Dc = 0.5, following 

Fovargue et al. [11].

Next, we calibrate s and α to reproduce the experimental result. Specifically, we have varied 

s between 1.5 and 4.0, and α between 10−6 and 10−5 Pa−1sec−s, with more than 20 samples. 

The optimal parameter values (among the tested samples) are determined by comparing the 

predicted fracture location with the experimental data. The predicted fracture location is 

determined by averaging the locations of the first few elements in which D > DC. In this 

way, we obtain s = 3.5 and α = 4.05 × 10−6Pa−1sec−S, which predicts a fracture at x = 6.85 

mm, that is, a 9% difference from the experimental result. For other sample values of s and 

α, we have observed variations in both the axial location of the initial fracture and the 

number of separated cracks (between 0 and 3).

The calibration study also shows that small variations (less than 10%) in s and α do not 

abruptly change the resulting damage and fracture. However, with parameter values 

significantly different from the aforementioned optimal values, we have observed in several 

cases the formation of a wide, planar crack around the middle of the specimen (i.e. x ≈ L/2), 

and the formation of a void (instead of a sharp crack) in the rear half of the specimen (i.e. x 
> L/2).

It should be mentioned that although in the experiment the first planar fracture (Figure 8(b)) 

is observed after an average of five (identical) shock loads, the current computational study 

focuses on the material damage and fracture induced by the first shock load. In particular, 

the calibration of the damage model exploits the assumption that small fracture initiates 

inside the solid during the first shock load, then propagates towards the boundary during 

subsequent loads. This also indicates that the calibrated parameter values may be specific 

not only to the experimental setup, but also to the computational approach adopted in this 

work.

3.4. Result and discussion

Figure 10 presents the numerical solution at five time instances, displaying the fluid pressure 

field, the maximum principal stress inside the solid and on its surface, and the cumulative 

damage D. Unless otherwise mentioned, the 2D solution snapshots presented in this paper 

visualize the plane z = 0. Overall, the result shows the interaction of the incident shock wave 

with the solid material, and the propagation and interference of the shock-induced stress 

waves. It also shows how microscopic damage evolves as the stress waves pass by, 

eventually leading to fracture.
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Specifically, at t = 4.21 µs, the front of the incident shock wave has passed the front surface 

of the solid specimen by approximately 3 mm. The transmitted and reflected waves resulting 

from the interaction of the shock front with the front surface of the solid are clearly evident. 

The transmitted shock wave is in the form of a compressive longitudinal wave (denoted by 

P), propagating in the axial direction. The P wave appears forward of the incident shock 

wave in the fluid, because the speed of longitudinal waves in the solid, CL, is greater than 

the speed of sound in the fluid. The interaction of the P wave with the side wall of the solid 

generates a shear wave, denoted by S, that converges towards the central axis. At the same 

time, the incident shock wave “squeezes” the side wall of the solid, as it is lagged behind the 

P wave in the solid. Because the speed of transverse waves in the solid, CT, is also greater 

than the speed of sound in the fluid, the dynamic squeezing does not produce a clear wave 

front inside the solid. Instead, it generates tensile stress within a relatively broad region 

behind the S wave, marked by Π1 in the figure. This is in contrast to previous findings for 

“softer” materials with CT lower than the speed of sound in the surrounding fluid (e.g., 

[17]). As the incident shock wave moves forward, Π1 both expands and moves forward. This 

is again different from the behavior of softer materials in which the shear wave induced by 

squeezing converges towards a small region around the central axis.

Once the P wave reaches the distal surface of the solid, it reflects a s a t ensile longitudinal 

wave, denoted by P′. At the same time, as the squeezing-induced tensile stress (i.e. region 

Π1) propagates from the side wall towards the central axis, it gradually builds up strength. 

Evident from the second row of Figure 10 (i.e. at t = 6.45 µs), when P′ meets Π1, the local 

tensile stress exceeds the damage threshold σ*, leading to an area of damage centered at x = 

4.8 mm, marked as region A in the figure. At this point of time, a fraction of the tensile 

phase of the shock wave (around 50% lengthwise) has passed through the front surface of 

the solid, and the resulting tensile stress also contributes to the damage in region A. The 

peak value of the maximum principal stress corresponding to this wave superposition is 

found to be 31 MPa. The maximum local damage within region A is found to be D = 0.4, 

below the fracture threshold Dc. The shear wave S also reflects at the distal surface, and the 

reflection is denoted by S′. The converging of S′ results in a small region of high tensile 

stress around the axis of the solid, which moves in the −x direction. This small region is 

marked by Π2.

When Π2 meets the squeezing-induced tensile stress, the local maximum principal stress 

again exceeds the damage threshold σ*, with a peak value of 32 MPa achieved at x = 7.87 

mm on the central axis. As shown in the third row of Figure 10 (i.e. at t = 6.94 µs), this wave 

superposition initiates another area of damage, marked as region B. Again, the tensile phase 

of the shock wave, transmitted through the front surface of the solid, also contributes to the 

damage. At t = 7.25 µs, the cumulative damage D exceeds the threshold Dc at x = 6.85 mm 

on the central axis, leading to the initiation of a crack. This crack expands in the radial 

directions, at a speed of the order of 1 mm/µs. It is notable that the propagation speed of S′ 
is of the same order of magnitude. In particular, within the plane of the crack (i.e. {x = 6.85 

mm}), it moves in the radial directions at approximately 2 mm/µs. Therefore, the 

propagation of the crack is likely driven by the combined effects of the propagation of S′ 
and the stress concentration at the crack tip.
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At t = 7.78 µs, Π2 reaches region A and intensifies the damage therein. This leads to the 

initiation of another crack on the central axis, at x = 5.1 mm. This crack stops at a radius of 

0.4 mm, much smaller than the first one in region B. After approximately t = 9.5 µs, the 

maximum principal stress drops below σ* everywhere within the solid, and hence damage 

and fracture stop growing. The simulation is terminated at t = 10.0 µs.

Remarks:

• We have examined the mesh sensitivity of the numerical result, particularly the 

predicted fracture, by varying the resolution of the CSD mesh between h = 0.03 

mm and h = 0.12 mm, and for each fixed resolution, varying the specific 

unstructured mesh. Figure 11 presents the fracture predicted using a mesh with 

characteristic size h = 0.03 mm, i.e. the one used in the simulations described 

above, and two different meshes with h = 0.06 mm. The result shows that for all 

the three meshes, the location, shape, and size of the primary fracture are 

approximately the same.

• A rough estimation based on Griffith’s theory of linear elastic fracture mechanics 

[52] indicates that for this model problem, the efficiency of fracture creation is 

likely on the order of 1%. Specifically, let Efr and ET denote, respectively, the 

new surface energy caused by fracture and the acoustic energy of the incident 

shock wave that is transmitted into the specimen. By Griffith’s theory,

E f r = A f rγ, (18)

where Afr is the fracture area, which is about 2.76 × 10−5 m2 at the end of the simulation. γ 
is the fracture surface energy per unit area. We have not found measurement of γ for 

BegoStone in the literature. Therefore, we approximate it using that of gypsum (the main 

ingredient of BegoStone), i.e. γ = 21.88 Jm−2 [53]. The new surface energy is hence 

estimated as Efr = 6.04 × 10−4 J. The acoustic energy of the transmitted shock wave ET can 

be estimated by

ET ≈ Ep 1 −
Z1 − Z2
Z1 + Z2

2
, (19)

where Z1 and Z2 are the acoustic impedance of water and BegoStone, respectively. Ep 

denotes the effective acoustic energy of the incident shock wave, defined by

Ep = 1
ρ f c0

∫
A
∫

T
p2dtdx, (20)

where ρf is the density of water, c0 is the speed of sound in water, and A denotes the 

effective area of the shock loading, i.e., the cross-sectional area of the cylindrical specimen. 
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In this case, Z1 = 1.45 × 106 kg/(m2s), Z2 = 8.30 × 106 kg/(m2s) and Ep ≈ 40.0 mJ, which 

gives ET ≈ 20.3 mJ. Therefore, the energy efficiency mentioned above can be estimated by

η =
E f r
ET

≈ 3% . (21)

In other words, the new surface energy caused by fracture formation is only a small fraction 

of the energy input from the incident shock wave.

• We have conducted a numerical experiment in which the tensile phase of the 

shock wave is removed. Figure 12 shows the resulting damage and fracture, in 

comparison with those produced by the original shock wave. It is clear that the 

tensile phase of the shock wave also contributes to damaging and breaking the 

solid material.

4. A novel phenomenological model of shock waveform

To facilitate the study of the impact of shock waves on solid materials, we design a new 

mathematical model that can be calibrated to fit different waveforms. In this regard, most, if 

not all, of the existing models have been designed to fit shock waves either with or without a 

tensile phase (e.g.,[54, 55, 56]). Therefore, a specific objective here is to be able to fit both 

types of shock waves. The proposed model function is

p t ; α, β, t 1 = K 1 − exp − t
t 1

exp −αt β − 1 t 2 − βt + 1 , (22)

where

K = 1
max

0 ≤ τ < 1
1 − exp −τ /t 1 exp −ατ β − 1 τ2 − βτ + 1

. (23)

The dimensionless pressure p represents the pressure p normalized by the peak pressure 

pmax, i.e. p = p/ pmax. The dimensionless time t  denotes the time t normalized by shock 

duration, i.e. t = t /T. t 1, α and β are dimensionless parameters controlling the shape of the 

waveform. Specifically, β controls the presence and magnitude of the tensile phase. When β 
= 1, the waveform exhibits monotonic decay, without a tensile phase. Figure 13(a) shows an 

example of fitting Equation (22) to a waveform observed in underwater explosion [57], with 

the widely used Cole model [56] as reference. When β > 1, Equation (22) generates a 

waveform with a tensile phase. For example, Figure 13(b) shows the fitting of Equation (22) 

to a typical shock wave generated by an electrohydraulic lithotripters [58].

When the rise time of the shock wave, t r, is small, it can be approximated by
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t r = − t 1ln
t 1 α + β

t 1 α + β + 1 , (24)

after dropping higher order terms. In this case, substituting Equation (24) into (23) gives a 

closed-form formula for parameter K.

The model function is C∞ with respect to all the parameters, which allows smooth 

transitions between different waveforms.

5. Parametric studies

Using the waveform equation described above, we investigate the effects of shock waveform 

and magnitude on the elastic response and damage in BegoStone specimens. The same 

simulation model described in Section 3.2 is employed, except that the incident shock wave 

is prescribed using Equation (22), and the radial decay function, Equation (17), is not 

applied. In addition, we vary the size of the solid material to examine the size effects. For all 

the simulations presented in this section, the total simulation time is t = 10.0 µs.

In the study of the effect of shock waveform (Section 5.1) and specimen size (Section 5.2), 

we maintain the same effective acoustic energy, defined by Equation (20). We also ensure 

that the shock wave rise time, defined by

tr = T argmax
0 ≤ t ≤ 1

p t , (25)

is nearly the same.

The results obtained with different shock waves and specimen sizes are compared in terms 

of the maximum value of maximum principal stress, σmax, and the volume-averaged 

damage, Davg, defined by

Davg = 1
ΩS

∫
ΩS

D X, t dX . (26)

5.1. Effect of tensile phase

Five shock waves, denoted by SW-A1 through SW-A5 and plotted in Figure 14, are tested. 

This series represents a gradual transition from a shock wave that decays monotonically, 

without a tensile phase, i.e. SW-A1, to one that has a clear tensile phase, i.e. SW-A5. 

Characteristics of the five shock waves are given in Table 2.

Figures 15 and 16 compare the results of two representative cases, SW-A1 and SW-A4, at 

four time instances, which shows clear differences in both the elastic fields and the material 

damage.
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Specifically, at t = 4.38 µs, the transient stress field (Figure 15, the left column) shows that 

SW-A1 induces a compressive stress region near the front surface of the solid, whereas SW-

A4 produces tensile stress in this region. By comparing the pressure and stress along two 

lines, L1 and L2 (Figure 16, the first column, (a) and (b)), this region (marked by 1 ) 

corresponds to the interaction of the tail of the shock wave with the side wall of the solid, 

and the observed difference is due to the fact that SW-A4 has a tensile phase whereas SW-

A1 does not.

In the case of SW-A1, as the compressive stress waves induced by the tail of shock wave 

propagate inwards, they counteract the squeezing effect described in Section 3.4. 

Specifically, at t = 5.97 µs, the magnitude of tensile stress at a sensor point along the stone 

axis, Ps, shows a nearly 50% decrease for SW-A1 compared to SW-A4. Moreover, the peak 

tensile stress for SW-A1, which occurs within damage region A, is also lower compared to 

SW-A4, by approximately 17%. As shown in Figure 15, the local decrease of tensile stress 

results in dramatic decrease of damage within region A. For example, at t = 7.09 µs, the 

maximum damage induced by SW-A1 is 85% lower than that induced by SW-A4 (Figure 16 

(d)).

A similar effect is observed for the peak tensile stress within region B, induced by the 

superposition of the converging shear wave S′ and squeezing-induced tensile stress waves, 

as well as the resulting damage. Specifically, at t = 7.09 µs, SW-A1 produces a peak tensile 

stress of 28 MPa, 22% lower compared to SW-A4. Also, the damage caused by SW-A4 is 

large enough to initiate fracture, whereas the damage caused by SW-A1 is still below the 

fracture threshold.

Figure 17 compares the damage and fracture resulting from SW-A1 through SW-A4, 

obtained at the end of the simulation, i.e. t = 10.0 µs. The result suggests a trend toward 

larger shock-induced damage in both region A and B when the amplitude and duration of 

tensile phase of shock wave gradually increase. Despite the change in the amount of 

damage, fracture initiated at the same location in the cases of SW-A2 through SW-A4.

Figure 18 shows the effects of the tensile phase on Davg and σmax. As the acoustic energy of 

the tensile phase increases from zero (SW-A1) to 4.3 mJ (SW-A4), the volume-averaged 

damage, Davg, increases by 260%, from 0.0251 to 0.0914. In particular, SW-A2, with a very 

weak tensile phase that accounts for only 3.4% of the total acoustic energy, can induce twice 

as much damage as a shock wave without a tensile phase, SW-A1. The increase of damage is 

nonlinear and the slope reduces as the tensile phase extends. When the acoustic energy of 

tensile phase exceeds approximately 1/3 of the total acoustic energy (i.e. SW-A4), the 

average damage stops growing. This is likely due to the reduced contribution from the 

compressive phase of the shock wave.

Figure 18 also presents the peak value of maximum principal stress, σmax, in the solid 

material. For all cases where fracture occurred (i.e., SW-A2 to SW-A5), the peak value 

appears at the tip of the crack, at approximately 40 MPa. For the case of SW-A1, where 

fracture did not occur, the peak stress appears on the centerline of the solid, at 31 MPa.
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Remarks:

• The numerical results suggest that with the same magnitude, acoustic energy, and 

duration, a shock wave with a tensile phase can induce more significant damage 

and broader fracture to a target material than one without a tensile phase. For 

applications that use designed shock waves to modify or break solid materials, 

this indicates a possible approach to improve energy efficiency.

• Previous statistical models (e.g., [59, 60, 61]) tend to characterize a shock wave 

by its peak pressure, acoustic energy, duration, rise time, and some application-

specific parameters. The above results suggest that in addition to these quantities, 

the energy and magnitude of the tensile phase may also need to be considered.

5.2. Effect of target size

We consider six cylindrical specimens of different size, characterized in Table 3. The one 

denoted by S3 is the one used in the previous simulations. All the six specimens have the 

same length-to-diameter ratio. Their size, characterized by the ratio of the length of the 

specimen (L) to the length of the shock wave within water (LSW), varies from 1.07 (S1) to 

0.18 (S6). For each specimen, we apply both a shock wave with a tensile phase, SW-A4, and 

one without tensile phase, SW-A1.

Figure 19 presents the change of volume-averaged damage, Davg, with respect to the length 

ratio L/LSW. For both shock waves, the size effect is significant. In both cases, the maximum 

value of Davg is achieved in specimen S4, where L/LSW = 0.54. When the size of the 

specimen is smaller, a significant decrease in Davg is observed. Specifically, for specimen S6 

(L/LSW = 0.18), the value of Davg is less than 10% of that in S4. This trend is consistent with 

the finding of Zhang et al. [23] that smaller specimens require more shock doses to break, 

except that they tested specimens in clusters instead of individual ones. We have found that 

when the specimen becomes too small compared to the length of the incident shock wave, 

the trailing tensile phase can no longer work jointly with the leading compressive phase — 

through wave superpositions described in Section 3.4 — to increase damage. For example, 

Figure 20 presents the evolution of the stress and the cumulative damage in S6 induced by 

SW-A4. At t = 3.87 µs, the front of shock wave in the fluid has just reached the distal end of 

the specimen, and the result shows that no more damage will accumulate inside the 

specimen beyond this time. The fluid pressure on line L4 shows that, up to t = 3.87 µs, the 

specimen is mainly impacted by the compressive phase of the shock wave, while the tensile 

phase has barely reached the specimen.

For all the specimens, SW-A4 induces more significant damage than SW-A1. The difference 

in between varies from 187% (in the case of S5) to 264% (in the case of S4). Therefore, the 

main finding derived in Section 5.1 — that is, the presence of tensile phase can enhance 

material damage — may hold for a relatively wide range of specimen size, especially, when 

it is comparable to the length of the shock pulse.

5.3. Effect of shock magnitude

We consider two series of shock waves, generated by linearly scaling the pressure field of 

two representative waveforms with and without a tensile phase, that is, SW-A4 and SW-A1. 
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For each waveform, four scaling factor values, 0.5, 0.75, 1.25, and 1.5, are considered. The 

generated shock waves are denoted by SW-B1 through SW-B8. Specifically, SW-B1 through 

SW-B4 are generated by scaling SW-A4, while SW-B5 through SW-B8 are generated by 

scaling SW-A1. All the ten shock waves involved are plotted and compared in Figure 21. For 

each pair with the same peak pressure (e.g., SW-B1 and SW-B5), the acoustic energy is 

nominally the same. The solid specimen used in this series of parameter study is the one 

denoted by S3 in Table 3.

Figure 22 presents the variation of Davg with respect to the peak pressure of the shock wave. 

For both waveforms (with and without a tensile phase), Davg is nonzero when pmax > 10 

MPa. As expected, Davg increases as the shock magnitude increases.

Moreover, when pmax is greater than 10 MPa, a shock wave with a tensile phase always 

induces greater damage than its counterpart without a tensile phase. The difference varies 

between 460% (when pmax = 15 MPa) and 45% (when pmax = 30 MPa). The significant 

effect of the tensile phase can also be appreciated by comparing to the effect of shock 

magnitude and acoustic energy. For example, for the same target material, SW-B3 produces 

about the same damage (specifically, Davg) as SW-A1 which has 33% higher peak pressure 

and 78% higher effective acoustic energy. Similarly, SW-A4 produces about the same 

damage as SW-B6 which has 25% higher peak pressure and 55% higher effective acoustic 

energy.

6. Conclusion

This paper presents a computational study of the response of solid materials to shock waves 

traveling in a surrounding liquid medium. In particular, we have focused on a model 

problem that features a brittle material, BegoStone, in the form of cylindrical bodies and 

submerged in water. For this problem, previous experiments have shown that shock waves 

with peak pressure between 10 MPa and 50 MPa can produce repeatable planar cracks at a 

nearly fixed location, which indicates the potential for designing shock waves to achieve 

desired material modifications. Nevertheless, the exact process of this deterministic fracture, 

the cause of it, and the effects of various parameters (e.g., shock waveform, magnitude, and 

specimen size) are still open questions.

We have employed a recently developed CFD-CSD coupled solver, FIVER, to solve this 

shock-dominated fluid-solid interaction problem. We begin by calibrating the continuum 

damage mechanics model employed in this solver using experimental data. After calibration, 

the solver can capture both the location of the fracture and its planar shape reasonably well. 

The numerical result shows that the superposition of traveling elastic waves, which depends 

on the geometry of the specimen, drives the process of damaging and breaking the specimen. 

For this specific specimen, the planar fracture is initiated jointly by the transmitted 

compressive shock front (specifically, its interaction with the specimen’s side wall), the 

squeezing-induced tensile stress, and the transmitted tensile phase of the shock wave. 

Moreover, the tensile shear waves resulting from the interaction of the transmitted 

compressive shock front with the side wall (i.e. S′) facilitates the propagation of the initial 

crack in radial directions. Compared to previous studies in which maximum principal tensile 
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stress and accumulated damage are used to predict the location of fracture, the modeling of 

damage and fracture in this work allows us to directly compare with experimental result. 

Also, simulating fracture allows us to capture additional information about crack 

propagation, as well as its relation with the propagation of stress waves.

We have also developed a novel waveform equation, which can model shock waves with and 

without a trailing tensile phase, and allows smooth transition in between. Using this 

equation, we have conducted a series of parametric studies in which the shock waveform, 

magnitude, and the size of the specimen are varied. The result shows that for relatively wide 

ranges of shock magnitude (pmax > 10 MPa), and target size (relative to the length of the 

shock pulse, 0.18 < L/LSW < 1.07), a shock wave with a tensile phase can induce 

significantly greater damage to the target specimen than one without a tensile phase, even if 

the two have the same peak pressure, duration, and acoustic energy.

Finally, several limitations of the present study should be mentioned. First, although the 

computational model is generally applicable to various materials under high strain-rate 

loading conditions, the numerical analysis presented in this paper focuses on a representative 

brittle material, namely BegoStone, in a specific setting that is commonly used for 

lithotripsy research. Second, this work focuses on studying the material’s response to a 

single shock load, whereas real-world applications often involve multiple (or many) shock 

loads. In this regard, the cumulative effects of multiple shock loads on the material damage 

and fracture, as well as the effects of damage regions on the subsequent shock loads, are not 

considered in the calibration and the parametric studies. Third, the effects of cavitation are 

not considered in this study. In reality, the tensile phase of a shock wave may induce 

cavitation even in degassed water. The violent collapse of cavitation bubbles may cause 

damage to the specimen. The specific mechanisms and intensity of cavitation-induced 

damages in solid (and soft) materials are still open questions, which we plan to investigate in 

the future.
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Appendix

Here we provide additional details about the dynamic fracture experiment presented in 

Section 3.1. The setup of this experiment is showed in Figure 6(a). More specifically, an 

electromagnetic (EM) shock wave generator was mounted at the bottom of a Lucite tank (40 

× 40 × 30 cm) filled with 0.2-µm-filtered and degassed water (< 3 mg/L concentration, 

23°C) [50]. The shock wave generator is operated at 14.8 kV with a pulse repetition 

frequency (PRF) of 0.5 Hz. At the focus of the generator, where the intense shock wave is 

generated, a cylindrical BegoStone specimen (diameter × length = 9.43 mm ×10.34 mm) is 

held by a flat-base tube holder (inner diameter = 14 mm) made of silicon rubber. The axis of 

specimen and holder are aligned with the central axis of the generator using a 3D positioning 
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system (VXM-2 step motors with BiSlide-M02 lead screws, Velmex, Bloomfield, NY). The 

stone phantoms are fabricated by BegoStone Plus (BEGO USA, Smithfield, RI), with a 

powder-to-water mixing ratio of 5 : 1.

The stone specimen is subjected to multiple shock waves until the initial disintegration is 

observed. Figure 23 presents the photographs and statistics of initial fracture for 8 

specimens. For all 8 specimens, planar fracture is clearly observed and the average location 

is at 73% of the stone length from the front surface.
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Figure 1. 
Two shock waves with the same magnitude (i.e., peak pressure), the same acoustic pulse 

energy, similar spectrum, approximately the same duration, yet clearly different waveforms: 

(a) with non-monotonic decay and a tensile phase; (b) with monotonic decay, without a 

tensile phase.
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Figure 2. 
A model problem.
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Figure 3. 
Illustration of the augmented fluid domain EQU and the non-interface-conforming finite 

volume mesh EQU. In the left figure, the triangles with solid thin boundaries represent the 

elements in EQU and the hexagons with dashed boundaries represent the control volumes or 

cells. The tetrahedron on the right is the 3D illustration of the element.
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Figure 4. 
Schematic for the computation of fluid pressure force on the discretized embedded interface.
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Figure 5. 
A staggered, second-order accurate fluid-solid time-integrator.
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Figure 6. 
Schematic drawing of experimental setup.
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Figure 7. 
Characterization of shock waveform at focal plane perpendicular to the beam axis, using a 

fiber optic hydrophone (RP Acoustics FOPH 500): (a) A schematic drawing showing the 

distribution of 41 locations where pressure time-history is measured. (b) The pressure 

waveform measured at the focal point. (c) Variation of peak pressure along the y-axis, with 

error bars. (d) Variation of peak pressure along the z-axis, with error bars.
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Figure 8. 
The BegoStone specimen. (a) A specimen before testing. (b) A specimen after first fracture.
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Figure 9. 
Simulation setup. (a) The computational domain and meshes (the computational fluid 

dynamics (CFD) and computational solid dynamics (CSD) meshes are shown in black and 

blue, respectively). (b) The cubic spline fitting of the shock waveform measured at the focal 

point. (c) The shock wave prescribed as an initial condition to the fluid governing equations.
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Figure 10. 
Snapshots of simulation result at five time instances. (a) The fluid pressure field and the 

maximum principal stress on the surface of solid material. (b) The maximum principal stress 

inside the solid, on plane z = 0. (c) The microscopic damage D inside the solid, on plane z = 

0.
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Figure 11. 
Predicted fracture at t = 10 µs, using three different unstructured tetrahedral CSD meshes. 

Mesh A: h = 0.03 mm, ∆t = 7.6×10−4 µs. Mesh B and C: h = 0.06 mm, ∆t = 1.77×10−3 µs.
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Figure 12. 
Damage and fracture produced by a modified shock wave in which the tensile phase is 

truncated (Subfigure (a)), in comparison with the result of the original shock wave 

(Subfigure (b)).
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Figure 13. 
Fitting of two types of shock waves. (a) A shock wave results from underwater explosion of 

1.0 kg TNT (measured at a fixed point 3.0 m away from the explosion center) [57]. (b) 

Shock wave generated by an electrohydraulic lithotripter (Dornier HM3) [58].
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Figure 14. 
Five different shock waveforms with different tensile phase
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Figure 15. 
The evolution of transient stress field and cumulative damage D induced by SW-A4 and SW-

A1 at four time instances. (For the ease of comparison, solutions from SW-A4 and SW-A1 

are shown in the upper and lower halves of each image, respectively.)
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Figure 16. 
Comparison of transient solutions at four time instances. (a) Fluid pressure (inversed) along 

line L1 (y = 4.8 mm, a line on plane z = 0 mm showed in Figure 15). (b) Maximum principal 

tensile stress along line L2 (y = 4.7mm, z = 0 mm). (c) Maximum principal tensile stress 

along the cylinder’s central axis L3 (y = 0 mm, z = 0 mm). (d) Cumulative damage D along 

the cylinder’s central axis L3 (y = 0 mm, z = 0 mm).
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Figure 17. 
Comparison of the material damage and fracture induced by different shock waves (SW-A1 

through SW-A4) at the end of simulation, i.e. t = 10.0 µs.
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Figure 18. 
The peak value of the maximum principal stress σmax and the average damage Davg, as 

functions of the acoustic energy of tensile phase.
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Figure 19. 
The volume-averaged damage Davg induced by shock waves SW-A1 and SW-A4 in six 

specimens (S1 through S6) of different size.
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Figure 20. 
Impact of shock wave SW-A4 on a small target material, S6, with L/LSW = 0.18.
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Figure 21. 
Ten (10) shock waves with different magnitude and waveform.
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Figure 22. 
The volume-averaged damage Davg induced by shock waves with different magnitude and 

waveform.
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Figure 23. 
Experimental result: photographs of fractured specimens and statistics.
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Table 1:

Material properties and dimensions of the cylindrical BegoStone specimens.

Material properties of BegoStone (powder-to-water ratio 5:1, dry) [22] Dimensions

CL (m/s) CT (m/s) ρ (kg/m3) E (GPa) ν Static Strength (MPa) L (mm) d (mm)

4159 2319 1995 27.4 0.27 16.3 10.34 (avg) 9:43 (avg)

CL: longitudinal wave speed; CT : transverse wave speed; ρ: density; E: Young’s modulus; ν: Poisson’s ratio; L: length; d: cross-section diameter.
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Table 2:

Characteristics of five shock waves with different tensile phases.

Shock index α β t 1 K pmax (MPa) pmax
− MPa T (µs) tr (ns) Ep (mJ)

SW-A1 6.0 1.0 0.00217 1.09 20 0 10 94 15.3

SW-A2 2.25 4.0 0.00217 1.08 20 −1.83 10 91 15.3

SW-A3 2.0 4.8 0.00217 1.09 20 −3.59 10 91 15.3

SW-A4 2.3 5.8 0.00217 1.10 20 −4.96 10 88 15.3

SW-A5 3.0 7.4 0.00217 1.12 20 −6.34 10 86 15.3

α, β, t 1 and K are model parameters in Equation (22). pmax
−

, denotes the negative peak of tensile phase.
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Table 3:

Dimensions of six specimens for the study of size effect.

Specimen index Length, L (mm) Diameter, d (mm) L/LS W

S1 15.51 14.15 1.07

S2 12.93 11.79 0.89

S3 10.34 9.43 0.71

S4 7.76 7.07 0.54

S5 5.17 4.72 0.36

S6 2.59 2.36 0.18
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