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Abstract

The maternal-fetal interface represents a unique immune privileged site that maintains the ability 

to defend against pathogens while orchestrating the necessary tissue remodeling required for 

placentation. The recent discovery of novel cellular families (innate lymphoid cells, tissue-resident 

NK cells) suggests that our understanding of the decidual immunome is incomplete. To understand 

this complex milieu, new technological developments allow reproductive immunologists to collect 

increasingly complex data at a cellular resolution. Polychromatic flow cytometry allows for 

greater resolution in the identification of novel cell types by surface and intracellular protein. 

Single-cell RNAseq coupled with microfluidics allows for efficient cellular trascriptomics. The 

extreme dimensionality and size of datasets generated, however, requires the application of novel 

computational approaches for unbiased analysis. There are now multiple dimensionality reduction 

(t-SNE, SPADE) and visualization tools (SPICE) that allow researchers to efficiently analyze flow 

cytometry data. Development of computational tools has also been extended to RNAseq data 

(including scRNAseq), which requires specific analytical tools. Here, we provide an overview and 

a brief primer for the reproductive immunology community on data acquisition and computational 

tools for the analysis of complex flow cytometry and RNAseq data.
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Introduction

Pregnancy is a time of maternal adaptation to the semiallogeneic fetus, requiring a unique 

immunome to support the developing placenta1,2. The maternal-fetal interface maintains a 

specific milieu of immune cells, consisting mostly of decidual natural killer cells (dNKs)1–4, 

with smaller populations of antigen presenting cells, such as dendritic cells (DCs) and 

macrophages5,6, and T cells7,8, including unconventional subsets9–11, and B cells12. Further, 

there is evidence of cellular interactions between dNKs and DCs in early pregnancy13–15, 

suggesting an important role in proper development of the placenta. However, the nature of 
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these interactions remains unclear. Chemokine silencing is thought to limit T cell traffic into 

the decidua16, an important tolerance-inducing mechanism. Despite limited traffic, both 

CD4+ and CD8+ T cells have been identified at maternal-fetal interface17,18 and implicated 

in preterm labor18. Recently, multiple groups have identified non-dNK members of the 

innate lymphoid cell (ILC) family at the maternal-fetal interface19,20 with a specific tissue-

resident NK cell (trNK) in the decidua21,22. This adds a layer of complexity to our 

understanding of the decidual immunome. However, our ability to assign unique and 

unambiguous cellular identities depends on improved methods of assigning cellular 

phenotypes.

Technological advances allows researchers to collect increasing amount of data per cell23. 

Advances in flow cytometry enable researchers to assess the expression of multiple proteins 

simultaneously from single cells. Similarly, advances in RNA-seq enable researchers to 

analyze the transcriptome of sorted cell groups or even individual cells. The tsunami of data, 

however, presents entirely novel challenges in visualization and require computational tools 

for thorough analysis.

This review aims to highlight some of the technological advances in (1) flow cytometry, 

including its sister platform mass cytometry (CyTOF™), (2) RNA-seq, and (3) data analysis 

workflows to handle complex data. We open with a discussion of data acquisition, outline 

best practices in flow cytometry and RNA-seq, and discuss some of the benefits and 

limitations of analysis tools for cytometry and sequencing data. We highlight some recent 

advances like expansion of fluorochrome detection in flow cytometry and single-cell RNA-

seq (scRNA-seq). We then transition to data analysis and discuss dimensionality reduction 

tools that are available for the analysis of flow cytometry data, outline a workflow for RNA-

seq data analysis, and discuss user-friendly packages available for the analysis of RNA-seq 

data. This review aims to provide reproductive immunologists with a go-to guide for single-

cell data analysis to aid in the advancement of the field.

Data Acquisition

Flow cytometry—Flow cytometry is a method that allows rapid assessment of multiple 

parameters simultaneously for a single cell23–28. The earliest version of flow cytometry was 

developed as a fast method for individual cell counting and separation using hydrodynamic 

flow focusing29,30. Subsequently, cell sorting using a conducting medium was introduced25. 

The introduction of fluorescent proteins to flow cytometry allowed for the development of 

fluorescence activated cell sorting (FACS)31, combining both parameter acquisition (i.e. 

surface marker expression) and live cell collection, giving rise to modern flow cytometry. 

Early applications of flow cytometry used one or a small number of fluorochromes, each 

with a specific absorption and emission spectrum, for the identification of cell populations. 

Development of additional fluorochromes and hardware (e.g. lasers, detectors, etc.) now 

allows detection of up to 18 parameters23 by commercially available flow cytometers, with 

experimental cytometers able to detect more than 30 parameters32. In addition to traditional 

hydrodynamic focusing technology that employs laminar flow to focus cell suspensions 

through the flow cell33,34, acoustic focusing cytometers have recently entered the market, 

with the advantage of faster analysis of large sample inputs32,35. Flow cytometry is a 
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powerful tool in immunology, including reproductive immunology, and has been broadly 

adopted, increasing our understanding of the maternal-fetal interface immunome19,20,36–41.

Flow cytometry has applications beyond cell classification and assessment of activation 

status and interfaces with many other single cell-based modern applications (Figure 1). 

FACS, for example, is used to obtain pure cell populations for downstream applications such 

as gene expression analysis (RNA-seq, qPCR)23,32 and recovery of live cells to conduct in 
vitro experiments. Moreover, the versatility of flow cytometry has been leveraged to create 

flow bead-based variants of protein detection assays (cytometric bead analysis) using 

fluorescent sandwich-antibody capture beads32, analogous in principle to ELISA. Signaling 

pathway analysis using phospho-protein detection allows researchers to investigate signaling 

events in individual cells42,43. Phospho-protein labeling can also be applied as a barcoding 

technique44, allowing researchers to barcode different samples and pool them for staining 

and acquisition, thus minimizing reagent use and increasing reliability of comparative 

measures.

There are some limitations when conducting flow cytometry experiments. Spectral overlap 

between available fluorochromes limits the number and fidelity of channels available23. 

Spectral overlap, or ‘spillover’, occurs when the same fluorochrome can be detected in more 

than one detector, due to wide emission spectra of the natural and especially tandem 

fluorochromes45,46. Spectral overlap can be corrected for mathematically by applying a 

spillover coefficient within the analysis software with appropriate controls45,46. Despite 

correction, designing and optimizing multispectral flow cytometry panels to achieve high 

levels of sensitivity remains a challenge as each additional color correction increases the 

coefficient of variance47. To overcome this, a number of resources are available, including 

well-characterized Optimized Multicolor Immunofluorescence Panels, or OMIPs, that 

demonstrate optimized and validated panels47. In addition, online tools, such as 

FluoroFinder (www.FluoroFinder.com), provide a panel building platform that allows 

researchers to visualize spectral overlap, match marker density to fluorochrome intensity, 

and display antibody availability with vendors, thus facilitating panel design.

Reproducibility constraints are a key and often underappreciated consideration in flow 

cytometry. To improve the integrity and quality of flow cytometry data the MIFlowCyt (The 

Minimum Information About a Flow Cytometry Experiment)48 standards have been 

developed to address necessary reporting. Adhering to the MIFlowCyt guidelines allows for 

greater collaboration and improves reproducibility. In addition, the use of a standardizing 

method for flow cytometer set up/calibration should be considered, specifically when 

analyzing fluorescence intensities, as these values depend on laser intensity and detector 

settings that can vary between experimental runs.

Similar to flow cytometry, mass cytometry allows researchers to collect single cell data by 

combining both flow cytometry and mass spectrometry23,32. Mass cytometry, or Cytometry 

by Time-Of-Flight (CyTOF™), uses heavy metal isotopes as tags attached to antibodies49,50, 

thus allowing for assessment of up to 40 markers, achieving higher resolution compared to 

flow cytometry32,50. However, the sensitivity and throughput of mass cytometry remains 

low23,50. Furthermore, use of mass cytometry leads to loss of cellular material during data 
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acquisition, with up to 70% of cells being lost23, a particularly important limitation for 

reproductive immunologists who sample from very limited tissue sources. An additional 

obstacle are longer acquisition times required for mass cytometry compared to flow 

cytometry23,32. Mass cytometry, however, has been successfully used to immunophenotype 

maternal and fetal peripheral blood at term pregnancy51, thus illustrating that mass 

cytometry can be a useful technique in long-term studies of immune changes across 

pregnancy.

RNA-seq—Cellular transcriptome has become an important tool to study the biology of 

cell populations. Recently, RNA-seq has emerged as a valuable tool that allows us to 

understand the transcriptome of tissue52 or cells53 of interest. In the 1990s, microarrays were 

the standard analysis platform for gene expression analysis in large studies52,54,55. However, 

microarrays have high degrees of background hybridization and relative gene expression 

analysis of different transcripts within the same array is difficult to interpret. Furthermore, 

scanning of transcripts is only possible for those whose probes are present in the 

predesigned microarray52, thus restricting discovery of novel observations. RNA-seq 

addresses some of the limitations of microarrays and allows researchers to sequence the 

entire transcriptome without limiting the scope of transcripts analyzed.

Experimental design is imperative in obtaining good quality data from RNA-seq. 

Traditionally, RNA-seq has been performed on bulk tissue52; however, analysis of bulk 

tissue meant that cell heterogeneity was underappreciated. Depending on the research 

question or limitations in obtaining samples, RNA-seq on bulk tissue might be a viable 

option, although most studies now rely on purified cells. Whether performing RNA-seq on 

bulk tissue or purified cells, it is important that researchers follow the guidelines established 

by the ENCODE (Encyclopedia of DNA Elements) consortium56–58. High-quality RNA is 

essential to the production of good poly(A) libraries58; therefore, researches need to follow 

an RNA isolation protocol that minimizes introduction of additional biases59, including the 

removal of ribosomal RNA58,59 while maintaining RNA integrity.

Designing RNA-seq experiments requires sequencing depth and number of biological 

replicates to be determined beforehand, as these two variables affect the power of statistical 

analysis. Increasing sequencing depth, or the numbers of reads for a given sample, allows for 

detection and quantification of a greater number of transcripts, especially less abundant 

transcripts59,60. There is a trade-off between sequencing depth and number of replicates58, 

with a minimum of three replicates needed for gene expression comparisons59. Tools that 

help calculate the best experimental design based on researcher’s budget59,61 are also 

available, allowing for the best balance between cost and statistical confidence.

Single-cell RNA-seq (scRNA-seq) has been developed to address cellular heterogeneity 

within tissues. The simplest workflow for scRNA-seq includes sorting of single cells, RNA 

isolation, library preparation, and sequencing. A major limitation is the difficulty in isolation 

of high-quality RNA, given that cells are subjected to staining and sorting pressures, 

consequently leading to some amount of cell death resulting in low RNA quality.
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Microfluidic technologies, specifically droplet microfluidics, have been instrumental in the 

development of high-throughput protocols for scRNA-seq that requires fewer reagents and 

less time while increasing the amount of data acquired62,63. Numerous droplet encapsulation 

protocols have been developed and applied to various biological systems64–67. They all 

involve using beads to encapsulate cells in a high-throughput fashion and differ only in the 

encapsulation method68,69. Droplet encapsulation methods for scRNA-seq are commercially 

available (reviewed in70) thus making this technology accessible to many labs and centers. 

Encapsulation of doublets is a problem of droplet microfluidics. However, commercially 

available systems have been optimized to minimize doublet encapsulation, thereby allowing 

for true single-cell analysis, with the 10X Genomics platform providing the lowest doublet 

frequency69,70.

Newer technologies can couple surface expression data with transcriptomics, thus allowing 

researchers to match protein expression with transcript levels71,72. Cellular indexing of 

transcriptomes and epitopes by sequencing (CITE-seq; available commercially as 

TotalSeq™ through BioLegend®), allows simultaneous acquisition of protein and mRNA 

expression71. CITE-seq technology uses antibodies tagged with an oligo containing a PolyA 

tail, thus mimicking an mRNA molecule and providing a unique ‘barcode’ for the antibody. 

The labeled single cells are then encapsulated with beads, using either the 10X Genomics 

and Drop-seq platforms, followed by reverse transcription of all mRNAs, including the 

antibody oligo tag, and sequencing of resulting full length and tagged cDNAs. Relative 

abundance of cDNA tags is used to approximate protein expression, thus providing both 

protein expression and transcriptome information for single cells. A similar approach is 

REAP-seq, which differs only in how the antibody is conjugated to the DNA barcode72,73. 

Overall, these technologies will further our understanding of the maternal-fetal interface 

immunome.

Data Analysis

The pivotal challenge arising from acquisition of high complexity single cell data is data 

analysis. Advances in the data acquisition methods also require high computational 

resources. To address this, many computational algorithms have been developed to properly 

visualize, filter, and interpret high-dimensional data. Outlined here are some of the 

algorithms used to analyze such high-dimensional data sets.

Flow Cytometry

Flow cytometry has emerged as an important tool in single cell analysis. Advances in 

fluorochrome availability and detection capabilities by flow cytometers has led to an 

expansion of computational tools that allow researchers to analyze polychromatic flow 

cytometry data. Flow cytometry data is recorded in Flow Cytometry Standard (FCS) files 

which can be analyzed by multiple methods. Below, we discuss a series of computational 

tools that are available for visualization (t-SNE, SPADE, Cytosplore+HSHE), clustering 

(DensVM, k-means), and category assignment (SPICE) (Figure 2).
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Manual analysis

Manual analysis involves the construction of one- or two-dimensional plots for a subset of 

markers and selecting cellular populations of interest (i.e. gating) in a sequential 

manner27,28. Manual analysis remains the main method of analysis in many labs, however it 

has limitations which include user bias and operator variability28. Multiple studies have 

shown a high degree of variability between different users, even when analyzing identical 

data sets28,74–76. Having a pre-established gating scheme, based on well established 

phenotypes77,78, as part of the analytical pipeline in the laboratory can help reduce 

variability between users. This can, however, inadvertently reduce exploration of the entire 

dataset, thus decreasing the possibility of identifying novel cellular subsets79. Alternatively, 

laboratories and centers can assign one individual to analyze all data generated from one 

study74–76, although this might no be feasible for small laboratories or longitudinal studies 

were personnel turnover maybe encountered. Despite its limitations, manual analysis 

remains an important component of data analysis and is required for data filtering and 

preprocessing in preparation for computational analysis.

Computational Approaches

As data acquisition technology has advanced in recent years, computational analysis tools 

have become readily available to researchers. In flow cytometry, computational algorithms 

have allowed researchers to address the shortcomings of manual analysis28,74,75. 

Additionally, use of unbiased computational algorithms give researchers the ability to 

discover novel cell types that they might have otherwise overlooked using manual 

analysis79. More importantly, computational approaches are capable of recapitulating 

manual analysis results75, thus reinforcing their applicability in our understanding of the 

immune system. Despite the advantages in implementing computational analysis, one needs 

to have the computational skills and resources required for program implementation. 

Fortunately, there are easy-to-implement computer programs that require minimal computer 

coding knowledge, thus making them accessible to novice users. Below, we outline 

programs that are useful to reproductive immunologists to further our understanding of the 

immunome at the maternal-fetal interface.

t-SNE—A dimensionality reduction method that allows for visualization of data points on a 

two-dimensional map is t-distributed stochastic neighbor embedding (t-SNE)80. Unlike 

principal component analysis (PCA), which is well suited for linear data, t-SNE is better 

suited for the analysis of flow cytometry data, which is logarithmically distributed. Coupled 

with clustering methods, t-SNE allows for the partitioning and grouping of cells by 

similarity in an unbiased, data driven manner. Implemented in the immunophenotyping of 

human term decidua41, amniotic fluid36, and the tracking of immunome changes across 

murine gestation38, t-SNE visualization has proven to be a powerful tool in the 

understanding of the maternal-fetal interface immunome.

To implement t-SNE, researchers can use Cytofkit81, available as an R package through 

BioConductor82,83. The user-friendly graphical user interface (GUI) allows easy 

implementation of Cytofkit in R, thus minimizing the need for extensive R language. 

Originally developed for the analysis of mass cytometry data, Cytofkit has been successfully 
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used to adequately phenotype the mouse myeloid compartment84 and human helper T 

cells85. Cytofkit combines t-SNE with the machine-learning algorithm DensVM (density-

based clustering aided by support Vector Machine) for the unbiased partitioning of cells, and 

it includes additional visualization algorithms such as phenograph and ClusterX81.

Further, t-SNE can be implemented using the Automatic Classification of Cellular 

Expression by Nonlinear Stochastic Embedding (ACCENSE) software86. ACCENSE, like 

Cytofkit, is an easy-to-use tool that does not require understanding of programming 

language. Because ACCENSE uses k-means clustering to assign cells to a particular group, 

some cells remain unclassified81 thus limiting the power of ACCENSE. A fast, distributed 

version of t-SNE is viSNE87. Once available as a stand-alone MatLab program called cyt, 
viSNE is now part of the software suite available through Cytobank©, which requires a paid 

subscription. Additionally, t-SNE is available as a plug-in feature in FlowJo® and requires 

only installation of required R packages.

Although t-SNE is widely available to researchers and is useful for the identification of rare 

cell types, it has considerable limitations. Experimental variability represents a major 

challenge in t-SNE analysis, and results in significant batching of experimental runs41,86,88. 

This variability arises at multiple experimental stages, including minor deviations in staining 

procedures and set-up of voltages on the flow cytometer’s detectors. These can affect the 

fluorescence intensity measures of the markers assessed since these values depend on both 

antibody concentration and voltage levels. Laboratories can establish standard operating 

procedures for staining to minimize variability between experimental runs74. For flow 

cytometer set-up, users can employ standardizing beads41 which allow detector voltages to 

be set at the same level across experiments. Because t-SNE is computationally expensive, 

minimizing data input by downsampling is necessary, thus limiting the power of t-SNE, 

specifically in identifying rare populations89. Despite these limitations, t-SNE still 

represents a viable option for researchers in reproductive immunology.

SPADE—Spanning-tree progression analysis of density-normalized events (SPADE) allows 

multiple cell types to be visualized in a branched tree90,91. Tree nodes represent cellular 

clusters connected in a minimum spanning tree based on phenotypic similarity92. The 

resulting SPADE tree allows for visualization of cluster density, with node size indicating 

the number of cells within clusters92 and color scale indicating marker expression levels93. 

SPADE has been successfully implemented to understand changes in the immune system 

during cancer treatment94, characterize the diversity of extracellular vesicles95, and asses 

immune drug responses96. SPADE is part of Cytobank’s suite of computational tools. It is 

also available as a standalone package that can be installed in both Macs and PCs and as a 

Matlab program (http://pengqiu.gatech.edu/software/SPADE/).

Although SPADE has proven useful in visualizing flow cytometry data, there are some 

limitations to its use. First, unlike t-SNE/DensVM analysis which determines the number of 

clusters in a user-independent fashion, SPADE users have to specify the initial number of 

clusters believed to be in the data93,97, potentially leading to underestimation of cellular 

clusters. If the number of clusters is overestimated, clusters can be expertly merged97, by 

merging two clusters that seem phenotypically similar; however, leading to the introduction 
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of user bias. Second, SPADE down-sampling occurs in a stochastic manner, thus leading to 

potential exclusion of rare cellular populations. Users interested in identifying rare 

populations should indicate a low down-sampling percentage, to increase the likelihood that 

low density regions are assigned their own cluster23,90,97. Third, SPADE does not allow for 

group-level statistical comparisons when analyzing multiple FCS files simultaneously98. The 

most recent version of SPADE includes several improvements, including a deterministic 

density-dependent down-sampling method and the implementation of a deterministic k-

means clustering algorithm, reducing the randomness of down-sampling and clustering in 

the original implementation of SPADE91. This newest version also includes a tree-

partitioning algorithm that automatically suggests a tree partition based on the largest 

phenotypic difference in high-dimensional space. The user can either accept or reject the 

suggested partition, thus allowing for a semiautomated interpretation of the SPADE tree91. 

Similar to t-SNE, SPADE uses fluorescence intensity as data input, therefore experimental 

standardization should be adopted to maintain consistency across experiments and minimize 

any batch effects.

Despite its limitations, SPADE is a useful analytical tool in reproductive immunology. 

Because SPADE allows the user to predetermine the number of clusters (i.e. categories), 

allowing additional datasets to be added and fitted into the existing clusters. This can prove 

useful in longitudinal studies involving the immune profiling of women across pregnancy 

and into the postpartum period, thereby allowing researchers to map peripheral immune 

changes across pregnancy progression.

Cytosplore+HSNE—Cytosplore+HSNE implements Hierarchical Stochastic Neighbor 

Embedding (HSNE)99 in an integrated fashion, thus allowing for the interactive exploration 

of high-dimensional single-cell datasets and identification of distinct populations in a data-

driven fashion89,100. Cytosplore+HSNE has been applied to the analysis of innate lymphoid 

cells in fetal human intestine101. One of the limitations of t-SNE is the computational time 

required to analyze a dataset, which often requires down-sampling. To address this, 

Cytosplore+HSNE uses A-tSNE, a modified version of t-SNE that aims at minimizing the 

precomputation times required to analyze high-dimensional datasets102. Cytosplore+HSNE 

also uses SPADE clustering which allows for high-level partitioning of the data. Coupling 

SPADE with A-tSNE reduces the input size of each embedding and makes analysis feasible. 

To address some of the shortcomings that come with the use of ACCENSE, Cytosplore
+HSNE uses Gaussian Mean Shift (GMS), which can create arbitrarily shaped clusters and 

leads to all the available data being clustered.

One of the main benefits of Cytosplore+HSNE is that it can be applied to many different types 

of data, such as that from flow and mass cytometry and scRNA-seq. Because of the 

computational benefits designed into the program, downsampling is not required, allowing 

the analysis of the entire data set. This added benefit allows one to identify rare populations 

that would have been missed using traditional t-SNE89.

SPICE—SPICE, or Simplified Presentation of Incredibly Complex Evaluations, allows 

users to evaluate multiple parameters, such as age or treatment, using an easy-to-use 

graphical interface103. Unlike the computational tools described above, SPICE is not a 
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dimensionality reduction tool. Rather, SPICE allows grouping of samples based on any 

number of categories to be displayed graphically, either in pie charts or bar graphs. Pestle© 

is an accompanying program that allows users to reformat FlowJo® data tables for SPICE 

analysis104. Although Pestle© is not necessary for the current version of SPICE (v.6), it is 

useful to subtract background noise, thus allowing for cleaner visualization103. SPICE 

includes multiple statistical tests such as permutation tests to compare pie charts and 

Student’s t tests to compare different groups. SPICE has been applied to understand the 

functional properties of mucosal associated invariant T (MAIT) cells in the female genital 

mucosa105 as well as analyzing the immune modulating effects of progesterone during 

pregnancy106.

SPICE is freely distributed by the NIH and is presented in a user-friendly interface that is 

easy to implement. However, a drawback is that it is only supported in Mac with no plans to 

support a PC version. Formatting data for SPICE can also be a challenge but can be 

overcome with a working knowledge of table formatting in FlowJo. Additionally, SPICE 

depends on Boolean gates of manually gated populations, which can lead to biases107, as 

manual gating can be subjective as discussed above. To address this, it is possible to 

integrate dimensionality reduction techniques and draw Boolean gates on identified clusters, 

thus making SPICE analysis data-driven and user independent.

RNA-seq

Data analysis for RNA-seq experiments can be broken down into the following steps: quality 

control, preprocessing, alignment, alignment quality control, and differential gene 

expression (DGE) (Figure 3; Table 1). Below we discuss the analysis of scRNA-seq which 

follows a similar approach. We then provide an overview of additional analysis options, 

including pathway analysis and deconvolution approaches. We end discussing user interface 

packages that might prove useful and accessible.

Analysis of scRNA-seq

Single-cell RNA-seq has emerged as a powerful tool that provides the ability to analyze the 

transcriptome at the single-cell level108, thus allowing researchers to identify rare cell 

populations, infer cell lineage trajectories, and assess cellular differentiation109. The 

workflow for scRNA-seq data analysis follows the same steps outlined above. However, 

there are special considerations for scRNA-seq data analysis. For instance, scRNA-seq data 

is sparse, compared to bulk RNA-seq, either because of the nature of transcription and 

temporal gene expression or event dropout resulting from inefficient reverse transcription 

reactions of low abundance genes70. As a result, assumptions about data distribution in bulk 

RNA-seq do not apply to scRNA-seq70.

Quality control, alignment, and quantification of scRNA-seq reads can be done with the 

same programs used for bulk RNA-seq110. Because of dropout in scRNA-seq data, it is 

important that additional data filtering is done. Gene filtering allows for the removal of low 

quality genes and samples110. The best way to filter out poor quality genes and samples is to 

use External RNA Controls Consortium (ERCC) spike-ins that are added at the start of the 

experiment, thus providing calibration of the relative amount of starting material111,112. 
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OEFinder is a program that can be used for the removal of poor quality genes113. Certain 

confounders such as batch effects and cell-cycle induced variation also need to be removed 

from scRNA-seq data for adequate analysis110. For most studies, down-sampling can 

eliminate batch effects, however this reduces the complexity of the data110. There are 

packages that can be used for the removal of batch effects, such as COMBAT114, and for 

cell-cycle induced variation, scLVM115 and ccRemover116.

Normalization of scRNA-seq data, as with bulk RNA-seq, is an important step in data 

analysis. For experiments that did not use ERCC spike-ins, DESeq2 and edgeR can be used 

for normalization, just as in bulk RNA-seq110. For scRNA-seq experiments that do contain 

ERCC spike-ins, programs such as GRM117, BASiCS118, and SAMstrt119 can use spike-ins 

as internal controls for normalization110.

Although DGE is not usually the main objective of scRNA-seq experiments, there are 

programs that are capable of doing this analysis110. There are specific programs that address 

dropout in scRNA-seq data, such as Single-Cell Differential Expression (SCDE)120, 

PAGODA121, and MAST122. Other programs available, such as Monocle123, address the 

bimodality of gene expression. Programs used for bulk RNA-seq, such as edgeR and 

DESeq2, can be applied to scRNA-seq data and have been shown to perform better than 

programs specific for scRNA-seq data110,124.

The power of scRNA-seq comes from the ability to identify rare subpopulations and to infer 

developmental trajectories of single cells110. For subpopulation identification, 

dimensionality reduction algorithms such as PCA and t-SNE can be applied110,125–127. 

There are specific dimensionality reduction algorithms for scRNA-seq such as Zero-inflated 

factor analysis (ZIFA)128 and PAGODA121 that can be implemented for the identification of 

subpopulations. Furthermore, there are multiple programs, such as Monocle123, Waterfall129, 

SLICER130, and SCUBA131 that can infer differentiation pathways from scRNA-seq data.

Gene Pathway and Deconvolution

Gene pathway analysis takes into account the relationship between expressed genes, thus 

allowing researchers to determine whether biological processes differ between groups132. 

Gene pathway analysis workflow involves a list of genes of interest from the RNA-seq data 

set and the application of statistical methods to test for gene enrichment132,133. There are 

multiple packages that can perform pathway analysis, such as GSEA134 and GSVA135. 

Recently, programs have been developed to account for the pathway topology132. Multiple 

programs, such as SPIA136 and TAPPA137, provide pathway topology information by taking 

into account gene interactions and weighing interacting genes more than non-interacting 

genes, while DEAP138 identifies the pathway that is most differentially expressed.

Deconvolution programs are capable of determining cellular composition of heterogeneous 

samples based on gene expression patterns across different cell subtypes139,140. In most 

instances, these programs require gene expression datasets as a reference to determine the 

composition of bulk RNA-seq samples140. There are multiple programs that are capable of 

determining the composition of bulk samples all using a specific mathematical approach139. 

CIBERSORT141, for example, is a partial deconvolution algorithm that uses nu support 
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vector regression to estimate the cellular fractions in bulk samples139. However, the 

effectiveness of CIBERSORT depends heavily on the reference profiles used141. Multi-

Subject Single Cell (MuSiC) is another deconvolution algorithm that uses scRNA-seq data 

obtained from a cross section of individuals as a reference to then analyze bulk RNA-seq 

data from different individuals142. MuSiC might prove of particular interest to reproductive 

immunologist as only a small set of samples would be required for scRNA-seq, thus limiting 

costs, with the remaining of the study samples requiring bulk RNA-seq.

Integrated Graphical User Interface Packages

Most of the programs/packages outlined here require some coding knowledge. Fortunately, 

there are some software packages that combine some of the tools listed above that make 

RNA-seq data feasible to users who might not have extensive coding skills. Here we cover 

Chipster and Galaxy.

Chipster143 is a collection of up-do-date analysis and visualization tools and is available as a 

graphical Java desktop application. Chipster easily integrates tools regardless of how the tool 

is implemented143. Chipster allows users to track their analysis workflow and save any series 

of steps144. In addition to RNA-seq data, Chipster is able to analyze other types of data, 

including microarrays, miRNA-seq, ChIP-seq, and whole genome sequencing143,145. 

Chipster is freely available and can be used with a free short-term evaluation account 

through Chipster’s server143. Additional benefits of Chipster include the ability for users to 

save their workflows and share them with other users, thus allowing for collaboration and 

reproducibility143. Users are able to view the original tool code and integrate additional 

code143. Chipster, however, is not designed to be integrated to a laboratory information 

management system (LIMS), limiting Chipster’s use to laboratories that do not have a large 

amount of NGS data145.

Galaxy146–148 is a popular, web-based framework148 that provides computational tools with 

an intuitive user interface146,149. Most importantly, Galaxy does not require substantial 

programming skills147. Galaxy includes a unique history system that allows the user to 

organize and save workflows, and maintain quality control of the analysis performed149, 

thus allowing for reproducibility146. Although written in Python, Galaxy does not require 

the user to have Python programming knowledge. Galaxy hides the computational details 

from the user, thus eliminating the need for extensive bioinformatics expertise146,149. 

Despite this, Galaxy is limited because pipeline output is not standardized and depends on 

the user input145. Because of the high level of flexibility within Galaxy, its usage might be 

limited towards those that have a good knowledge of the tools being applied, compared to 

Chipster145.

Verifying biological veracity of single cell data sets

Single cell data presents are wealth of information. Despite its advantages there are some 

considerations to keep in mind, both as users and readers. Below, we outline advice on how 

to minimize common problems and how to improve data quality.
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To address batch effects and document the extent of experimental variation in flow 

cytometry, users should create additional parameters in the FCS files that document user/

operator and experiment number. Downstream analysis would reveal whether there is 

grouping based on experimental runs and/or operator, allowing researchers to properly 

interpret their data.

We recommend that researchers take advantage of user-friendly programs such as Chipster 

to check the quality of their RNA-seq data. At a minimum, researchers would be able to 

check read quality and determine the presence of outliers. This would allow the researchers 

to make experimental adjustments if needed. Having knowledge of outliers or batching 

effects would also allow researchers to have an informed conversation with 

bioinformaticians that could then guide them on how to handle downstream analysis. In 

addition, researchers should perform some validation of their RNA-seq data, either by 

performing qPCR or protein level detection (flow cytometry, imaging). As readers, we 

should also expect some level of validation on reported RNA-seq results.

When working with bioinformaticians, we recommend that researchers request all 

downstream data files (count tables, DE analysis tables). This is particularly important when 

looking at gene pathway analysis, were the bioinformatician might be unfamiliar with the 

biology and might consider some results irrelevant.

Finally, we recommend that researchers become familiar with basic bioinformatics language 

(Table 2) and basic data analysis terms (Figure 3). This will facilitate conversations with 

bioinformaticians and will make undertaking RNA-seq experiments manageable.

Conclusion

Expanding our knowledge of the reproductive immunome presents a great opportunity to 

improve fetal and maternal health. Many immunological questions remain obscure at the 

maternal-fetal interface, including (1) how decidual immune cells interact with non-immune 

cells (trophoblasts, stromal cells, endothelial cells) and other decidual immune cells, (2) if 

and how decidual immune cell dysfunction lead to pregnancy pathologies, and (3) how 

leveraging single-cell data could lead to reliable diagnostic tools. Already, tools discussed 

here, such as the 10X Genomics platform and scRNA-seq, have been leveraged to map 

cellular interactions in first trimester decidua150,151, providing insight into these important 

cellular relationships. This review, although not exhaustive, highlights practical tools that 

will help the reproductive immunology community decipher the mysteries of immune 

cellular networks governing gestational outcomes.
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Figure 1. Flow cytometry applications.
Flow cytometry has many applications including: phenotyping, allowing for the 

identification of various cells in a specimen; sorting of specific cellular populations for 

downstream applications; cytometric bead arrays (CBA), which allows for the quantification 

of soluble proteins; analysis of signaling pathways, detecting phosphorylation events.
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Figure 2. Options for flow cytometry data analysis.
Flow cytometry data can be analyzed by various methods. For high-dimensional flow 

cytometry, the use of dimensionality reduction algorithms for visualization is recommended. 

Coupled with clustering algorithms, dimensionality reduction can aid in the identification of 

novel or rare cellular populations.
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Figure 3. Steps for RNA-seq data analysis.
Proper RNAseq data analysis requires multiple steps. Outlined in this figure are the six basic 

steps: (1) Quality control check of raw reds; (2) Preprocessing of reads, including the 

removal of adaptor sequences, poor quality reads, and trimming of reads; (3) Alignment of 

reads to the reference genome; (4) Quality control check of the resulting read alignment; (5) 

Quantification of the read alignment and count table generation; and (6) Differential gene 

expression. Table 1 describes programs of interest for each of the steps outlined above.
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Table 1

Programs used to complete steps in RNA-seq data analysis outline in Figure 3.

Step  Tool Description Ease of Use Ref.

1

FastQC
Provides a report of raw read quality. Implemented in JAVA and accepts BAM, SAM, 
and FastQ file formats. Available at (https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/).

GUI* 152

FastX Part of the FastX-Tool kit. Implemented either through Galaxy or through command-
line. Pre-compiled binaries are available in Linux and MacOS X platforms.

Command 
line 153

PRINSeq Used to check quality of RNA-seq data. Can also filter, reformat, and trim reads. 
Provides summary statistics of the reads in both graphical and tabular format. GUI 154

2

Trimmomatic

Is a flexible trimmer that can handle paired-end data. It is implemented through Java 
and is available at www.usadellab.org/cms/index.php?page=trimmomatic. Only works 
with Illumina generate data. Does not automatically detect the PHRED score 
automatically.

Command 
line 155

AdapterRemoval Trimming tool that can remove adaptor sequences. Implemented in C++. Useful in 
processing large data sets, with longer reads, on a desktop machine.

Command 
line 156

TagCleaner Automatically detects an adaptor sequence. It is available at (http://edwards.sdsu.edu/
tagcleaner) and is implemented using Perl 5.8, through a user web-interface. GUI 157

3

BWA
Burrows-Wheeler Aligner’s (BWA) is able to align both short and long reads. It allows 
for mismatches and gaps. Performance is faster compared to other aligners such as 
MAQ. Available at http://bio-bwa.sourceforge.net

Command 
line 158,159

Bowtie
Aligns shorts reads and requires less memory allowing implementation in a desktop 
computer. It is faster than comparable programs. It is available at http://
bowtie.cbcb.umd.edu

Command 
line 160

STAR

Aligns non-contiguous sequences directly to the reference genome. Is able to detect 
splice junctions, multiple mismatches, and indels. Benefits include its ability to 
accurately align long reads, having the lowest false-positive rate while maintaining 
high sensitivity, and being fast. Implemented in C++.

Command 
line 161

4

RNA-SeQC

Provides important measures of alignment quality including: yield, alignment and 
duplicate rates, GC bias, rRNA content, regions of alignment, continuity of coverage, 
3’/5’ bias, and count of detectable transcripts. Implemented through Java or through 
the GenePattern web interface (www.GenePattern.org).

GUI 162

RSeQC
Can evaluate sequence quality, GC bias, PCR bias, nucleotide composition bias, 
sequencing depth, strand specificity, coverage uniformity, and read distribution over 
the genome structure. It is the most comprehensive and efficient program.

Command 
line 163

Qualimap 2
Can compare multiple sequencing data sets and includes a novel mode that aids in the 
discovery of biases and problems specific to RNA-seq technology. It is available in a 
user-friendly interface at http://qualimap.bioinfo.cipf.es

GUI 164

5

Flux Capacitor
Quantifies the abundance of annotated alternatively spliced transcripts by distributing 
the reads mapping to a given splice junction among the transcripts including the exon. 
Written in Java; requires a Java Virtual Machine; platform independent.

Command 
line 165

Cufflink

Allows for the probabilistic deconvolution of RNA-seq fragment densities and 
accounts for cases in which genome alignments of fragments do not uniquely 
correspond to source transcripts. It is an open-source C++ program and can be 
implemented in Linux and Mac OS X.

Command 
line 166

HTSeq Using the Htseg-count function, it counts the overlap between reads and genes, and 
counts only reads that map unambiguously to a single gene. Implemented in Python.

Command 
line 167

6

EBSeq

Uses an empirical Bayes hierarchical model approach to identify differentially 
expressed isoforms. It can compare two or more biological conditions. It is a robust 
method for identifying differentially expressed genes. Implemented in R and can be 
implemented through a user-friendly interface available at https://
www.biostat.wisc.edu/ñingleng/EBSeq_Package/EBSeq_Interface/

GUI 168

DESeq2

Uses shrinkage estimators for dispersion and fold change which improves its stability 
and reproducibility. Ideal for analysis of small studies with few replicates. Allows for 
a more quantitative analysis focused on the strength rather than the mere presence of 
differential expression. Implemented in R.

Command 
line 169
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Step  Tool Description Ease of Use Ref.

Limma+Voom

Transforms the normalized counts to logarithmic base 2 and adds a precision weight 
for each observation. Can model the data in normal Gaussian distribution, thus 
allowing the data to be tested statistically. It is computationally fast and can be used 
with small sample sizes, with a minimum of two replicates per group. Implemented in 
R.

Command 
line 170

*
GUI = Graphical user interface.
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Table 2

Common useful terms

Term Definition

Alignment The process of matching reads to a particular region of the genome.

Counts Number of reads that map to a particular gene.

Coverage The extent to which a genomic region of interest was sequenced.

Dimensionality reduction The processed by which the most important features of a high-dimensional data set are extracted thus resulting in a 
data set with reduced dimensions.

Dropout events Missing data values due to low transcript expression and the stochastic nature of gene expression.

Embedding Mapping of high-dimensional features onto a low dimensional space.

Feature extraction Transformed data set built with the most predictive features of a high-dimensional data set.

Feature selection Selection of most predictive features in a high-dimensional data set.

Features Variables of a particular data set (i.e. fluorescence intensity or gene counts).

Machine learning Process of building mathematical models that allow computers to be trained to be predictive. Requires training with 
a “training dataset”.

Partitioning Division of data.

Quantitation Generation of count table that integrates that number of reads per gene that were aligned successfully.

Reads Nucleotide sequences as a result of sequencing.

Sequencing depth The number of reads per genomic region.
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