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ABSTRACT The accurate prediction of RNA secondary structure from primary sequence has had enormous impact on
research from the past 40 years. Although many algorithms are available to make these predictions, the inclusion of non-nested
loops, termed pseudoknots, still poses challenges arising from two main factors: 1) no physical model exists to estimate the loop
entropies of complex intramolecular pseudoknots, and 2) their NP-complete enumeration has impeded their study. Here, we
address both challenges. First, we develop a polymer physics model that can address arbitrarily complex pseudoknots using
only two parameters corresponding to concrete physical quantities—over an order of magnitude fewer than the sparsest
state-of-the-art phenomenological methods. Second, by coupling this model to exhaustive enumeration of the set of possible
structures, we compute the entire free energy landscape of secondary structures resulting from a primary RNA sequence.
We demonstrate that for RNA structures of �80 nucleotides, with minimal heuristics, the complete enumeration of possible sec-
ondary structures can be accomplished quickly despite the NP-complete nature of the problem.We further show that despite our
loop entropy model’s parametric sparsity, it performs better than or on par with previously published methods in predicting both
pseudoknotted and non-pseudoknotted structures on a benchmark data set of RNA structures of%80 nucleotides. We suggest
ways in which the accuracy of the model can be further improved.
SIGNIFICANCE The functions and properties of RNA molecules are closely tied to the set of structures they can fold into
and their free energies. However, complex structures termed pseudoknots are not well predicted by current tools despite
their prevalence. Here, we describe a method to analytically calculate the entropies of arbitrarily complex pseudoknots
using only two parameters corresponding to concrete physical quantities. This approach represents an order-of-magnitude
reduction in parameters compared to even the sparsest state-of-the-art tools. We employ this method alongside an
exhaustive enumeration of the set of possible structures to predict the entire free energy landscape of short RNA
molecules, given their sequence. Finally, we show that despite its parametric sparsity, our algorithm outperforms current
state-of-the-art methods in pseudoknot prediction.
INTRODUCTION

RNA molecules play physiological roles that extend far
beyond translation. In human cells, most RNA molecules
are not translated (1). Noncoding RNAs interact function-
ally with messenger RNA (2), DNA (3), and proteins (4)
and can be as large as thousands of nucleotides (nts) (5,6).
However, a substantial fraction are <40 nts in length,
including microRNAs and small interfering RNAs, which
serve as regulators for the translation of messenger RNA
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(2,7), and piwi-interacting RNAs, which form RNA-protein
complexes to regulate the germlines of mammals (8). The
in vitro evolution of RNA, especially through systematic
evolution of ligands by exponential enrichment (9–11),
has led to an explosion of applications for short RNA mol-
ecules because of their ability to tightly and specifically bind
to a remarkable range of target ligands (12).

Overwhelmingly, the properties of short noncoding RNA
molecules are tied to their structures (13–15). Such struc-
tures are formed because of the energetic favorability of
bonds between complementary nts (primarily A to U, C to
G, and the wobble pair G to U). However, these bonds
impose an entropic cost. Therefore, the conformations
most frequently adopted balance the energetic gain of
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maximal basepairing with the entropic cost of structural
constraints. In equilibrium, the RNA adopts each possible
structure with Boltzmann weighted probabilities.

Because of the relevance of RNA structure to function
(16,17), current research aims to predict the minimum free
energy (MFE) structures given the sequence. Algorithms
typically predict ‘‘secondary structure,’’ a list of the base-
pairings (18,19). The early Pipas-McMahon RNA structure
prediction algorithm sought to completely enumerate and
evaluate the free energy of all possible secondary structures,
thereby constructing the entire energy landscape (20). More
recent algorithms have made progress in making similar
enumerations less computationally intensive (21), the most
successful of which are the TT2NE algorithm and its sto-
chastic version, McGenus (22,23). The complete landscape
enumeration approach including all secondary structures
has so far been limited to short (<30 nt) RNA molecules
(24,25), and the field has instead almost entirely been domi-
nated by dynamic programming approaches (26–30). Such
algorithms efficiently consider an enormous number of
structures without explicitly generating them by iteratively
finding the optimal structure for subsequences (18).

Despite the substantial success of dynamic programming,
these algorithms have difficulty predicting RNA secondary
structures that include pseudoknots (i.e., structural elements
with at least two non-nested basepairs) (see Fig. S1 A for an
example) that make up roughly 1.4% of basepairs (18) and
are overrepresented in functionally important regions of
RNA (31). Pseudoknots are disallowed from the most pop-
ular RNA structure prediction algorithms (32,33) because
of computational cost; indeed, enumerating all pseudoknot-
ted structures a given RNA molecule can fold into has been
shown to be NP-complete (34–36). Significant advances
have been made with heuristics, which do not guarantee
finding the MFE structure (23,37–43), and by disallowing
all but a limited class of pseudoknots (44–51).

A further major challenge for predicting pseudoknotted
structures is the relative lack of experimental data or physical
models to estimate their entropies (52,53). An important
caveat is the simple ‘‘H-type’’ pseudoknot for which
both experimental data (54–57) and physical models
(37,50,51,58–60) are available. However, for more complex
single-molecule pseudoknots, even those which can be
enumerated by current dynamic programming algorithms
(47), entropy estimates have been limited to phenomenolog-
ical extensions of the non-pseudoknotted and H-type pseudo-
knot models (43,44,61), and few experimental studies are
available (62). A recent strategy uses machine learning of
large experimental data sets (50,63); although these ap-
proaches can be useful, they come with the disadvantages
of compounding possible experimental errors and often using
an enormous number of parameters, which can impact gener-
alizability. A sketch of a theoretical description of simple
pseudoknot entropies based on polymer physics was devel-
oped by Isambert and Siggia (37,60); however, their deriva-
tions have not been published. Given the relative lack of
experimental data to validate current simple phenomenolog-
ical approaches on complex pseudoknots, the lack of a phys-
ical model for such structures is a pressing concern.

In this study, we develop a physical model to calculate the
entropies of arbitrarily complex pseudoknots. We combine
our model with complete enumeration of the secondary
structure landscape, demonstrating that we can exactly solve
for the probabilities of the RNA folding into each of the
possible structures, including those with pseudoknots
(Fig. 1). We demonstrate that this approach is feasible, not
only for short RNA molecules of �25 nts that have been
examined in previous studies (25) but even for biologically
relevant RNA sequences of �80 nts in length.

Our approach combines a method based on the work of
Isambert and Siggia with a, to our knowledge, novel
graph-theoretical depiction of the RNA, allowing us to
calculate the entropy of any arbitrary RNA structure. We
demonstrate the generality of our formalism using the
H-type and kissing hairpin pseudoknots as examples.
Despite this generality, our loop entropy model uses only
two parameters corresponding to experimentally derived
physical quantities: the persistence length of single-stranded
RNA, and the volumewithin which two RNA nts are consid-
ered bound. This represents an enormous parameter reduc-
tion compared to state-of-the-art algorithms; for example,
the phenomenological Dirks-Pierce model has 11 parame-
ters for the loop entropy of pseudoknots and�18 parameters
for non-pseudoknotted loops (63).

We test our model predictions on molecules from the RNA
STRAND (64), PseudoBaseþþ (65), and CompaRNA (66)
databases and find good agreement with experimental results.
We find that a significant heterogeneity in pseudoknot types
exists even for sequences %80 nts in length, based on the
polymer model representing their entropies. This heterogene-
ity is found to result in systematic errors of heuristic models’
estimates of the entropies of complex pseudoknots, moti-
vating the generality of the entropic model derived here,
which can correct such errors. Although we fit our entropy
model only to data from non-pseudoknotted structures, we
find that our model performs as well or better than previously
published methods in predicting pseudoknots while perform-
ing on par with current methods in the prediction of non-
pseudoknotted structures. Given the success of the model
alongside its parametric sparsity, future work should build
upon it to include further biological considerations neglected
in the current treatment, and we give suggestions for where
such improvements can be made.
METHODS

Calculating free energies

The probability of the RNA sequence folding into a given equilibrium struc-

ture s is given by the Boltzmann factor:
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FIGURE 1 Schematic overview of the algorithm. Given an RNA sequence, the algorithm first enumerates all potential stems (sequences of consecutive base-

pairs) that can form. It then searches for all possible combinations of stems such that no nt is paired with more than one other, thus forming all possible secondary

structures. For each structure, it calculates the free energy, which is comprised of a bond free energy term and a loop entropy term. In this work, we describe a

polymer physics model to calculate this loop entropy term for arbitrarily complex pseudoknotted structures using only two parameters. The histogram of free

energies for the sequence shown is plotted with an arrow pointing to the minimum free energy (MFE). Given the entire free energy landscape, the algorithm

calculates the probability of any arbitrary secondary structure of forming in equilibrium. Finally, we coarse grain over similar structures described by the

same topology, arriving at a probability distribution for every possible topology forming in equilibrium. To see this figure in color, go online.
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pðsÞ ¼ expð�bGsÞ=Z; (1)

where b¼ 1/kBT (T is the temperature, and kB is Boltzmann’s constant), and

the partition function, Z, is defined such that the probability distribution isP

normalized:

s

pðsÞ ¼ 1. Here Gs, the Gibbs free energy of structure s, is a

function of the enthalpy Hs and entropy Ss of the structure:

DGo ¼ DHo � TDSo; (2)

where we drop the subscripts for notational convenience and introduce D to

signify that free energies are measured with respect to the free chain. The
superscripts implying standard conditions will be dropped from here on.

We separate the free energy calculation into two independent compo-

nents: the free energy of consecutive basepairs (stems) and the free energy

of loops. We make the simplifying assumption thatDH is determined solely

by the basepairs in the structure, ignoring higher order corrections, such that

DH ¼ DHstems. For the entropy, we make no such assumption, and DS ¼
DSstems þ DSloops, where the entropy of stems represents the entropy lost

by basepaired nts, and the entropy of loops represents the entropy lost by

the constraints those basepairs place on the rest of the molecule. To calcu-

late the terms DHstems and DSstems, we consider nearest-neighbor interac-

tions among basepairs following the Nearest Neighbor Database (67),

assuming (with few exceptions tabulated in the database) independence

of the free energy contributions of each stem. See further details in Support-

ing Materials and Methods.
Calculating loop entropies

The goal of this and the next section is to build up a theoretical framework

to estimate the loop entropies of arbitrarily complex RNA pseudoknots.

This calculation has a significant effect on the prediction results. In fact,

the magnitude of the loop entropy is on average equal to that of the overall

free energy at physiological temperatures (see Fig. S7). This is as expected

intuitively; the difficulty in RNA structure prediction lies precisely in pre-
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dicting the balance between the energy gain from basepair constraints and

the entropy gain from unpaired nts.

Because the following calculation is somewhat involved, we will begin

by clarifying explicitly the nature of the loop entropy. A free RNA chain

has a large number of conformations available to it, which we will call

U. The loop entropy is the quantification of the reduction in conformations

available to the RNA molecule upon introducing constraints on the struc-

ture, such as that certain nts are paired (68).

U depends on the length x of the RNA, such thatU(x1)U(x2)¼ U(x1þ x2);

in other words, we assume (for the free chain) independence of the various

subsections of the RNA. This is in principle only true in the limit x1,

x2 [ b, where b z 2.4 nts is the Kuhn length of single-stranded RNA,

and further neglects self-avoidance of the RNA molecule. Throughout, we

will consider regions of single-stranded RNA long enough such that x[ b

but short enough such that we assume self-avoidance has negligible probabil-

ity. We discuss how to systematically consider shorter RNA loops in Support-

ing Materials and Methods and will make some notes regarding self-

avoidance later in this section. We will also make the approximation that U

is independent of sequence.

When a loop is formed in RNA, that loop constrains the number of con-

formations available to the RNA. For example, an RNA molecule that has

its first nts bonded to its last only has available to it a fraction of the con-

formations available to the free chain—namely, all those that have the first

and last nts close enough to bind. We are interested not in absolute values of

the entropy S, but in DS, where the free chain is our reference state with

DSfreeloops ¼ 0. The entropy of a structured RNA of length x with ustruct con-

formations available to it is given by DSloops ¼ kBlog(ustruct/U(x)) < 0,

where we have written the difference of logs as the log of the ratio. We

can simplify this formula by writing ustruct ¼ U(x) � p, where p is the frac-

tion of conformations available to the free chain that are consistent with the

structure being considered. We therefore have

DSloops ¼ kB log p: (3)
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It is worth reiterating that the entropy of stems themselves was already

taken into account in the term DSstems and that DSloops only measures the

entropy lost because of loop closures (69). To avoid overcounting the en-

tropy lost because of the constraints placed on basepaired nts, stems do

not directly contribute toDSloops. Therefore, a stem comprised of l basepairs

(or 2l nts) should be treated—for the purposes of the DSloops calculation—

as if it has U(2l) available conformations; that it in reality has far fewer has

already been quantitatively accounted for in the DSstems term. Because of

this, factors of U cancel out entirely in calculations of DSloops.

We now turn to polymer physics to quantitatively describe how loop

closure constraints affect p, the fraction of configurational space available

to the molecule.We model a single-stranded region comprised of x unpaired

nts as a random walk of (xþ 1)/b steps, whereas before b is the Kuhn length

of single-stranded RNA. We denote by Psð~RÞd~R the probability of a random

walk of length s to have end-to-end vector ~R:

Ps

�
~R
� ¼

�
3

2psb

�3=2

exp

�
� 3R2

2sb

�
: (4)

We have assumed s[ b to arrive at the Gaussian formula above through

the central limit theorem. The mean of the Gaussian is zero by symmetry.

To find the variance we first consider a single step of length b in three di-

mensions, which has variance in thebi, bj, and bk coordinates of b2/3 by sym-

metry. For a random walk of N ¼ s/b steps, by independence of subsequent

steps, the total variance is equal to Nb2/3 ¼ sb/3, leading to Eq. 4.

Eq. 4 is accurate for non-self-avoiding random walks; self-avoiding

random walks cannot be treated analytically in this way. However, for suf-

ficiently short walks, the probability of self-interaction is low. As described

in Supporting Materials and Methods, we can systematically consider

higher order corrections to Eq. 4 while maintaining its Gaussian nature.

Whereas the accuracy of the assumption s[ b does not always hold in

the problems considered, we ultimately find very good agreement between

results using Eq. 4 and experiment and that corrections to Eq. 4 as described

in Supporting Materials and Methods, are negligible.

For a structure with n single-stranded regions of lengths si (1 % i % n),

the fraction of conformations consistent with the structure is given by the

following:

p ¼
Z Y

i

Psi

�
~Ri

�
d~Ri; (5)

where ~Ri is the end-to-end distance vector of the ith single-stranded region,

and the primed integral is taken only over those ~Ri consistent with the over-
FIGURE 2 vs estimated from experimental data. Experimental estimates

for the free energy of hairpin loops of length s from Table 1 of (71) were

converted to entropy estimates (blue points and error bars) by assuming

DH ¼ 0 as in (30). These data were fit to Eq. 6, yielding an estimate of

vs ¼ 0.0201 5 0.0036 nts3. To see this figure in color, go online.
all structure. We will describe how to address these integrals via a Feynman

diagram-like approach in the next section.

To demonstrate how Eqs. 3, 4, and 5 are applied, we first consider the

simple hairpin loop. We will call its entropy DSclosed-net-0, neglecting

the subscript of ‘‘loops’’ from here on. The notation follows (37,60), and

the subscript references the number of stems enclosed by the loop (zero

in this case; see Fig. S2 for other examples). Following Jacobson and Stock-

mayer (70), we allow that basepairing can occur as long as the two nts are

within a small volume vs of one another. We assume that the bond length rs

is small enough that for all
��~R ��%rs, Psð~RÞzPsð~0Þ. Therefore, p ¼

vsPsð~0Þ, and Eqs. 3, 4, and 5 yield

DSclosed�net�0 ¼ kB

	
logðvsÞ þ 3

2
log

�
3

2psb

�

: (6)

We emphasize that within our model, this formula is applicable to hairpin

loops, bulge loops, internal loops, and multiloops. We discuss in a later sec-

tion how our model can be extended to break this equivalency.

We estimate vs by fitting experimental measurements of the entropy of

hairpin loops of variable lengths to Eq. 6. Although Eq. 6 implies that

the entropy of a hairpin should increase monotonically as a function of
its length, the experimental measurements are nonmonotonic, and their

nonmonotonicity exceeds the error bars (71). This nonmonotonicity may

be due to enthalpic effects (72), which were neglected in our analysis

following (30). Nevertheless, Fig. 2 shows that Eq. 6 gives a reasonable

fit to the experimental data with vs¼ 0.02015 0.0036 nts3. A more precise

definition of vs might include a dependence on the closing basepairs of the

hairpin loop; we expect that the penalties placed on specific closing base-

pairs and first mismatches in (30,71) play a similar role, though such pen-

alties were not included here. If one ignores all angular dependences of

bond formation, our estimate of vs leads to a naive underestimate of the

length of a hydrogen bond of 0.56 Å, which nonetheless is well within an

order of magnitude of the true length of hydrogen bonds.

Because we find b using previous experimental results and fit vs based on

data from non-pseudoknotted structures, our model is in truth a zero-param-

eter model when it comes to pseudoknots. No data from pseudoknotted

structures were used to fit our model.
Pseudoknot loop entropies: RNA Feynman
diagrams

Our goal in this section is to find Eq. 5 for arbitrary pseudoknots. In Eq. 5,

the Ps(R) terms are given by the single-stranded segments, whereas stems

appear through the constraint on the integral. The persistence length of

double-stranded RNA is extremely long (�200 nts (73)) compared to

both single-stranded RNA and the length of any stem we will actually

consider. Therefore, we will model stems as rigid rods with a fixed end-

to-end distance given by the length of the stem. In other words, a stem in

which nts i through i þ k are bound to j through j � k constrains nts i

and i þ k (as well as j and j � k) to be a fixed distance apart. As we will

see, such constraints end up only affecting the value of the integral for pseu-

doknotted structures, as exemplified by Fig. 3 c.

To calculate the entropy of a pseudoknot of arbitrary complexity, we invent

a, to our knowledge, novel graph formulation inspired by Feynman diagrams

from quantum field theory. We build on previous work by Rivas and Eddy

(44) and later by Orland and Zee (74) who developed innovative graphical

decomposition methods for RNA structures for the purposes of pseudoknot

enumeration; here, we use a related diagrammatic approach for the entropy

calculation instead. First, the RNA structure being considered is translated

into a graph. Nodes are used to represent the two end points of a stem, and

two types of edges represent single- and double-stranded RNA.

Defined in this way, the graph of the RNA structure directly represents

the integrals necessary to compute its entropy. The positions of the nodes,
Biophysical Journal 117, 520–532, August 6, 2019 523
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FIGURE 3 RNA Feynman diagrams. (a) An instance of the canonical H-type pseudoknot is shown (the first panel). Bold lines represent the RNA back-

bone; thin lines represent hydrogen bonds. The loop entropy of this structure can be calculated by first assuming sequence independence of the loop entropy

(second panel) and then converting the structure to a graph (third panel). The nodes of the graph represent the first and last basepairs of each stem, and two

types of edges represent single- and double-stranded RNA. The graph directly represents the integral in Eq. 7, reprinted in the fourth panel. The nodes are

integrated over three-dimensional space, subject to constraints specified by the rigid double-stranded edges (blue), which correspond to delta functions. The

integrand is given by the flexible single-stranded edges (red), which correspond to a PsðR!Þ term. (b) The intramolecular kissing hairpin pseudoknot (first

panel) is converted to a graph (second panel), representing the integrals necessary to compute its loop entropy (third panel). Although for this structure, the

integrals are in general not analytically solvable, we numerically solve them (see SupportingMaterials andMethods) as well as solve them analytically for the

case s1/s3 ¼ s2/s4 (Eq. 8). (c) The process of calculating the loop entropy of an RNA structure by converting it to a graph representing the entropy in integral

form can be applied to any arbitrary structure. Separable integrals are represented by graphs which can be disconnected by the removal of any one edge. Thus,

once appropriate factors of vs are included (one for each stem in the original structure), the loop entropy of the example structure in question is simple to

calculate and is given by four closed-nets-0 (originating from the three hairpins and multiloop). The four closed-net-0 loops contribute multiplicatively to the

exponential of the loop entropy, meaning additively to the loop entropy itself. For non-pseudoknotted structures, all double-stranded edges (blue) can be

removed in this way. To see this figure in color, go online.
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~ri, are integrated over all of space, while the constraints of the structure are

included in the integrand: a double-stranded edge of length l between nodes

i and j leads to a term vsdð
��~ri �~rjj�lÞ=4pl2 (because of the rigid rod

approximation of the stem), and a single-stranded edge of length s between

these nodes leads to a term Psð~ri �~rjÞ in the integrand (as in Eq. 5). Note

that two bonded nts in isolation are considered a stem of length l / 0.

As a concrete example, we consider the canonical H-type pseudoknot, an

instance of which is shown in Fig. 3 a (first panel). The loop entropy is

sequence independent (second panel) and can be calculated by translating

the structure into a graph (third panel) in which each node represents the

edge of a stem, blue edges represent regions of double-stranded RNA of

length li, and red edges represent regions of single-stranded RNA of length

si. For the example in Fig. 3 a, s3 ¼ 6 nts, and l1 ¼ 3 nts. We set the origin

of our coordinate system to node 0 and call the distance vector between node i

and the origin~ri. Integrating over the possible placements of nodes 1–3 (while

including the constraints of the structure in the integrand as described previ-

ously) we obtain the following Gaussian integral formulation of the entropy:

eDSH�type=kB ¼ v2s

Z
d~r1

Z
d~r2

Z
d~r3

d
����~r1 ��� � l1

�
4pl21

�
d
����~r3 � ~r2

��� � l2

�
4pl22

Ps1

�
~r3 � ~r1

�
� Ps2

�
~r2 � ~r1

�
Ps3

�
~r2

�
;

(7)
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where using the assumption s[ b, we allow the integrals to extend over all

of space. A more comprehensive derivation of this formula, including the

origin of the vs terms, can be found in Supporting Materials and Methods.

This integral can be calculated analytically (Supporting Materials and

Methods; (37)).

A complex pseudoknot involved in biological processes ranging from viral

replication to antisense regulation is the intramolecular kissing hairpin pseu-

doknot (Fig. 3 b; (43,75–79)). Despite its biological prevalence, its entropy

cannot be estimated using existing formalisms, necessitating the use of simple

heuristic energy models (43). Our formalism on the other hand can readily

address this pseudoknot by translating the structure to integrals as in Eq. 7.

Although the integrals representing the entropy of the kissing hairpin are

not in general analytically solvable, they are for the special case of s1/s3 ¼
s2/s4. Rescaling the s to be s/g with g ¼ 3/2b, we define the variables

sc ¼ s5(s1 þ s2)(s3 þ s4) and sd ¼ s1s2(s3 þ s4) þ s3s4(s1 þ s2) along with

sA ¼ s5ðsc þ sdÞ
sc

; sB ¼ s3s4ðs1 þ s2Þ2
sd

; sv ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sc þ sd

p

to arrive at

eDSKH=kB ¼ ðvs=svÞ3
2p9=2

sA
l1l3

e
�
�
l21 þ l23
sA

�
� l2

2

sB
sinh

�
2l1l3
sA

�
; (8)

where sinh is the hyperbolic sin function.
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The complete derivation of Eq. 8, along with a derivation of the numer-

ically solvable general case, can be found in Supporting Materials and

Methods. We have also provided an eight-dimensional table of the results

of the numerical integration for different combinations of the s and l as Sup-

porting Materials and Methods (Table S2).

We note that the intermolecular kissing hairpin complex, for which phys-

ical models have previously been developed (80), is simpler than the intra-

molecular structure in the context of our formalism, and its entropy

calculation is shown in Fig. S2.

Our Feynman diagram-like graphical formalism allows intuitive manip-

ulation of the integrals. Graphs that can be disconnected by the removal of

any one edge correspond to separable integrals and thus to distinct motifs in

the RNA structure. The decomposition of a structure into its component

graphs is depicted in Fig. 3 c for a classical cloverleaf RNA (a second

example, this one of a pseudoknotted RNA, is provided in Supporting Ma-

terials and Methods, Section 10). The RNA in question decomposes into

four instances of closed-net-0 (originating from the three hairpins and mul-

tiloop) and one instance of an open-net-0, or free chain (which by definition

does not affect the entropy). For non-pseudoknotted structures, once appro-

priate factors of vs are included in the integrals (one for each double-

stranded edge of the graph), all double-stranded edges can be removed

through this graphical decomposition process. As shown in the figure, nodes

that can be removed without changing the topology can be removed in the

graph decomposition process. This is made possible by the property of

Psð~rÞ that
R
Pxð~r1ÞPyð~r2 � ~r1Þd~r1 ¼ Pxþyð~r2Þ (see Supporting Materials

and Methods for further discussion).

In Fig. S2, we display all possible graphs of up to two stems and their

respective RNA structures. As in Fig. 3, single-stranded edges are dis-

played with red, and double-stranded are displayed with blue. For

each graph, the integral formulation of its entropy is displayed in the

figure alongside what it evaluates. RNA sequences, even those of length

%80 nts, form a wide array of pseudoknots more complex than those

discussed in that figure, such as H-type pseudoknots with internal loops.

Heuristics for treating such pseudoknots make systematic errors that our

model can correct. See Supporting Materials and Methods for further

discussion.

In Supporting Materials and Methods, we provide a full sample calcula-

tion for the free energy of a pseudoknotted structure.
Comparison of methodology to other
physics-based pseudoknot entropy models

Although our model is able to address arbitrarily complex pseudoknots,

prior physical models have been developed to address H-type pseudoknots

in particular. The parametric sparsity of the model described above neces-

sitates a neglect of several biological considerations, which have been

considered by these previous models. Here, we will discuss how the frame-

work developed above can be modified to include several factors considered

in such models. The rationale for building atop our framework is provided

in the next section. We demonstrate that despite the loop entropy model’s

apparent physical simplicity—it uses an order of magnitude fewer param-

eters than current tools while being general enough to apply to arbitrarily

complex pseudoknots—it performs on par with state-of-the-art prediction

software and therefore appears to succinctly capture the essential physics

at play (see Results and Discussion).

An early model for the loop entropy of pseudoknots was developed by

Gultyaev et al. (81). That model was based in large part on Jacobson and

Stockmayer’s derivation of the loop entropy of hairpins, which is rederived

(Eq. 6) and then significantly extended by our formalism. To account for

excluded volume, Gultyaev et al. replaced the factor of 3/2 in Eq. 4 with

1.75 (82). Such a change does not accurately account for excluded volume

for the case of pseudoknots; we therefore did not make this replacement in

our own article (in an effort for self-consistency), though it can easily be

made. A more systematic treatment of how to include self-avoidance for

the case of complex pseudoknots is still lacking.
The first pseudoknot models such as Gultyaev’s did not consider interhe-

lix loops for the H-type pseudoknot (i.e., they only considered those

structures for which s2 ¼ 1 in the language of Fig. 3 a). The approximation

made in our own work is in fact the opposite limit—that of s2 [ b—and

our results should be most appropriate for long single-stranded regions.

More precise treatment of short loops would forgo the simple ideal chain

approximation of Eq. 4 in favor of the worm-like chain approximation.

Although it would preclude analytic solutions of the integrals, numeric inte-

gration can easily be employed to make an effective look-up table as we

demonstrated for the intramolecular kissing hairpin pseudoknot.

A similar complication is dealt with in Cao and Chen’s Vfoldmodel, which

considers bond geometries explicitly using the diamond lattice (50).

Although the enumeration procedure employed on the lattice is not compu-

tationally feasible for very large or complex pseudoknots, it is expected to

capture the atomistic geometries more precisely than our own continuous

three-dimensional space theory. Modifications can still be made within our

framework, most directly by integrating only over a specific range of angles

determined by the geometry. Such geometric considerations may also affect

our treatment of non-pseudoknotted structures and, in particular, our equiva-

lent treatment of hairpin, internal, bulge, and multiloops (83).

Perhaps most importantly, our model neglects the twists of the RNA helix.

These twists may play a role in the nonmonotonicity of the experimental data

in Fig. 2 and are likely significant. Isambert’s KineFold model claims to

effectively consider such twists by modification of the value of the double-

stranded stem lengths l inputted to the pseudoknot formulae (60); however,

as for the pseudoknot formulae themselves, the derivations of these modifica-

tions have not been published, and no physical basis for them was given.

Finally, although we do not distinguish between the major and minor grooves

of the RNA, accounting for the different grooves can explain asymmetries in

physiological H-type pseudoknots (58). Aalberts and Nandagopal demon-

strated that with the addition of a single experimentally measured parameter,

Psð~RÞ can be modified to account for this factor (84,85).
Enumerating RNA structures

In this section, we describe the process by which we exhaustively enumerate

the secondary structures, including pseudoknots, into which an arbitrary

given sequence can fold. This process was developed by Pipas andMcMahon

(20). The Pipas-McMahon algorithm first enumerates all possible secondary

structures for a given sequence (sans pseudoknots) and then evaluates the free

energy for each to construct the entire free energy landscape for non-pseudo-

knotted structures. A major shortcoming is the significant computer time

required for long sequences. However, the exponential increase in computer

power over the past 40 years, coupled with increased appreciation for the

physiological and engineering relevance of short RNA strands, suggests revis-

iting this approach. This process is also employed by the TT2NE algorithm,

with the caveat that rather than stems, that algorithm uses helipoints—defined

as sets of stems separated by a bulge loop of size one or a 1 � 1 internal

loop—as the backbone of the enumeration procedure, thus coarse graining

over many similar structures (22).

We first number the nts in the RNA sequence from 1 to N from the 50 end.
We define an N � N symmetric matrix B, which describes which nts can

bind to each other: Bi,j ¼ 1 if nts i and j can bind to form a basepair (i.e.,

they belong to the set {(A,U)(C,G)(G,U)}) and 0 otherwise.

Next, we search for all possible stems (strings of consecutive basepairs)

that could form. We define a parameter m to be the minimal allowed stem

length (m R 1; we set m ¼ 1 throughout unless otherwise specified). We

also impose the physical constraint that hairpins (single-stranded region con-

necting one end of a stem) have aminimal length of three nts.We include not

only the longest possible stems that can form but all contiguous subsets of

those stems (86,87). We denote the number of stems found by Nstems.

We next define theNstems�Nstems symmetric compatibilitymatrixC, where

Cp,q ¼ 1 if a structure could be made with both stems p and q acðCq;q ¼
1c qÞ. We impose the constraint that each nt may be paired with, at most,

one other nt by setting Cp,q ¼ 0 if stems p and q share at least one nt.
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Finally, we explicitly enumerate the remaining possible secondary struc-

tures by identifying all compatible combinations of stems. Starting from a

single stem s1, we consider stems s2 where 1 % s1 % s2 % Nstems and add

the first stem for which Cs1,s2 ¼ 1. Then, we repeat the process, adding the

first stem s3 > s2 compatible with both s1 and s2 and so forth, continuing

until we can add no more stems. We add the resulting structure, composed

ofM stems, to the list of possible structures, remove the last stem added (to

obtain the structure composed of stems s1, s2, ., sM–1), and continue the

process. This algorithm returns all possible secondary structures resulting

from the primary sequence.

The algorithm described here was implemented in MATLAB (The

MathWorks, Natick, MA), and all code is available on the GitHub reposi-

tory (https://github.com/ofer-kimchi/RNA-FE-Landscape). The repository

also includes a Python version of the code.

Once we completely enumerate the possible secondary structures, we

calculate the probabilities that the RNAwill fold into each of them by calcu-

lating their free energies as described in the previous sections.
RESULTS AND DISCUSSION

We use experimentally determined structures to compare
the predictions of our model with other current methods; re-
sults are shown in Fig. 4. For sequences of length %80 nts
from the RNA STRAND (64), PseudoBaseþþ (65), and
CompaRNA (66) databases (186 non-pseudoknotted struc-
tures with 58 different topologies; 235 pseudoknotted struc-
tures with 52 different topologies), which had a sequence
dissimilarity R0.2 (using Jukes-Cantor), we measured the
number of basepairs correctly predicted by our algorithm’s
MFE structure compared to 14 other current algorithms.
Seven of these cannot predict pseudoknots and serve as use-
FIGURE 4 Summary statistics for comparison to other prediction tools. To a

predicting experimentally determined RNA structures to that of 14 other current

(119), Mfold (32), CONTRAfold (120), PPfold (121), CentroidFold (122), Cont

parameters), HotKnots (Cao-Chen parameters) (63), ProbKnot (40), PKNOTS (4

sure sensitivity, PPV, the fraction of topologies predicted correctly by the MFE s

and the fraction of MFE structures containing a pseudoknot. We separate the res

not. Error bars show the standard error. Despite the fact that our algorithm requ

structure (at least an order of magnitude–and often several–fewer than the other a

doknotted structures, our algorithm outperforms the other algorithms tested in

dicting non-pseudoknotted structures. We also demonstrate that our algorithm’s

setting all loop entropies to zero (dark green) leads to poor performance (see m
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ful benchmarks for the non-pseudoknotted results (detailed
methods in Supporting Materials and Methods; we have
included the entire benchmark data set in Table S1). We
also tested whether our algorithm’s predictions are depen-
dent on the accuracy of our loop entropy model by setting
all loop entropies to zero (dark green). The poor perfor-
mance of our algorithm in this case compared to the case
in which loop entropies are considered demonstrates the
success of the loop entropy model.

Although the entropy model presented here can give an
integral expression for arbitrarily complex pseudoknots,
the integral may need to be solved numerically for suffi-
ciently complex structures. For this large-scale comparison,
we disallowed pseudoknots more complex than those dis-
played in Fig. S2, and our algorithm therefore did not
require any numerical integration. Fig. S6 demonstrates
that even without this practical constraint, the complete
enumeration of secondary structures including all possible
pseudoknots is nonprohibitive. We similarly disallowed par-
allel stems, which can be stable in neutral and acidic pH
conditions (88). We also set the minimal stem length for
each sequence (m) to the minimal value it could take such
that the total number of possible stems is less than
Nmax
stems ¼ 150. These choices were all made to speed up

computation time; each sequence took between several sec-
onds and an hour to run. Details of the computation time of
our algorithm can be found in Figs. S4–S6.

Although these practical constraints were chosen to speed
up the computation time, they also led to errors in the
ssess the relative success of our algorithm, we compare its performance in

prediction tools: RNAFold (33,118), ViennaRNA (Andronescu parameters)

ext Fold (123), HotKnots (Dirks-Pierce parameters), HotKnots (Rivas-Eddy

4), RNAPKplex (33,118), and iterated loop matching (ILM) (38). We mea-

tructure, the average per-base topology accuracy (defined in the main text),

ults into sequences that experimentally form pseudoknots and those that do

ires only two parameters to describe the entropy of any arbitrary secondary

lgorithms tested against) and that the parameters were trained on non-pseu-

predicting pseudoknotted structures and performs on par with them in pre-

success is dependent on the accuracy of our loop entropy model because

ain text for further discussion). To see this figure in color, go online.

https://github.com/ofer-kimchi/RNA-FE-Landscape


FIGURE 5 Probability of folding into a pseudoknot. The predicted prob-

ability of each of the 421 sequences tested folding into a pseudoknot is

presented. Of these sequences, 186 were experimentally found not to

form pseudoknots (blue) and 235 were found to form pseudoknots (red).

Our algorithm successfully predicts pseudoknots forming in the latter cate-

gory far more frequently than in the former. For figure clarity, a lower

bound of pseudoknot probability was set at 2 � 10�10. To see this figure

in color, go online.

Pseudoknot Entropy Model
algorithm’s predictions. Of the tested pseudoknots, 64 were
topologically more complex than any of those presented in
Fig. S2. Furthermore, 33 of the non-pseudoknotted se-
quences tested (and eight of the pseudoknotted) include
basepairs outside of those allowed by the algorithm (AU,
GC, and GU). Removing such structures from our compar-
ison analysis leads to our algorithm performing even better
compared to current tools (see Fig. S3).

Further errors were due to our choice of m, which was not
optimized and was too high compared to the length of the
shortest stem in the experimental structure for 58 non-pseu-
doknotted cases and 54 pseudoknotted cases. By changing
Nmax
stems from 150 to 200, these numbers decreased to 46 for

both pseudoknotted and non-pseudoknotted sequences, but
the results for Nmax

stems ¼ 200 were practically identical to
the results of Fig. 4 (see full results in Table S1). For
Nmax
stems ¼ 200, the computation time was increased signifi-

cantly (to several hours in the worst cases, though the major-
ity of the computation time is spent on the Feynman
diagram decomposition process, which has not been opti-
mized in the current code). In addition to these sources of
error, the nearest-neighbor parameters may need to be re-
examined to be used most effectively with the loop entropy
model presented here.

We considered the basepairs present in the experimental
structure and in each algorithm’s MFE structure. Basepairs
present in both were labeled as true positives (TP), those
present only in the predicted algorithm were labeled as false
positives (FP), and those present in the experimental struc-
ture but not the predicted MFE structure were labeled as
false negatives (FN). The sensitivity (TP/TP þ FN) and
the positive predictive value (PPV; TP/TP þ FP) of our
algorithm were measured to be 0.80 and 0.75 for the non-
pseudoknotted cases and 0.75 and 0.76 for the pseudoknot-
ted cases, respectively. Our algorithm performed better than
or as well as all other prediction tools tested for the predic-
tion of pseudoknots and on par with other tools in the pre-
diction of non-pseudoknotted sequences. The full results
can be found in Table S1.

Although sensitivity and PPV are the most common met-
rics used to establish the success of an RNA prediction algo-
rithm (89), we sought to develop a test that measures success
on the scale of the full RNA rather than on the scale of indi-
vidual basepairs. To this end, we measured how frequently
each algorithm was able to correctly predict the topology
of the experimentally measured structure, in which the topol-
ogy of a structure is defined by its graph. We found for our
algorithm that the experimental topology is within the top
1, 5, and 10 topologies at frequencies of 49, 65, and 70%
for non-pseudoknotted structures, and 34, 59, and 62% for
pseudoknotted, demonstrating a sharp increase between top
1 and top 5 and a plateau between top 5 and top 10.

Considering whether an algorithm correctly predicts the
full topology can lead to errors arising from small variations
in structure. For example, the opening of a single bond on
the edge of a stem can lead to a different topology as we
have defined it, if that stem includes one of the ends of
the molecule. To arrive at a per-base measure of topology,
we consider for each bond along the RNA backbone to
which of the minimal graphs of Fig. S2 it belongs. For
example, the bond between the second and third nts of
Fig. 3 a belong to a stem of an open-net-2a graph. We
then measure for each sequence the fraction of correct
per-base topology predictions made by each algorithm’s
predicted MFE structure. We find that our algorithm aver-
ages an 76% per-base topology prediction accuracy for
non-pseudoknotted sequences and a 49% accuracy for
pseudoknotted.

Finally, we compare how frequently each algorithm pre-
dicts an MFE structure containing a pseudoknot. Our algo-
rithm correctly predicted 174/235 pseudoknots among the
pseudoknotted cases, far more than any other algorithm
tested. However, it also erroneously predicted 35/186 incor-
rect pseudoknots among the non-pseudoknotted cases.

For each of these metrics, the success of our algorithm is
dependent on the loop entropy model. If we set all loop en-
tropies to zero, our algorithm’s predictive power plummets
(see Fig. 4, dark green). This is especially true for the pre-
diction of non-pseudoknotted structures because removing
the loop entropy term leads the algorithm to erroneously
predict that 88% of these would form pseudoknots.

Our algorithm also provides the probability of folding
into a pseudoknotted structure for each sequence. These
data for the 421 sequences tested are presented in Fig. 5.
Each data point represents a different sequence and the total
Biophysical Journal 117, 520–532, August 6, 2019 527
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probability calculated of that sequence folding into a pseu-
doknotted structure. For figure clarity, a lower bound of
pseudoknot probability was set at 2 � 10�10.

The algorithm’s predictions for the six longest RNA se-
quences less than 89 nts in length from the PseudoBaseþþ
database are presented in Fig. 6. We considered only those
sequences whose structure was directly supported by exper-
iments and which could be decomposed into the minimal to-
pologies shown in Fig. S2. We display the experimental
structure (green background) alongside the MFE predicted
structure (light blue background) and the top six predicted
topologies (out of several hundred, depending on the
sequence; dark blue) in which the experimental topology
is highlighted (purple). RNA secondary structure was
plotted using the PseudoViewer package (90). Our results
demonstrate successful predictions even for long pseudo-
knotted sequences, especially in terms of the predicted
topology. Detailed methods are provided in Supporting Ma-
terials and Methods.
FIGURE 6 Comparison to experiments for long sequences. Six long sequenc

text. The sequences are fragments derived from the following (starting from the to

(127), tobacco mild green mosaic virus (125,128), Bacillus subtilis (129), Giard

supported by (numbering the sequences in the same order) sequence comparison

modeling (1), and NMR (6). We show the experimental structure (green backgro

the PseudoViewer software (90). We also display the top six topologies (out of s

predicted probabilities, with the topology corresponding to the experimental stru

dictions even for these long pseudoknotted sequences, especially in terms of th
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CONCLUSIONS

The accurate prediction of the ensemble of secondary struc-
tures explored by an RNA or DNA molecule has played a
major role in shaping modern molecular biology and DNA
nanotechnology over the past several decades. In this
work, we showed that the modern ubiquity of extremely
powerful computers can be used alongside novel polymer
physics techniques to completely enumerate and solve for
the free energy landscape of an RNA molecule including
complex pseudoknots. This exponential time algorithm
can be used to tackle even relatively long (�80 nts) RNA se-
quences and, aside from the enumeration procedure (which
is relatively fast compared to the free energy calculation
for long sequences; see Figs. S4 and S6), is easily
parallelizable.

Remarkably, the entropy model discussed in this work re-
quires only two parameters—orders of magnitude fewer
than other current algorithms—corresponding to clearly
es were chosen from the PseudoBaseþþ database as described in the main

p left and moving across): tobacco mosaic virus (124–126), Bacillus subtilis

iavirus (130), and Visna-Maedi virus (131). The experimental structures are

(1–4,6), structure probing (1,3,5,6), mutagenesis (2,4–6), three-dimensional

und) and the MFE-predicted structure (light blue background) plotted using

everal hundred, depending on the particular sequence) and their respective

cture highlighted in purple. Overall, our results demonstrate successful pre-

e predicted topology. To see this figure in color, go online.
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measurable physical quantities. Despite this and despite the
fact that all parameters used in our model were derived us-
ing experiments on non-pseudoknotted RNA, our algorithm
is more successful in predicting pseudoknotted structures
than any of the other algorithms tested and on par with all
predictors tested in predicting non-pseudoknotted structures
on a benchmark data set of sequences of length %80 nts.
The success of our algorithm is particularly notable given
that the entropy model developed in this work can be used
to address any RNA secondary structure, regardless of
complexity. Given these results, we expect that more accu-
rate entropy models can be formulated by building atop the
framework presented here and have highlighted several
avenues for improvement.

Although we have not done so in this work, we expect
that our results can be further improved by optimizing the
nearest-neighbor parameters, given the entropy model pre-
sented here.

The algorithm presented here can also be easily general-
ized to probe multiple interacting strands (see discussion in
Supporting Materials and Methods). The sequences consid-
ered can be any combination of DNA and RNA; their iden-
tities affect the nearest-neighbor parameters of the model
that have been previously tabulated (91) and to a lesser
extent, the two entropy parameters (b and vs).

Our finding that the integral formulation of the entropy of
arbitrary complex RNA secondary structures can be repre-
sented graphically is reminiscent of Feynman diagrams in
quantum field theory. The topologies defined by these
graphs can also serve as useful biological constructs to
group similar RNA structures together. The depiction of
RNA structure as a graph has played an important role in
the prediction of RNA secondary structure (22,74,92,93)
as well as in the search for novel RNAs (94,95) and the
description of similarity between RNA structures (96–99),
which is especially useful in the study of the effects of mu-
tations (100,101). A common approach among these graph-
ical depictions of RNA has been to represent loops (e.g.,
hairpins, internal loops, etc.) as vertices and stems as edges
(94,98,99). However, this depiction of RNA does not always
distinguish between pseudoknotted and non-pseudoknotted
structures (94). Our approach has a similar coarse-graining
effect of grouping similar structures as the same graph but
explicitly distinguishes between different topologies of sec-
ondary structure and may therefore be useful in the contexts
described previously. Although our approach is in many
ways similar to the planar digraphs of (94), it is able to
address the ambiguity present in those graphs, particularly
with regards to parallel stems (see Fig. 2 of (94)).

We expect that the complete free energy landscape predic-
tion described in this work will be useful in understanding the
kinetics of RNA and DNA structure transitions, including the
interactions of multiple strands (24,25,102–108). In addition
to the complete energy and entropy landscapes, a complete
kinetics model only needs a definition of the transition state
matrix. Such a matrix can be derived from the energy and
entropy landscapes directly. For example, by defining neigh-
boring states as secondary structures differing by the opening
or closing of a single basepair, the transition rate of opening a
basepair is expected to be exponential in the energy difference
of the two states, whereas the rate of closing a basepair is
exponential in the entropy difference (24,102,109). Even for
transitions between two non-pseudoknotted structures, pseu-
doknots often play a significant role in the transition pathway
(108,110–113). Predicting the kinetics of structure transitions
using this framework and determining whether such kinetics
can be accurately predicted for RNAmolecules of the lengths
considered here, using only secondary structure consider-
ations, will be a subject for future work.

SUPPORTING MATERIAL
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