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Abstract Sexual interactions have a potent influence on health in several species, including

mammals. Previous work in C. elegans identified strategies used by males to accelerate the demise

of the opposite sex (hermaphrodites). But whether hermaphrodites evolved counter-strategies

against males remains unknown. Here we discover that young C. elegans hermaphrodites are

remarkably resistant to brief sexual encounters with males, whereas older hermaphrodites succumb

prematurely. Surprisingly, it is not their youthfulness that protects young hermaphrodites, but the

fact that they have self-sperm. The beneficial effect of self-sperm is mediated by a sperm-sensing

pathway acting on the soma rather than by fertilization. Activation of this pathway in females

triggers protection from the negative impact of males. Interestingly, the role of self-sperm in

protecting against the detrimental effects of males evolved independently in hermaphroditic

nematodes. Endogenous strategies to delay the negative effect of mating may represent a key

evolutionary innovation to maximize reproductive success.

DOI: https://doi.org/10.7554/eLife.46418.001

Introduction
Animals interact with each other in complex ways that can affect their health, including sexual, coop-

erative, and competitive interactions. Sexual interactions drastically impact an individual’s health and

behavior. In Drosophila and C. elegans, sexual interactions are detrimental to health and shorten the

lifespan of both sexes (Aprison and Ruvinsky, 2016; Chapman et al., 1995; Fowler and Partridge,

1989; Gems and Riddle, 1996; Gendron et al., 2014; Harvanek et al., 2017; Maures et al., 2014;

Partridge and Farquhar, 1981; Promislow, 2003; Promislow, 1992; Shi and Murphy, 2014;

Shi et al., 2017; Ting et al., 2014; Van Voorhies, 1992; Woodruff et al., 2014; Wu et al., 2012).

In mammals, mates induce neurological, developmental, and behavioral changes in the opposite sex

and can negatively impact health (Gao et al., 2017; Garratt et al., 2016; Aloise King et al., 2013;

Stowers and Kuo, 2015). For example, the presence of males can increase female body weight

(Garratt et al., 2016) and accelerate puberty (Flanagan et al., 2011; Vandenbergh, 1969). Identifi-

cation of specific strategies involved in responding to the effects of sexual encounters could help to

improve our understanding of how the sexes interact with each other, how sexual pressures have

shaped species over evolutionary time, and how these mechanisms could be harnessed to improve

health.

C. elegans is particularly well suited to the study of the effect of sexual interactions on lifespan.

Males shorten the lifespan of the C. elegans hermaphrodite through a phenomenon called male-

induced demise (Gems and Riddle, 1996; Maures et al., 2014; Shi and Murphy, 2014). Previous

studies showed that males shorten hermaphrodite lifespan by several means (e.g. sperm, seminal
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fluid, and pheromones), and identified some of the hermaphrodite genes that mediate male-induced

demise (e.g. utx-1, ins-11, daf-16) (Maures et al., 2014; Shi and Murphy, 2014). However, whether

hermaphrodites evolved natural defense mechanisms to protect themselves after a sexual encounter

with a male remained unknown.

Here we discover that young hermaphrodites are entirely protected from brief sexual encounters

with males. Surprisingly, the natural protection in young hermaphrodites is not due to their youthful-

ness, but rather to the presence of self-sperm. Self-sperm act through a sperm-sensing pathway to

protect the soma in a fertilization-independent manner, and activating this pathway in females can

protect them against the detrimental effect of males. The protective effect of self-sperm is con-

served in other hermaphroditic nematodes and may represent a key adaptation for their reproduc-

tive success.

Results

Young hermaphrodites are protected from demise induced by a brief
mating with males
Previous studies were done with long encounters between young C. elegans hermaphrodites and

males (Gems and Riddle, 1996; Maures et al., 2014; Shi and Murphy, 2014), which does not

reflect the situation in nature where males are rare (Barrière and Félix, 2005). We thus asked if vary-

ing the length of sexual interactions, as well as the age of males and hermaphrodites, could reveal

natural strategies that evolved to mitigate the negative impact of sexual encounters on health

eLife digest A nematode worm known as Caenorhabditis elegans is often used in the laboratory

to study how animals grow and develop. There are two types of C. elegans worm: hermaphrodite

individuals produce both female sex cells (eggs) and male sex cells (sperm), while male individuals

only produce sperm.

The hermaphrodite worms are able to reproduce without mating with another worm, allowing

populations of C. elegans to grow rapidly when they are living in favorable conditions. However,

when the hermaphrodites do mate with males they tend to produce more offspring. These offspring

are also usually healthier because they receive a mixture of genetic material from two different

parents.

Although mating is beneficial for the survival of a species it can also harm an individual animal.

Previous studies have shown that mating with male worms can accelerate aging of hermaphrodite

worms and cause premature death. However, it remained unclear whether hermaphrodite worms

have evolved any mechanisms to protect themselves after mating with a male.

To address this question, Booth et al. used genetic techniques to study the lifespans of

hermaphrodite worms. The experiments found that the hermaphrodites’ own sperm (known as self-

sperm) regulated a sperm-sensing signaling pathway that protected them from the negative impact

of mating with males. Hermaphrodites with self-sperm that mated with males lived for a similar

length of time as hermaphrodites that did not mate. On the other hand, hermaphrodites that did

not have self-sperm (because they were older or had a genetic mutation) had shorter lifespans after

mating than worms that did not mate. Modulating the sperm-sensing signaling pathway in worms

that lacked self-sperm was sufficient to protect them from the negative effects of mating with males.

Further experiments found that the hermaphrodites of another nematode worm called C.

briggsae – which evolved self-sperm independently of C. elegans – also protected themselves from

the negative effects of mating with males in a similar way. This suggests that other animals may also

have evolved similar mechanisms to protect themselves from harm when mating.

A separate study by Shi et al. has found that the beneficial effects of self-sperm are mediated by

a pathway linked to longevity that also exists in mammals. The results of both investigations

combined suggest possible avenues for future research into the complex relationship between

health, longevity, and reproduction.

DOI: https://doi.org/10.7554/eLife.46418.002
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Figure 1. The length of sexual encounters and age of the sexual partners influences the detrimental effect of males on hermaphrodite lifespan.

(A) Scheme describing the lengths of sexual interactions between C. elegans males and hermaphrodites and the ages of the sexual partners used in

this study. Young was defined as the first day of adulthood (day 3 of life), and middle-aged as the 5th day of adulthood (day 7 of life). (B) Long and

frequent sexual interactions with young males (blue dashed line) reduced hermaphrodite lifespan (p<0.0001 vs. no males). Long and frequent sexual

interactions with middle-aged males (purple dashed line) also reduced hermaphrodite lifespan compared to hermaphrodites without males (p<0.0001),

but middle-aged males shortened hermaphrodite lifespan less than young males (p=0.0003). (C-D) Hermaphrodites that interacted with males for 24 hr

when young from day 3 to 4 of life (C, red dashed line) or middle-aged from day 6 to 7 of life (D, orange dashed line) lived shorter than hermaphrodites

that never interact with males (p=0.029 and p<0.0001, respectively). Hermaphrodites that mated within a brief (2 hr) interaction with males when young

on day 3 of life (C, lime green dashed line) did not have a shortened lifespan (n.s. vs. no males) but hermaphrodites that mated within a brief period (2

hr) when middle-aged on day 7 of life (D, green dashed line) did have a significantly shortened lifespan (p<0.0001 vs. no males). (E) To control for the

mating efficiency differences between ages and genotypes (see Supplementary file 3), we measured the lifespans of only C. elegans individuals that

had successfully mated by identifying and isolating hermaphrodites that have fluorescent male sperm (represented by the red tilde in the scheme) from

Figure 1 continued on next page
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(Figure 1A). As previously shown (Gems and Riddle, 1996; Maures et al., 2014; Shi and Murphy,

2014), long and frequent sexual interactions with young males shortened hermaphrodite lifespan

(Figure 1B and Figure 1—figure supplement 1A). Middle-aged males were less able to induce pre-

mature demise of the opposite sex than young males (Figure 1B), probably because of their

decreased ability to efficiently mate (Guo et al., 2012) (Supplementary file 3).

To better mimic the natural situation—where sexual interactions are infrequent due to the rarity

of males—and isolate the mating-specific aspect of sexual interactions, we tested how a brief (two-

hour) mating with young males impacts young and middle-aged hermaphrodites (Figure 1C,D).

Because the chance of a sexual interaction is relatively low in the brief two-hour exposure and can

differ depending on the age of the hermaphrodite (Supplementary file 3; Garcia et al., 2007;

Leighton et al., 2014), we specifically measured the lifespans of hermaphrodites that mated using a

fluorescent sperm tracking method to isolate hermaphrodites that received male sperm (Figure 1E

and Figure 1—figure supplement 1B–F) (Stanfield and Villeneuve, 2006). Interestingly, while a

brief encounter with males induced the premature death of middle-aged hermaphrodites, it did not

affect the lifespan of young hermaphrodites (Figure 1C,D,F and G). Young hermaphrodites were

remarkably resistant to the negative impact of males, even though they successfully mated

(Figure 1C,F). We confirmed this observation using two different male strains and two methods of

isolating mated hermaphrodites (Figure 1C,D,F and G). Thus, shortening the length of sexual inter-

actions, which is more similar to the situation in nature, reveals that young hermaphrodites can

defend themselves against the lifespan-shortening effect of mating with males.

The presence of self-sperm, not youthfulness, is necessary for the
protection of hermaphrodites from the negative impact of mating with
males
Young and middle-aged hermaphrodites differ not only by their ages, but also in their reproductive

status. Young hermaphrodites are self-fertile, due to the presence of both oocytes and self-sperm.

In contrast, middle-aged hermaphrodites are no longer self-fertile, because they have exhausted

their self-sperm, though they can still reproduce if their oocytes are fertilized by males (Riddle et al.,

1997). To disentangle age and reproductive status, we compared the lifespan of young hermaphro-

dites to that of young ‘feminized’ individuals (which have oocytes, but no self-sperm; Ellis and

Schedl, 2007) after a brief encounter with males. Surprisingly, young feminized individuals (fem-1

[hc17] or fog-2[q71]; Doniach and Hodgkin, 1984; Schedl and Kimble, 1988) were sensitive to mat-

ing-induced death and exhibited premature death and deterioration (Figure 2A–D and Figure 2—

figure supplement 1A,B). Although mating efficiency can vary between C. elegans mutants and

individuals of different ages (Supplementary file 3; Garcia et al., 2007; Leighton et al., 2014;

Morsci et al., 2011), we specifically measured the lifespan of only the hermaphrodites that mated

(i.e. received male sperm) (Figure 1E). Thus, mating efficiency differences are unlikely to contribute

to the sensitivity of feminized individuals to males. Consistent with the observation that the presence

Figure 1 continued

those that are unmated and lack fluorescent male sperm using either hand picking or a large particle COPAS large particle biosorter. The presence of

fluorescent male sperm is indicative of fertilization (Figure 1—figure supplement 1B, C), though this was not specifically measured for the lifespan

assays. Hermaphrodites that received male sperm following two hours with males were compared to hermaphrodites that never interacted with males

but that were hand-picked or run through the COPAS large particle biosorter. (F-G) Using a different method of isolating mated hermaphrodites, we

also found that young hermaphrodites (F) were resistant to mating-induced demise if they received male sperm and seminal fluid during a brief, 2 hr

interaction with males (n.s. vs. no males) but that older hermaphrodites (G) were sensitive and lived shorter following a brief, 2 hr interaction with males

(p<0.0001 vs. no males). In panels C and D, hermaphrodites that received fluorescent male sperm were isolated by hand and the males were him-5

(e1467) mutants. In panels F and G, males were him-8(e1489) mutants with a male-specific GFP reporter (Ppkd-2::GFP) and hermaphrodites with

fluorescent male sperm were isolated with the COPAS large particle biosorter. For each condition, 67–114 animals were used to quantify lifespan.

Lifespan data are plotted as Kaplan-Meier survival curves and p-values were determined using Mantel-Cox log ranking. *p<0.05, **p<0.01, ***p<0.001,

****p<0.0001, n.s. = not significant. See also Supplementary file 2 for extended statistics and replicates.

DOI: https://doi.org/10.7554/eLife.46418.003

The following figure supplement is available for figure 1:

Figure supplement 1. Effect of long-term exposure to young males and development of the sperm tracking method.

DOI: https://doi.org/10.7554/eLife.46418.004
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Figure 2. The presence of self-sperm is necessary for the resistance of young hermaphrodites to a brief encounter with males. (A-B) Young, self-fertile,

wild-type hermaphrodites with self-sperm (A, day 3 of life) that received male sperm after a brief interaction with males had a normal lifespan (n.s. vs. no

males) whereas middle-aged, wild-type hermaphrodites that are self-sperm depleted (B, day 7 of life) had a shortened lifespan (p=0.0013 vs. no males).

(C-D) The lifespan of feminized C. elegans that lack self-sperm at all ages (fem-1[hc17]) was reduced if they received male sperm during a brief, 2 hr

interaction with males either when young (C, day 3 of life, p<0.0001 vs. no males) or middle-aged (D, day 7 of life, p<0.0001 vs. no males). Images

above the lifespan curves in panels A-D show the state of the germline with oocytes in pink and self-sperm in blue. (E-F) Principal Component Analysis

(PCA) of the normalized read counts from the entire transcriptomes of hermaphrodite (E) and feminized (F) C. elegans that never interacted with males

and that received male sperm during a two-hour interaction with males. (G-H) Heatmaps of the normalized read counts for the differentially expressed

genes that comprise select GO terms that were enriched when comparing young hermaphrodite and young feminized (fem-1) individuals without male

Figure 2 continued on next page
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of self-sperm is necessary to live a normal lifespan even after a brief encounter with males, young

individuals that lack self-sperm and oocytes (glp-1[e2144]; Priess et al., 1987) also lived shorter after

a brief encounter with males (Figure 2—figure supplement 1C,D), even though glp-1 mutants are

normally long-lived (Antebi, 2013; Arantes-Oliveira et al., 2002; Hansen et al., 2013; Keith and

Ghazi, 2015; Wang et al., 2008). Together, these results indicate that a major factor in protecting

an individual from the detrimental influence of males is not youthfulness, but the presence of self-

sperm.

To further investigate the importance of self-sperm in the resistance of young hermaphrodites to

the negative impact of mating with males, we performed RNA-seq on young or middle-aged her-

maphrodites or feminized individuals that were never exposed to males (no males) or had a brief

encounter with males (+male sperm) (Figure 2—figure supplement 2A). Principal Component Anal-

ysis (PCA) revealed that, as expected (Angeles-Albores et al., 2017), the transcriptomes of her-

maphrodites and feminized individuals that were never exposed to males separated based on

fertility status and, to some extent, age (Figure 2E,F and Figure 2—figure supplement 2B). Inter-

estingly, the first principal component separated the transcriptomes of hermaphrodites that have a

shortened lifespan (middle-aged upon mating) from those of hermaphrodites that live a normal life-

span (young upon mating, young and middle-aged without mating) (Figure 2E). Consistently, the

first principal component also separated the transcriptomes of feminized individuals that have a

shortened lifespan (young and middle-aged upon mating) from those of feminized individuals that

live a normal lifespan (young and middle-aged without mating) (Figure 2F). This observation con-

firms the importance of self-sperm in the protection from males. GO terms linked with individuals

that are resistant (e.g. young hermaphrodites) or sensitive to mating-induced death (e.g. young fem-

inized) included translation, lipid metabolism, the innate immune response, and protein homeostasis

(proteostasis) (Figure 2G–I, Figure 2—figure supplement 2C, and Figure 2—source data 1 and

2), suggesting these conserved homeostatic pathways could be responsible for the lifespan differen-

ces in the response to males. Indeed, many of these pathways are linked with longevity

(Kaeberlein et al., 2015; Kenyon, 2010; López-Otı́n et al., 2013; Riera et al., 2016; Shore and

Ruvkun, 2013). Collectively, these data indicate that the presence of self-sperm is necessary to pro-

tect the soma against deterioration due to brief encounters with males, perhaps by regulating

homeostasis pathways.

Figure 2 continued

exposure (G) and that received male sperm following a brief interaction with males (H). The four replicates for each condition are shown. (I) Selected,

enriched GO terms from the differentially expressed genes between young hermaphrodite versus young feminized that received male sperm. GO

terms that were enriched in the genes expressed more highly in young hermaphrodites are shown in green and GO terms enriched in the genes more

highly expressed in young feminized individuals are in pink. P-values were calculated with the Fisher’s exact test and corrected for multiple hypothesis

testing with Benjamini-Hochberg. A complete list of all significantly enriched GO terms can be found in Figure 2—source data 2. All individuals were

raised at the restrictive temperature (25˚C) until the onset of adulthood (day 3 of life) and then moved to 20˚C for the remainder of their lifespan. Worms

that received male sperm from him-5(e1467) males were isolated by hand picking individuals with fluorescent male sperm in their uterus or

spermatheca. For all lifespan assays 52–109 animals were tested per condition. Lifespan data are plotted as Kaplan-Meier survival curves and p-values

were determined using Mantel-Cox log ranking. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, n.s. = not significant. See also Supplementary file 2 for

extended statistics and replicates.

DOI: https://doi.org/10.7554/eLife.46418.005

The following source data and figure supplements are available for figure 2:

Source data 1. The DESeq2 output (differential expression) from the RNA-seq analysis.

DOI: https://doi.org/10.7554/eLife.46418.008

Source data 2. The complete list of GO terms whose enrichment was determined using the significantly differentially expressed genes when comparing

young hermaphrodites vs. young feminized individuals (selected, enriched GO results are displayed in Figure 2G–I and in Figure 2—figure supple-

ment 2C).

DOI: https://doi.org/10.7554/eLife.46418.009

Figure supplement 1. The effect of a brief encounter with males on feminized and sterile individuals.

DOI: https://doi.org/10.7554/eLife.46418.006

Figure supplement 2. RNA-seq of young and middle-aged hermaphrodites and feminized individuals with and without receiving male sperm.

DOI: https://doi.org/10.7554/eLife.46418.007
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The presence of self-sperm is sufficient to protect from the detrimental
effects on lifespan of a brief mating with males
Self-sperm play a key role in germline quality assurance in C. elegans by triggering the clearance of

carbonylated and aggregated proteins from the germline (Bohnert and Kenyon, 2017;

Goudeau and Aguilaniu, 2010). However, whether self-sperm could harness this potential to protect

the soma is not known. To determine if the presence of self-sperm is sufficient to protect hermaph-

rodites, we examined the response of individuals with a masculinized germline (which have a female

soma and self-sperm, but no oocytes), fem-3(q20) (Ahringer and Kimble, 1991; Barton et al.,

1987; Ellis and Schedl, 2007). Masculinized individuals that only have self-sperm were protected

from premature death induced by mating with males not only when young, but even at an older age

when hermaphrodites normally become sensitive to an encounter with males (Figure 3A–D, and Fig-

ure 3—figure supplement 1A,B). These data suggest that the presence of self-sperm is sufficient to

protect from the detrimental effects on lifespan of a brief mating with males.

We next asked whether self-sperm could act via their ability to self-fertilize hermaphrodites. Inter-

estingly, hermaphrodite mutants that are defective in self-fertilization despite maintaining self-sperm

(spe-9[hc88]; Ellis and Stanfield, 2014b; Singson et al., 1998) were still protected from early death

induced by mating with males when young (Figure 3E,F). In contrast, hermaphrodites that are defec-

tive in self-sperm maturation (due to loss of the SPE-44 transcription factor; Kasimatis et al., 2018;

Kulkarni et al., 2012) were no longer protected from the lifespan shortening effects of mating with

males when young (Figure 3G and Figure 3—figure supplement 1C,D). Thus, the presence of

mature self-sperm, but not self-fertilization, is sufficient for the protection against mating-induced

demise.

Self-sperm protect hermaphrodites by triggering a sperm-sensing
pathway that normally affects the germline to protect the soma
We next explored the mechanisms by which self-sperm protect individuals. Self-sperm could protect

individuals independently of fertilization, by acting via sperm-sensing pathways. In C. elegans, sperm

proteins are known to be sensed by the somatic gonad and to signal to the germline and somatic

gonad by repressing the homeodomain transcription factor CEH-18 and the Ephrin receptor VAB-1

(Figure 4A and Greenstein et al., 1994; Miller, 2001; Miller, 2003). Hence, the loss of CEH-18 and

VAB-1 can mimic the presence of self-sperm (Miller, 2003). Deficiency in CEH-18 and VAB-1 was suf-

ficient to protect middle-aged hermaphrodites that have depleted their self-sperm from the nega-

tive effects of mating with males (Figure 4D,E). Interestingly, deficiency in CEH-18 and VAB-1 in

young feminized individuals made them resistant to brief encounter with males (Figure 4B,C), indi-

cating that this conserved pathway could be sufficient to protect females against the negative

impact of males.

To understand how this pathway might work to protect the soma, we examined the potential links

between the transcription factor CEH-18 and the genes differentially expressed between hermaph-

rodites and feminized individuals that we identified by RNA-seq. ceh-18 mRNA levels were not sig-

nificantly affected by the presence of self-sperm or mating with a male (Figure 4—figure

supplement 1A). In contrast, several genes that interact genetically or physically with CEH-18,

including the chromatin modifiers set-33 and jmjd-3.2, were differentially expressed between young

hermaphrodites and feminized individuals that have successfully mated with males (Figure 4F and

Figure 4—figure supplement 1B). These observations suggest that differences in chromatin state

between young hermaphrodites and feminized individuals may contribute to the transcriptional

effect of the CEH-18 sperm-sensing transcription factor in the resistance and sensitivity to mating-

induced death. A subset of the genes regulated by the presence of self-sperm or mating with a male

contained a CEH-18 binding site in their regulatory regions (Figure 4—source data 1), though the

CEH-18 motif and binding peaks (Kudron et al., 2018; Narasimhan et al., 2015) were not signifi-

cantly enriched in these genes (perhaps due to cell heterogeneity (Cao et al., 2017), see Material

and methods). We asked if the subset of genes that are differentially expressed between young her-

maphrodites and young feminized individuals and contain a CEH-18 binding site were enriched for

specific biological features (Figure 4—source data 1 and 2). Interestingly, GO term enrichment of

these genes revealed several terms linked with longevity, including ‘Determination of adult lifespan’
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Figure 3. The presence of self-sperm is sufficient for the resistance to mating-induced demise. (A-D)

Hermaphrodites with a masculinized germline (fem-3[q20]) that have self-sperm when young (C, day 3 of life) and

middle-aged (D, day 6 of life), were resistant to a brief, 2 hr interaction with males and lived a normal lifespan. As

a control, wild-type hermaphrodites (A and B) were also tested and showed the expected resistance to a brief

Figure 3 continued on next page
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(Figure 4G, Figure 4—figure supplement 1C), suggesting that the sperm-sensing transcription fac-

tor CEH-18 may directly regulate genes that affect longevity.

Together, these results show that self-sperm protect individuals, even older ones, from mating-

induced death by repressing a sperm-sensing pathway in the somatic gonad, which could in turn

protect hermaphrodites by altering chromatin and transcriptional networks.

The ability of self-sperm to promote resistance to mating with males
evolved independently twice in nematodes
Is the ability of self-sperm to promote resistance to brief interactions with males unique to C. ele-

gans or a common hermaphroditic strategy for resistance to the negative impact of mating with

males to optimize their reproduction and health? The C. elegans ancestor was a gonochoric species

with true females and obligatory males (Kiontke et al., 2004). Hermaphroditism evolved at least

three times independently in this lineage (in C. elegans, C. briggsae, and C. tropicalis) (Ellis and Lin,

2014a; Guo et al., 2009; Hill et al., 2006; Kiontke et al., 2004; Kiontke et al., 2011; Nayak et al.,

2005; Thomas et al., 2012) (Figure 5A). Other nematode species remained true females (e.g. C.

remanei and C. brenneri) (Figure 5A).

Both hermaphroditic and true female nematodes are known to succumb prematurely following

long interactions with males (Figure 4—figure supplement 1A,B and Maures et al., 2014;

Palopoli et al., 2015; Shi and Murphy, 2014), but the effect of brief interactions has not been

tested. We found that C. remanei and C. brenneri females lived normal lifespans following brief,

two-hour interactions with males at all of the ages we tested (Figure 5B and Figure 5—figure sup-

plement 1B), suggesting that the differential sensitivity of old versus young hermaphrodites may

have evolved in hermaphroditic species. Indeed, we found that young C. briggsae hermaphrodites

(which have self-sperm) resisted a brief exposure to males and lived a normal lifespan whereas mid-

dle-aged C. briggsae hermaphrodites (which have depleted their self-sperm) succumbed to brief

encounter with males (Figure 5C and Figure 5—figure supplement 1C). Interestingly, feminized

individuals in C. briggsae (due to a different mutation than C. elegans, the she-1 feminizing muta-

tion, which affects sex determination; Guo et al., 2009), also became sensitive to a brief interaction

with males when young and exhibited premature death (Figure 5D). As with C. elegans, we con-

trolled for age- and genotype-dependent differences in C. briggsae mating efficiency

(Supplementary file 3) using fluorescent male sperm tracking (Figure 1E).

Does the sperm-sensing pathway mediate self-sperm protection from mating-induced demise in

C. briggsae as it does in C. elegans hermaphrodites? We first verified that knock-down of the orthol-

ogous sperm-sensing pathway in C. briggsae females (mfIs42[Cel-sid-2; Cel-myo-2::DsRed]; she-1

Figure 3 continued

interaction with males when young and shortened lifespan following a brief interaction with males when middle-

aged. (E-F) Young hermaphrodites that have fertilization-defective self-sperm (spe-9[hc88], panel E, day 3 of life)

were protected from a brief, 2 hr interaction with males when young (n.s. vs. no males) but when self-sperm are

depleted with age (F, day 7 of life), their lifespan was shortened if they received male sperm during brief

interaction with males (p<0.0001 vs. no males). (G) Young hermaphrodites that have defective sperm due to the

absence of the SPE-44 transcription factor (fxIs1[pie-1p::TIR1::mRuby]; spe-44(fx110[spe-44::degron]) grown on 1

mM auxin until adulthood), are not fully protected from a brief, 2 hr interaction with males (p=0.0001 vs. no males).

Images above the lifespan curves show the state of the germline. Mated worms (dashed lines) were selected by

hand-picking based on the presence of fluorescent male sperm in their uterus or spermatheca following a two-

hour interaction with him-5(e1467) males. Lifespans were performed with 31–144 animals per condition.

Masculinized (fem-3[q20]) versus WT and fertilization-defective self-sperm (spe-9[hc88]) experiments (A-F) were

performed at the restrictive temperature, 25˚C. The SPE-44 auxin-inducible degradation experiment (G) was

performed at 20˚C and controls for this experiment are found in Supplementary file 2 and Figure 3—figure

supplement 1C–D. Lifespan data are plotted as Kaplan-Meier survival curves and p-values were determined using

Mantel-Cox log ranking. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, n.s. = not significant. See also

Supplementary file 2 for extended statistics and replicates.

DOI: https://doi.org/10.7554/eLife.46418.010

The following figure supplement is available for figure 3:

Figure supplement 1. The effect of males on hermaphrodites and masculinized individuals.

DOI: https://doi.org/10.7554/eLife.46418.011
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Figure 4. Self-sperm act via repression of a somatic sperm-sensing pathway to mediate resistance to mating-induced demise. (A) A model for the role

of self-sperm in mating-induced demise resistance. The absence of self-sperm (right panel) activates the CEH-18 and VAB-1 sensing pathway in the

somatic gonad. (B-C) Young, feminized (fog-2[q71]) worms (B, day 4 of life) were sensitive to a brief interaction with males when young (B, p=0.0001 vs.

no males) but when the sperm-sensing pathway was blocked by loss of CEH-18 and VAB-1 (fog-2[q71]; ceh-18[mg57] grown on vab-1 targeting RNAi

bacteria), these worms (C) were resistant to a brief, 2 hr interaction with males and had a normal lifespan (n.s. vs. no males). (D-E) Middle-aged, self-

sperm depleted hermaphrodites (D, day 7 of life) were sensitive to a brief mating with males (D, p<0.0001 vs. no males) but when the sperm-sensing

pathway was blocked by loss of CEH-18 and VAB-1 (ceh-18[mg57] grown on vab-1 targeting RNAi bacteria), these middle-aged worms (E) were

resistant to a brief, 2 hr interaction with males and had a normal lifespan (E, n.s. vs. no males). For all experiments, worms that received male sperm

(dashed lines) were selected by hand-picking based on the presence of fluorescent male sperm in their uterus or spermatheca following a two-hour

interaction with him-5(e1467) males. Images above the lifespan curves in panels B-E show the state of the germline with oocytes in pink and the

blocking of sperm-sensing pathway by a blue line. Lifespans were performed with 86–115 animals per condition. Lifespan assays were performed at 20˚

C. Lifespan data are plotted as Kaplan-Meier survival curves and p-values were determined using Mantel-Cox log ranking. *p<0.05, **p<0.01,

***p<0.001, ****p<0.0001, n.s. = not significant. See also Supplementary file 2 for extended statistics and replicates. (F) The CEH-18 interaction

network calculated by GeneMANIA (Warde-Farley et al., 2010). Lines indicate genetic interactions (green), co-expression (purple), physical interactions

(orange), and ‘other’ (gray). The differential expression of the genes in the network is shown with a blue-red gradient. *p<0.05, **p<0.01, ***p<0.001,

****p<0.0001, no stars = not significant. Network members not detected by the RNA-seq are in gray with dotted outlines. The number of differentially

expressed genes in this network was statistically enriched (p=0.0043) as measured using the hypergeometric distribution test. See Figure 2—source

data 1 for exact differential expression values. (G) Selected, enriched GO terms from the genes that are differentially expressed between young

hermaphrodite versus young feminized that never interacted with a male and contain a CEH-18 binding site as defined by CEH-18 ChIP-seq

Figure 4 continued on next page
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[v35]) indeed reduced the accumulation of unfertilized oocytes in the gonad arms and increased the

number of unfertilized oocytes in the uterus (Figure 5—figure supplement 3) similar to C. elegans

(Miller, 2003). Interestingly, knock-down of the C. briggsae sperm-sensing genes protected middle-

aged hermaphrodites (which are self-sperm depleted) from the lifespan shortening effects of a brief

interaction with males (Figure 5E,F).

Together, these results suggest that hermaphroditism, notably the presence of self-sperm and

detection by the sperm-sensing pathway, may have co-evolved more than once with strategies to

protect from the detrimental effect of sexual interactions with the opposite sex. This may be particu-

larly important to allow hermaphrodites to maximize their reproductive success by fertilizing their

eggs through self-fertilization and mating with another male later in life. As male sperm out-compete

hermaphroditic self-sperm (LaMunyon and Samuel, 1999; Ward and Carrel, 1979), such a strategy

would also allow for the hermaphroditic self-sperm to be used. Because the sperm-sensing pathway

is conserved in species with true females and is sufficient to protect feminized individuals, this path-

way could be leveraged to protect the soma in a conserved manner, even in other species.

Discussion
Here we show that a sensing mechanism between the germline and the soma mediates protection

against the negative impact of sexual interactions. While previous work revealed the phenomenon of

male-induced demise and identified specific mutations that could protect individuals from male-

induced demise (Gems and Riddle, 1996; Maures et al., 2014; Shi and Murphy, 2014), it was

unknown whether natural defenses exist to protect from the detrimental effects of males and what

their mechanism of action could be. The previous studies investigated the effects of prolonged inter-

actions between the sexes. While there is evidence of occasional ‘bursts’ of high rates of males in

wild C. elegans populations (Barrière and Félix, 2005; Frézal and Félix, 2015; Sivasundar and

Hey, 2005), males in the wild are thought to be rare. Thus, sexual interactions in nature are likely to

be quite brief. Here, we have used very brief interactions between the sexes to uncover phenomena

that better reflect the natural situation. We show for the first time that innate mechanisms that

involve self-sperm can protect against the deleterious effects of mating with males.

The presence of self-sperm in hermaphrodites is also known to decrease attraction of and mating

with males (Garcia et al., 2007; Leighton et al., 2014; Morsci et al., 2011; Shi and Murphy, 2014),

and we did account for this in our study by selecting only mated individuals. Hence, self-sperm may

be evolutionary important to ensure, in several different ways, that hermaphrodites produce as

many of their own self-progeny as possible before succumbing to mating-induced death. Whether

the ability of males to shorten the lifespan of older hermaphrodites that lack self-sperm is advanta-

geous in nature remains unknown. The number of animals that reach middle or older-age in the wild

is probably low. However, the protective effect of self-sperm on the soma appears to have evolved

independently in two distantly-related species, suggesting that it is important for nematode her-

maphrodites. The role of self-sperm as a signal to regulate the response to the opposite sex may

Figure 4 continued

(Kudron et al., 2018), see Material and methods. GO terms that were enriched in the genes expressed more highly in young hermaphrodites are

shown in green and GO terms enriched in the genes more highly expressed in young feminized individuals are in pink. P-values were calculated with

the Fisher’s exact test and were corrected for multiple hypothesis testing with Benjamini-Hochberg. A complete list of all significantly enriched GO

terms can be found in Figure 4—source data 2.

DOI: https://doi.org/10.7554/eLife.46418.012

The following source data and figure supplement are available for figure 4:

Source data 1. The intersection of the DESeq2 output (differential expression) and the CEH-18 binding sites (Kudron et al., 2018).

DOI: https://doi.org/10.7554/eLife.46418.014

Source data 2. The complete list of GO terms whose enrichment was determined using the significantly differentially expressed genes associated with

CEH-18 binding peaks when comparing young hermaphrodites vs. young feminized individuals (selected, enriched GO results are displayed in

Figure 4G and Figure 4—figure supplement 1C).

DOI: https://doi.org/10.7554/eLife.46418.015

Figure supplement 1. CEH-18 expression and network analysis.

DOI: https://doi.org/10.7554/eLife.46418.013
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Figure 5. The importance of self-sperm in protecting young hermaphrodites against males independently evolved in a distantly-related nematode

species. (A) The phylogeny of Caenorhabditis nematodes with the hermaphroditic lineages shown in red. (B) C. brenneri females lived a normal lifespan

if they mated with a male during brief, two-hour interaction when young or middle-aged (n.s. vs. no males). For C. brenneri, we defined young as day 4

of life and middle-aged as day 10 of life. (C) C. briggsae hermaphrodites had a normal lifespan if they received male sperm during a brief interaction

with males when they were young (day 3 of life, blue dashed line, n.s vs. no males) but had a shortened lifespan if they received male sperm when

middle-aged (day 8 of life, green dashed line, p<0.0001 vs. no males). (D) Feminized C. briggsae (she-1[v35]) had a shortened lifespan if they received

male sperm following a brief interaction with males when young (day 3 of life, p<0.0001 vs. no males). (E-F) Middle-aged, self-sperm depleted C.

briggsae have a shortened lifespan following mating with a male (E, p<0.0001 vs. no males) but when the orthologs of the sperm-sensing pathway (Cbr-

ceh-18 and Cbr-vab-1) was blocked by RNAi knock-down, these worms lived a normal lifespan (F, n.s. vs. no males). Experiments were performed using

a transgenic C. briggsae strain that is capable of RNAi knock-down by dsRNA ingestion (mfIs42[Cel-sid-2; Cel-myo-2::DsRed]). (G) A scheme

summarizing the resistance of sensitivity of different species, aged individuals, and mutants to mating-induced demise. Mated worms (dashed lines)

were selected by hand-picking based on the presence of fluorescent male sperm in their uterus or spermatheca. C. briggsae males are him-8(v186)

mutants (Wei et al., 2014). Lifespans were performed with 82–151 animals. Lifespan data are plotted as Kaplan-Meier survival curves and p-values were

Figure 5 continued on next page
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also have evolved in other animals, including self-fertilizing hermaphroditic species (e.g. snails, slugs,

and the vertebrate mangrove killifish) (Jarne and Auld, 2006; Mackiewicz et al., 2006).

The ancestor of C. elegans and related nematodes did not have self-sperm-mediated protection

from mating-induced death and our data indicate that self-sperm mediated protection was an evolu-

tionary innovation in the C. elegans and C. briggsae lineages. Whether the evolution of resistance to

mating-induced death in C. elegans and C. briggsae occurred as the result of linking ancestral pro-

tection mechanisms to self-sperm, or whether novel mechanisms evolved in these hermaphroditic lin-

eages, is unknown. However, given that self-sperm mediated mating-induced death protection

evolved more than once in Caenorhabditis nematodes, the most parsimonious model is that the her-

maphroditic lineages linked ancestral protection mechanisms with self-sperm. Indeed, the signaling

pathways that are engaged by self-sperm (an Ephrin receptor and homeodomain transcription fac-

tor) are conserved in nematodes, suggesting that these ancestral pathways were harnessed in unique

ways in the hermaphroditic lineages to evolve self-sperm mediated resistance to mating-induced

death. This raises the intriguing possibility that such protective mechanisms could also be ‘tuned up’

in female species by mimicking activation of the signaling pathways that are triggered by self-sperm.

Interestingly, the Ephrin receptor that detects the presence of sperm is conserved in mammals, it is

expressed in the somatic gonad (Figure 5—figure supplement 2B; Uhlén et al., 2015), and is linked

with mammalian fertility (Barban et al., 2016; Buensuceso et al., 2016). Thus, some of the mecha-

nisms that signal between germline and soma could be used more generally to protect against the

negative impact of sexual interactions in other species.

Fertilization has a rejuvenating effect in the germline and resets the aging clock in each genera-

tion (Rando and Chang, 2012; Unal et al., 2011). Consistently, self-sperm can clear carbonylated

and aggregated proteins, two aging hallmarks, in the germline of C. elegans (Bohnert and Kenyon,

2017; Goudeau and Aguilaniu, 2010). Resetting of aging features can be achieved to some degree

in mammalian somatic cells by the process of reprogramming to induced pluripotent stem cells,

which can mimic fertilization and has a ‘rejuvenating’ capacity (Rando and Chang, 2012). In mam-

mals, triggering rejuvenating factors in somatic cells, in a manner that is uncoupled from de-differen-

tiation, has been recently suggested to be a potential rejuvenation strategy (Ocampo et al., 2016).

However, the potential role of sperm in protection, and possible rejuvenation, of the soma is not

known. Given the effect of sperm and fertilization on resetting the aging clock in the germline, as

well as the conservation of key elements of the sensing pathway, it is possible that the protective

properties of self-sperm, or even sperm itself, are conserved in other species, including mammals.

These findings could open new strategies for harnessing the potential of gametes and their sensing

pathways to ‘reset’ some hallmarks of aging.

Materials and methods

Worm strains and maintenance
All C. elegans, C. briggsae, C. remanei, and C. brenneri WT and mutant strains used in this study are

listed in Supplementary file 1. All strains were maintained on Nematode Growth Media (NGM)

plates with 50 mg/mL streptomycin (Gibco) and a lawn of OP50-1 bacteria (a gift from M.-W. Tan)

from stationary phase cultures. Nematodes were grown at 20˚C, with the exception of temperature-

Figure 5 continued

determined using Mantel-Cox log ranking. *p<0.05, **p<0.01, p < *** 0.001, ****p<0.0001, n.s. = not significant. See also Supplementary file 2 for

extended statistics and replicates.

DOI: https://doi.org/10.7554/eLife.46418.016

The following figure supplements are available for figure 5:

Figure supplement 1. The evolution of self-sperm mediated protection from mating-induced demise.

DOI: https://doi.org/10.7554/eLife.46418.017

Figure supplement 2. Conservation of CEH-18 and VAB-1.

DOI: https://doi.org/10.7554/eLife.46418.018

Figure supplement 3. RNAi knock-down of the sperm-sensing pathway in C.briggsae.

DOI: https://doi.org/10.7554/eLife.46418.019
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sensitive mutants (glp-1[e2144], fem-1[hc17], fem-3[q20], and spe-9[hc88]), which were maintained at

15˚C (permissive temperature). When temperature sensitive mutants were used for assays, they were

grown at the restrictive temperature (25˚C). The genotype of strains was verified by genotyping PCR

and Sanger sequencing and the strains were backcrossed three times into our laboratory’s N2 strain

(in addition to the backcrossing that was performed when the mutants were initially isolated).

Because some C. elegans strains have been recently reported to inadvertently contain a long-

lived allele of the fln-2 gene (personal communication, Y. Zhao, H. Wang, R.J. Poole and D. Gems

[the Worm Breeder’s Gazette, 2018]), we verified the fln-2 genotype using genotyping by PCR fol-

lowed by Sanger sequencing using the following primers (5’-GGGTGAAGAATGAGAAACACGC and

5’-ATGATGCAGTTTTGCCAACGG). The forward primer (listed first) was used for sequencing. We

confirmed that the key strains used in this study—N2 (WT), BA17 (fem-1[hc17]), CB4108 (fog-2[q71]),

CF1903 (glp-1[e2144]), JK816 (fem-3[q20]), DG1604 (fog-2[q71]; ceh-18[mg57]), and GR1034 (ceh-18

[mg57])—did not contain this long-lived allele of fln-2 and were wild-type for this allele.

Lifespan assays
C. elegans, C. brenneri, C. remanei, and C. briggsae lifespan assays were performed in the same

manner. Hermaphrodites or females for these assays were age-synchronized with a short (3–4 hr)

egg-lay using young (day 3–5 of life), well-fed adult parents. For the female species (C. brenneri and

C. remanei), age-synchronized, virgin females were identified and isolated from males by placing

them on fresh plates at the L4 stage. All worms were grown on NGM plates with streptomycin (50

mg/mL) and seeded with OP50-1 bacteria unless RNAi knock-down was performed. In the case of

RNAi knock-down, worms were cultured on NGM containing ampicillin (100 mg/mL, Sigma) and

IPTG (0.4 mM, Invitrogen). During development, worms were fed HT115 bacteria (grown to station-

ary phase, RNAi expression induced for 2–4 hr with 0.4 mM IPTG, and the bacteria concentrated to

20x) carrying empty vector (EV). Upon adulthood (day 3 of life), HT115 bacteria (grown to stationary

phase, RNAi expression induced for 2–4 hr with 0.4 mM IPTG, and the bacteria concentrated to 20x)

carrying the appropriate RNAi clone from the Ahringer RNAi library (Kamath et al., 2003) (a gift

from A. Fire) or RNAi clones created in this study (see ‘C. briggsae RNAi knock-down’). The inserts

of the plasmids encoding the RNAi clones used in this study were sequenced to verify their identity.

For each assay, worms were scored as dead or alive and transferred to new plates daily during

the reproductive period and then every other day. Worms were scored as dead if they did not

respond to gentle, repeated prodding with a wire pick (90% Pt, 10% Ir) along different points of

their body. Worms were scored as censored if they crawled off the media or died due to bagging

(internal hatching) or vulval rupture. Data from these censored worms were included up until the

point of censorship (see Supplementary file 2 for all data).

For conditions in which the effect of sexual interactions was assessed, we used one of three meth-

ods, as indicated. For the long-term exposure method (described in Maures et al., 2014; Shi and

Murphy, 2014), young males (day 1 to 2 of adulthood) were added to the hermaphrodites at the

onset of adulthood. For lifespan experiments in which the hermaphrodites were exposed to males

for their entire adulthood (Maures et al., 2014), males were added in a 1:1 ratio with hermaphro-

dites and the number of males remained fixed, even as hermaphrodites began to die or censored.

Male worms were replaced every other day at the time the hermaphrodites were transferred to new

plates. Male stocks were set up every day for the entirety of the lifespan assay. For the lifespan

experiments in which hermaphrodites were exposed to males for only one day (Shi and Murphy,

2014), young males were added in a 2:1 male:hermaphrodite ratio. Following 24 hr of exposure,

hermaphrodites were moved to new plates and did not encounter a male again throughout their life-

span. For the newly established, short mating-induced demise lifespan experiments, the males and

hermaphrodites were only allowed to interact for 2 hr at the age specified for each assay. Males

were twice as abundant as hermaphrodites during the mating period. Following a mating period of

two hours, mating was assessed by the presence of fluorescent male sperm (see below). These

mated hermaphrodites did not interact with an adult male again and worms on plates in which male

progeny reached adulthood and could have mated with the hermaphrodites were censored.

Synchronized individuals (hermaphrodites, feminized individuals etc.) were randomly assigned to

the ‘no males’ or ‘+males’ conditions by picking them onto fresh plates in an alternating manner to

avoid selection bias. Similarly, the males used for mating with individuals of different genotypes or

ages were from the same sets of males and were allocated randomly in an alternating manner. For
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each single biological replicate, approximately 35 individuals were placed on each of 2–4 plates

(each plate represents a technical replicate). The number of individuals per plate and number of

technical replicates were chosen based on field standards (Lucanic et al., 2017).

For feminized and sterile mutants, slight modifications were made to the methods. The sterile

glp-1(e2144) mutant, fertilization defective spe-9(hc88) mutant, masculinized fem-3(q20) mutant, and

WT control parents were used for an egg lay at the permissive temperature (15˚C) and following the

egg lay, the individuals used for the assay were kept at 25˚C for the remainder of the assay. The fem-

inized fem-1(hc17) mutants and the WT control parents were kept at 15˚C for the egg lay and these

eggs developed until day 3 of life (adulthood) at 25˚C (the restrictive temperature). Then, both the

fem-1(hc17) feminized worms and the WT worms were moved to 20˚C for the remainder of the

assay. The lower temperature did not impact the feminized phenotype. For the auxin-inducible deg-

radation of the transcription factor SPE-44, the worms were grown on NGM with 1 mM auxin (3-

indoleacetic acid, Sigma-Aldrich) from egg lay to adult day one and were then cultured on NGM

without auxin for the remainder of their lifespan. These individuals were fully self-sterile as expected

(Kasimatis et al., 2018). Finally, the C. elegans fog-2(q71) and C. briggsae she-1(v35) feminized

mutants were kept at 20˚C for the entire assay. For these assays, virgin feminized individuals were

isolated from males at the L4 stage and were either kept away from males for the entire lifespan or

only interacted with males for 2 hr as described.

Lifespan data were plotted as Kaplan-Meier survival curves in Prism 7 and statistical analyses per-

formed using the logrank (Mantel-Cox) test. The number of animals (n) used for each assay and the

number of independent biological replicates (N) can be found in Supplementary file 2.

Fluorescent sperm tracking to identify mated hermaphrodites and
females for mating efficiency assays and for lifespan assays
To identify and isolate hermaphrodites or females that have mated during a brief period of interact-

ing with males, we modified a previously developed technique (Stanfield and Villeneuve, 2006).

The day before the mating assay, adult day one males (for C. elegans, either him-5[e1467] or nIs128

[Ppkd-2::GFP]; him-8[e1469], for C. briggsae, Cbr-him-8[v186], and WT for C. brenneri and C. rema-

nei) were fluorescently labeled by culturing them overnight on NGM plates seeded with 100 mL sta-

tionary phase OP50-1 and 5 ng/mL MitoTracker Red CMXRos (Thermo Fisher cat# M7512,

resuspended in DMSO [Fisher] at 100x and kept at �20˚C in aliquots) at a density of approximately

100 males per 6 cm plate. On the day of the mating assay, 40 fluorescently-labeled males and 20

unlabeled hermaphrodites were placed on 6 cm NGM plates seeded with OP50-1 bacteria. Animals

were allowed to interact with each other and mate for 2 hr at their normal culturing conditions. Fol-

lowing this period, hermaphrodites that received male sperm as a result of mating were identified

based on the presence of fluorescence (male sperm) in their uterus and/or spermatheca (Figure 1E

and Figure 1—figure supplement 1B–D) using a fluorescent dissecting microscope or the COPAS

large particle biosorter as indicated. In a small number of cases, a hermaphrodite consumed some

of the MitoTracker Red CMXRos labeled bacteria resulting in red fluorescence in the gut or through-

out the body. When this occurred, the individual was censored from the experiment because of the

difficulty in determining if they received male sperm or not.

For mating efficiency assays, 5–7 mating plates (n) were typically used per experimental condition

and one to two independent, biological replicates (N) were performed. The number of mated her-

maphrodites was compared to the total number of hermaphrodites per plate (mating efficiency = #

hermaphrodites with male sperm/total # hermaphrodites).

To better understand the dynamics of mating during a two-hour period (Figure 2—figure supple-

ment 1E), we performed a separate assay using a slightly modified version of the mating efficiency

method such that two male genotypes were used. Specifically, on each plate 20 young, unlabeled

hermaphrodites or feminized individuals interacted with 20 unlabeled nIs128(Ppkd-2::GFP); him-8

(e1469) males and 20 MitoTracker Red CMXRos labeled him-5(e1467) males for two hours. Following

this 2 hr interaction, hermaphrodites that received male sperm from the fluorescently labeled him-5

(e1467) males were isolated and placed individually on 3 cm NGM plates to lay eggs. To determine

if any of these him-5(e1467) mated individuals also mated with a nIs128(Ppkd-2::GFP); him-8(e1469)

male, we looked for male progeny that carried nIs128[Ppkd-2::GFP] transgene. These individuals

were thus mated at least twice and received male sperm from at least two males.
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For lifespan assays, approximately eight mating plates were set up per condition. Hermaphro-

dites or females that received male sperm were moved to fresh plates without males at a density of

approximately 35 individuals per plate and tracked for the remainder of their lifespan.

RNA-seq
To better understand the resistance of young hermaphrodites to mating-induced demise, we charac-

terized the transcriptomes of the young, WT hermaphrodites that have a normal lifespan after a brief

interaction with males to those that have a shortened lifespan after a brief interaction with males

(the self-sperm depleted fem-1[hc17] feminized individuals and the middle-aged, WT

hermaphrodites).

WT and fem-1(hc17) mutant individuals were age-synchronized using a brief, 3–4 hr egg lay (see

‘Lifespan Assays’ above) on NGM plates seeded with OP50-1 bacteria and grown at 25˚C during

development and the young adult stage. On day 3 of life (egg lay is day 0), the worms were all

moved to 20˚C for the remainder of their lifespan. This set up resulted in fully penetrant feminized

germline phenotypes for the fem-1(hc17) mutants and delayed the age-associated appearance of

red autofluorescence in the gut that would have made accurate detection of MitoTracker Red

CMXRos labeled male sperm in the uterus and spermatheca difficult. For each of the four biological

replicates, egg lays were performed on two separate days such that there was a cohort of age-syn-

chronized young (day 3 of life) and middle-aged (day 7 of life) hermaphrodites of both genotypes on

the day of mating. Following the Materials and methods section ‘Fluorescent Sperm Tracking to

Identify Mated Hermaphrodites for Mating Efficiency Assays and for Lifespan Assays’, we identified

and isolated young and middle-aged WT and fem-1(hc17) individuals that received male sperm from

fluorescently labeled him-5(e1467) males and transferred them to fresh plates. At the same time,

unmated hermaphrodites that never encountered a male were also moved to fresh plates at the

same density (approximately 30 worms per plate). After approximately 24 hr, 40 worms from each

condition (individuals of each age and genotype that either received male sperm or never interacted

with males) were picked onto an unseeded NGM plate. These worms were immediately washed

twice with ice cold M9 buffer (22 mM KH2PO4, 42 mM Na2PO4, 86 mM NaCl, and 1 mM MgSO4)

and the worm pellets were flash frozen in liquid nitrogen. The remaining worms were used to mea-

sure their lifespan (Figure 2A–D and Supplementary file 2) as described in the section ‘Lifespan

Assays’.

RNA was extracted from the flash frozen worm pellets with 500 mL Trizol and 200 mL chloroform

followed by 250 mL phenol and 200 mL chloroform extractions and finally, an isopropanol precipita-

tion. Remaining DNA was degraded with DNaseI (Promega) and the RNA cleaned with a sodium

acetate and ethanol precipitation. RNA quality was measured using Nanodrop spectrophotometry

and the Agilent BioAnalyzer Total RNA Nano chip and kit. mRNA enriched cDNA was prepared

using 10 ng of total RNA (quantified by Nanodrop spectrophotometry) and the Takara SMART-seq

v4 Ultra Low Input RNA kit, with 8 rounds of amplification. Paired-end libraries were made using the

Nextera XT DNA library prep kit (Illumina) with 1 ng of cDNA (quantified using the Qubit dsDNA

High Sensitivity reagents, Invitrogen) and barcoded using the Nextera XT Index Kit v2 (Illumina).

Libraries were purified with 30 mL AMPure XP beads (Beckman Coulter) as directed in the Nextera

XT kit. Library quality and quantity were assessed using the Agilent Bioanalyxer High Sensitivity DNA

Assay. All samples and biological replicates (A-D) were pooled and sequenced on a single Illumina

NextSeq run. Paired-end, 75 base pair sequencing was performed.

RNA-seq analysis
RNA-seq reads were aligned to the WBcel235 genome and gene read counts were calculated using

STAR (version 2.5.4a). Low-coverage genes that had less than one read count per million mapped

reads in less than three samples were filtered out. Data were normalized with a variance-stabilizing

transformation (DESeq2 version 1.10.1) prior to Principal Component Analysis (PCA) in R (version

3.2.4 and Biobase version 2.30.0). PCA was carried out using the R method (prcomp). Differential

expression was calculated using DESeq2 (version 1.10.1). The results from DESeq2 can be found in

Figure 2—source data 1. Gene Ontology (GO) enrichment was performed in R using the Fischer’s

t-test and Benjamini-Hochberg corrected. Full GO enrichment results can be found in Figure 2—
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source data 2. Heatmaps were generated in R using normalized read counts (variance-stabilizing

transformation). Code is available online (https://github.com/brunetlab/Booth_etal_2019.git).

CEH-18 network analysis
The CEH-18 network was determined using the GeneMANIA webserver (Warde-Farley et al.,

2010). The default settings were used with the exception of the types of interactions allowed (pre-

dicted interactions and protein domain similarity were deselected). Networks were re-drawn based

on the GeneMANIA output using Adobe Illustrator to incorporate the DESeq2 output from the

RNA-seq (Figure 2—source data 1). P-values for enrichment of differentially expressed genes in the

network were calculated using the hypergeometric distribution.

CEH-18 DNA binding motif and ChIP-seq peak analysis
The PSWM file for the CEH-18 DNA binding motif (Narasimhan et al., 2015) was downloaded from

http://cisbp.ccbr.utoronto.ca and a publicly available CEH-18 ChIP-seq dataset (Kudron et al.,

2018) was downloaded from http://epic.gs.washington.edu/modERN/. The ChIP-seq peaks were

then converted to FASTA format with bedtools ‘getfasta’ (Quinlan and Hall, 2010) to be made com-

patible with MEME. The MEME Suite AME (with default parameters ‘Average odds score’ and ‘Fish-

er’s exact test’ using shuffled input sequences as the control) was used with the CEH-18 motif to

determine statistical enrichment of the CEH-18 motif within the CEH-18 binding peaks (McLeay and

Bailey, 2010). This analysis revealed significant enrichment for the CEH-18 DNA binding motif in the

CEH-18 ChIP-seq peaks (p=4.77�10�5), though the enrichment was not strong. As a comparison,

the same analysis was performed using the DAF-16 PSWM file (http://cisbp.ccbr.utoronto.

ca; Weirauch et al., 2014) to test for enrichment within DAF-16 ChIP-seq peaks (http://data.moden-

code.org; Contrino et al., 2012). There was very high enrichment of the DAF-16 DNA binding motif

within DAF-16 ChIP-seq peaks (p=1.44�10�359).

We next tested for the enrichment of the CEH-18 DNA binding motif in the sequences surround-

ing the transcription start sites of the differentially expressed genes from the RNA-seq. The ChIP-

Seeker (Yu et al., 2015) function ‘getPromoters’ was used with parameters ‘TxDb = TxDb.Celegans.

UCSC.ce11.refGene, upstream = 300, downstream = 300’ to assign promoters to genes from lists of

differentially expressed genes generated from the RNA-seq data with a statistical significance

threshold of FDR < 0.05. The resulting bed files were converted to FASTA format and inspected for

motif enrichment as above using the MEME suite AME (McLeay and Bailey, 2010; Quinlan and

Hall, 2010).

To identify differentially expressed genes that have a nearby CEH-18 binding site, the publicly

available CEH-18 ChIP-seq peaks (Kudron et al., 2018) were first de-duplicated to remove any non-

unique lines, and the bed file was converted to a gRanges object using readBed() from the ‘genoma-

tion’ package (Akalin et al., 2015). The gRanges object was then annotated using annotatePeak()

from the ‘ChIPSeeker’ package (Yu et al., 2015) to associate peaks with a proximal gene. The CEH-

18 ChIP-seq peaks that were associated with genes differentially regulated in the RNA-seq datasets

were then outputted based on the annotated gene associations (from ChIPSeeker; Yu et al., 2015).

This output is Figure 4—source data 1. Using the hypergeometric distribution test, we found that

the differentially expressed genes from our RNA-seq (comparing young hermaphrodites to young

feminized individuals, mated and unmated) were not significantly enriched for the CEH-18 binding

sites. We note that our RNA-seq was performed using whole worms and that the differentially

expressed genes from these data are the result of transcripts from all the tissues, many of which may

not express ceh-18. The lack of transcription factor binding enrichment, particularly in transcription

factors acting in a cell- or tissue-specific manner, has been described in C. elegans (Cao et al.,

2017; Narasimhan et al., 2015) and is thought to be largely due to cell heterogeneity. Cell- or tis-

sue-specific methods including single-cell RNA-seq could better elucidate the CEH-18 regulatory

network in the somatic gonad.

We then generated a list of differentially expressed genes between young hermaphrodites and

young feminized individuals (unmated and that mated with males) that have a neighboring CEH-18

binding site by associating ChIP-seq binding peaks with nearest transcription start site using ChIP-

Seeker (Yu et al., 2015). These data are in Figure 4—source data 1. This subset of genes was then

used for GO enrichment in R using the Fischer’s t-test and Benjamini-Hochberg correction. The
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output for the GO enrichment is Figure 4—source data 2. As a negative control, we also performed

this analysis with an unrelated transcription factor, MAB-5 and these data are presented in Fig-

ure 4—source data 1 and 2. All code for these analyses are available online (https://github.com/

brunetlab/Booth_etal_2019.git).

C. briggsae cross
To create a feminized C. briggsae worm that is competent for RNAi knock-down by ingested

dsRNA, we crossed the she-1(v35) feminized strain to a transgenic strain (mfIs42[Cel-sid-2; Cel-myo-

2::DsRed]) that is susceptible to ingested dsRNA (Nuez and Félix, 2012). Worms that were homozy-

gous for the she-1(v35) mutation were determined by PCR followed by Sanger sequencing using the

following primers:

5’- CAATTGTCATGCGACCAGATTT �3’

5’- GCTTGTCCGAAACCAATGAAC �3’

The homozygous presence of the mfIs42[Cel-sid-2; Cel-myo-2::DsRed] integration was deter-

mined by observing transmission of the DsRed marker in all progeny for several generations.

C. briggsae RNAi knock-down
Portions of the highly conserved Cbr-ceh-18 and Cbr-vab-1 genes (Figure 5—figure supplement

2A) were amplified from C. briggsae (strain AF16) genomic DNA and the DsRed transgenic marker

(from JU1018 genomic DNA) using Platinum HiFi Supermix (Invitrogen) and the following primers:

Cbr-ceh-18: 5’-GGTCCTCGAGGTATTCACCAACGGCAACAAC-3’ and 5’-GCGTACTAGTGGTCC

TCTTCCTTCTTCTCTTG-3’

Cbr-vab-1: 5’-GGTCCTCGAGAGTGTGGATCCGTTGTGATG-3’ and 5’-GCGTACTAGTGGAAA

TCCAACTCACCCTATGA-3’

dsRed: 5’-GGTCCTCGAGGAACGTCATCACCGAGTTCAT-3’ and 5’-GCGTACTAGTGATGGTG

TAGTCCTCGTTGTG-3’

The PCR products and the L4440 vector were digested with SpeI and XhoI (New England Biol-

abs). Ligation was performed with T4 ligase (New England Biolabs). The ligation products were first

transformed into TOP10 chemically competent cells (Invitrogen). After verification of the plasmids by

Sanger sequencing, the correct plasmids were transformed into chemically competent HT115 E. coli.

HT115 bacteria containing these plasmids were used for RNAi knock-down by feeding in C. briggsae

(mfIs42[Cel-sid-2; Cel-myo-2::DsRed]) (see ‘Lifespan Assays’ above).

Microscopy
Worms were prepared for imaging using 1 mM sodium azide and mounted on a 2% agarose pad.

The images presented and quantified in Figure 5—figure supplement 3 were taken using a Zeiss

Axioskop 2 Plus. All images for an experiment were taken using the same exposure length. DsRed

fluorescence was quantified in Fiji (Schindelin et al., 2012) using the mean gray value of the pharynx

bulb.

Protein alignment and conservation
To measure the conservation of orthologs of the sperm-sensing proteins CEH-18 and VAB-1, the

sequences of these proteins were downloaded from www.wormbase.org (WBcel235) and aligned

using MUSCLE v3.8 (Edgar, 2004a; Edgar, 2004b). These protein alignments were input to the Jal-

View visualization tool (Waterhouse et al., 2009) to generate Figure 5—figure supplement 2A.

Protein domains (pfam) were determined by www.wormbase.org.

Data and materials availability
Data are available in the main text or supplementary materials. RNA-seq reads are available online

at NCBI SRA (PRJNA508378) and all code used for RNA-seq analysis is available online (https://

github.com/brunetlab/Booth_etal_2019.git; copy archived at https://github.com/elifesciences-publi-

cations/Booth_etal_2019; Booth, 2019).
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