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Abstract

The finite state projection (FSP) approach to solving the chemical master equation has enabled 

successful inference of discrete stochastic models to predict single-cell gene regulation dynamics. 

Unfortunately, the FSP approach is highly computationally intensive for all but the simplest 

models, an issue that is highly problematic when parameter inference and uncertainty 

quantification takes enormous numbers of parameter evaluations. To address this issue, we 

propose two new computational methods for the Bayesian inference of stochastic gene expression 

parameters given single-cell experiments. We formulate and verify an Adaptive Delayed 

Acceptance Metropolis-Hastings (ADAMH) algorithm to utilize with reduced Krylov-basis 

projections of the FSP. We then introduce an extension of the ADAMH into a Hybrid scheme that 

consists of an initial phase to construct a reduced model and a faster second phase to sample from 

the approximate posterior distribution determined by the constructed model. We test and compare 

both algorithms to an adaptive Metropolis algorithm with full FSP-based likelihood evaluations on 

three example models and simulated data to show that the new ADAMH variants achieve 

substantial speedup in comparison to the full FSP approach. By reducing the computational costs 

of parameter estimation, we expect the ADAMH approach to enable efficient data-driven 

estimation for more complex gene regulation models.

INTRODUCTION

An important goal of quantitative biology is to elucidate and predict the mechanisms of gene 

expression. Evidence increasingly suggests that gene expression processes are inherently 

stochastic with substantial cell-to-cell variability.1–3 In an isogenic population with the same 

environmental factors, much of these fluctuations can be attributed to intrinsic chemical 

noise. There are different experimental methods to obtain information about the stochastic 

behavior of single cells,4 each producing a unique type of data that necessitates a different 
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statistical and computational framework to interpret the observed gene expression dynamics.
5 Our present work focuses specifically on building Bayesian computational tools to analyze 

and model data from smFISH and related techniques.6–10 A sucessful framework for 

building predictive models for gene expression dynamics from such data is to fit the solution 

of the chemical master equation (CME)11 to the empirical histogram obtained from 

population snapshots at several experimental conditions or time-points.8,10,12,13

The finite state projection (FSP),14 which approximates the dynamics of the CME with a 

finite system of linear ODEs, provides a framework to analyze full distributions of stochastic 

gene expression models with computable error bounds. It has been observed that full 

distribution-based analyses using the FSP perform well, even when applied to realistically 

small experimental datasets on which summary statistics-based fits may fail.15 On the other 

hand, the FSP requires solving a large system of ODEs that grows quickly with the 

complexity of the gene expression network under consideration. Our present study borrows 

from model reduction strategies in other complex systems fields to alleviate this issue by 

reducing the computational cost of FSP-based parameter estimation.

There has been intensive research on efficient computational algorithms to quantify the 

uncertainty in complex models.16 A particularly promising approach is to utilize 

multifidelity algorithms to systematically approximate the original system response. In these 

approximations, surrogate models or meta-models allow for various degrees of model 

fidelity (e.g., error compared to the exact model) in exchange for reductions in 

computational cost. Surrogate models generally fall into two categories: response surface 

and low-fidelity models.17,18 We will focus on the second category that consists of reduced-

order systems, which approximate the original high-dimensional dynamical system using 

either simplified physics or projections onto reduced order subspaces.16,19,20 Reduced-order 

modeling has already begun to appear in the context of stochastic gene expression. When all 

model parameters are known, the CME can be reduced by system-theoretic methods,21,22 

sparse-grid/aggregation strategies,23,24 tensor train representations25–27 and hierarchical 

tensor formats.28 Model reduction techniques have also been applied to parameter 

optimization by Waldherr and Hassdonk29 who projected the CME onto a linear subspace 

spanned by a reduced basis, and Liao et al.30 who approximated the CME with a Fokker-

Planck equation that was projected onto the manifold of low-rank tensors.31 While these 

previous works clearly show the promise of reduced-order modeling, there remains a vast 

reservoir of ideas from the broader computational science and engineering community that 

remain to be adapted to the quantitative analysis of stochastic gene expression.

In this paper, we introduce two efficient algorithms, which are based on the templates of the 

adaptive Metropolis algorithm32 and the delayed acceptance Metropolis-Hastings 

(DAMH33,34) algorithm, to sample the posterior distribution of gene expression parameters 

given single-cell data. The adaptive Metropolis approach automatically tunes parameter 

proposal distributions to more efficiently search spaces of unnormalized and correlated 

parameters. The DAMH provides a two-stage sampling approach that uses a cheap 

approximation to the posterior distribution at the first stage to quickly filter out proposals 

with low posterior probabilities. Improvements to the DAMH allow algorithmic parameters 

to be updated adaptively and automatically by the DAMH chain.35,36 The DAMH has been 
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applied to the inference of stochastic chemical kinetics parameters from time-course data in 

combination with approximate particle filtering schemes based on the Chemical Langevin 

equation (CLE) and the Linear Noise approximation (LNA).37 Our algorithm is a modified 

version of DAMH that is specifically adapted to improve Bayesian inference from specific-

time snapshots of relatively small populations of single cells, such as that which arises from 

smFISH and other optical microscopy experiments. We employ parametric reduced order 

models using Krylov-based projections,38,39 which give an intuitive means to compute 

expensive FSP-based likelihood evaluations.40,41 To improve the accuracy and the DAMH 

acceptance rate, we allow the reduced model to be refined during parameter space 

exploration. The resulting method, which we call the ADAMH-FSP-Krylov algorithm, is 

tested on three common gene expression models. We also provide a theoretical guarantee 

and numerical demonstrations that the proposed algorithms converge to equivalent target 

posterior distributions.

The organization of the paper is as follows. We review the background on the FSP analysis 

of single-cell data, and basic Markov chain Monte Carlo (MCMC) schemes in the 

Background section. In the Materials and Methods section, we introduce our method to 

generate reduced FSP models, as well as our approach to monitor and refine their accuracy. 

These reduced models provide an approximation to the true likelihood function, which is 

then employed to devise an Adaptive Delayed Acceptance Metropolis-Hastings with FSP-

Krylov reduced models (ADAMH-FSP-Krylov) and a Hybrid algorithm. We make simple 

adjustments to the existing ADAMH variants in the literature to prove convergence, and we 

give the mathematical details in the supplementary materials. We provide empirical 

validation of our methods on three gene expression models using synthetic data sets, and we 

compare the efficiency and accuracy of the approaches in the Results section. Interestingly, 

we find empirically that the reduced models learned through the ADAMH run could fully 

substitute the original FSP model in a Metropolis-Hastings run without incurring a large 

difference in the sampling results. Finally, we conclude with a discussion of future work and 

the potential of computational science and engineering tools to analyze stochastic gene 

expression.

BACKGROUND

Stochastic modeling of gene expression and the chemical master equation

Consider a well-mixed biochemical system with N ≥ 1 different chemical species that are 

interacting via M ≥ 1 chemical reactions. Assuming constant temperature and volume, the 

time-evolution of this system can be modeled by a continuous-time Markov process.11 The 

state space of the Markov process consists of integral vectors x ≡ (x1, …, xN )T, where xi is 

the population of the ith species. Each reaction channel, such as the transcription of an RNA 

species, is characterized by a stoichiometric vector νj (j = 1, … , M ) that represents the 

change when the reaction occurs; if the system is in state x and reaction j occurs, then the 

system transitions to state x + νj. Given x(t) = x, the propensity αj(x; θ)dt determines the 

probability that reaction j occurs in the next infinitesimal time interval [t, t + dt), where θ is 

the vector of model parameters.
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Since the state space is discrete, we can index the states as x1, …, xn, …. The time-evolution 

of the probability distribution of the Markov process is the solution of the linear system of 

differential equations known as the chemical master equation (CME):

d
dt p(t) = A(θ)p(t), t ∈ [0, t f ]

p(0) = p0
, (1)

where the probability mass vector p = (p1, p2, … )T is such that each component, 

pi = P(t, xi) = Prob x(t) = xi , describes the probability of being at state xi at time t, for i = 1, 

… , n. The vector p0 = p(0) is an initial probability distribution, and A(θ) is the infinitesimal 

generator of the Markov process. Here, we have made explicit the dependence of A on the 

model parameter vector θ, which is often inferred from experimental data.

Finite State Projection

The state space of the CME could be infinite or extremely large. To alleviate this problem, 

the finite state projection (FSP14) was introduced to truncate the state space to a finite size.

In the simplest FSP formulation, the state space is restricted to a hyper-rectangle

H = 0, …, n1 × ⋯ × 0, …, nN , (2)

where the nk are the maximum copy numbers of the chemical species.

The infinite-dimensional matrix A and vector p in eq. (1) are replaced by the corresponding 

submatrix and subvector. When the bounds nk are chosen sufficiently large and the 

propensities satisfy some regularity conditions, the gap between the FSP and the original 

CME is negligible and computable.14,42 Throughout this paper, we assume that the bounds 

nk have been chosen appropriately and that the FSP serves as a high-fidelity model of the 

gene expression dynamics of interest. Our goal is to construct lower-fidelity models of the 

FSP using model order reduction and incorporate these reduced models in the uncertainty 

analysis for gene expression parameters.

Bayesian inference from single-cell data

Data from smFISH experiments6–8,10 consist of several snapshots of many independent cells 

taken at discrete times t1, … , tT. The snapshot at time ti records gene expression in ni cells, 

each of which can be collected in the data vector cj,i, j = 1, … , ni of molecular populations 

in cell j at time ti. Let p(t, x|θ) denote the entry of the FSP solution corresponding to state x 
at time t, with model parameters θ. The FSP-based approximation to the log-likelihood of 

the data set 𝒟 given parameter vector θ is given by
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L(𝒟 |θ) =
i = 1

T

j = 1

ni
logp(ti, c j, i θ) . (3)

It is clear that when the FSP solution converges to the true solution of the CME, the FSP-

based log-likelihood converges to the true data log-likelihood. The posterior distribution of 

model parameters θ given the data set 𝒟 then takes the form

f posterior(θ 𝒟) ∝ exp(L(𝒟 θ)) f 0(θ),

where f0 is the prior density that quantifies prior knowledge and beliefs about the 

parameters. When f0 is a constant, the parameters that maximize the posterior density are 

equivalent to the maximum likelihood estimator. However, we also want to quantify our 

uncertainty regarding the accuracy of the parameter fit, and the MCMC framework provides 

a way to address this by sampling from the posterior distribution.

For convenience, we limit our current discussion to models and inference problems that have 

the following characteristics:

1. The matrix A(θ) can be decomposed into

A(θ) =
j = 1

M
gi(θ)A j, (4)

where gj are continuous functions and Aj are independent of the parameters.

2. The support of the prior is contained in a bounded domain of the form

Θ = θ1
min, θ1

max × … × θd
min, θd

max . (5)

The first assumption means that the CME matrix depends “linearly” on the parameters, 

ensuring the efficient assembly of the parameter-dependent matrix. In particular, the factors 

Aj can be computed and stored in the offline phase before parameter exploration and only a 

few (sparse) matrix additions are required to compute A(θ) in the online phase. When there 

are nonlinear dependence on parameters, more sophisticated methods such as the Discrete 

Empirical Interpolation method43 could be applied, but we leave this development for future 

work in order to focus more on the parameter sampling aspect. Nevertheless, condition (4) 

covers an important class of models, including all models defined by mass-action kinetics. 

The second assumption means that the support of the posterior distribution is a bounded and 

well-behaved domain (in mathematical terms, a compact set). This allows us to derive 

convergence theorems more straightforwardly. In practice, condition (5) is not a severe 

restriction since it can be interpreted as the prior belief that physical parameters cannot 

assume infinite values.
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The Metropolis-Hastings and the adaptive Metropolis algorithms

The Metropolis-Hastings (MH) Algorithm44,45 is one of the most popular methods to sample 

from a multivariate probability distribution (Algorithm 1). The basic idea of the MH is to 

generate a Markov chain whose limiting distribution is the target distribution. To do so, the 

algorithm includes a probabilistic acceptance/rejection step. More precisely, let f denote the 

target probability density. Assume the chain is at state θi at step i. Let θ′ be a proposal from 

the pre-specified proposal density q(.|θi). The DAMH computes a first-step acceptance 

probability of the form

α(θi, θ′) = min 1, f (θ′)
f (θi)

q(θi θ′)

q(θ′ θi)
,

to decide whether to accept θ′ as the next state of the chain. If θ′ fails to be promoted, the 

algorithm moves on to the next iteration with θi+1 := θi.

There could be many choices for the proposal density q (for example, see the survey of 

Roberts and Rosenthal46). We will consider only the symmetric case where q is a Gaussian, 

that is,

q(θ′ |θ) ∝ exp − 1
2(θ′ − θ)TΣ−1(θ′ − θ) ,

where Σ is a positive definite matrix that determines the covariance of the proposal 

distribution. With this choice of a symmetric proposal distribution, the MH reduces to the 

original Metropolis Algorithm.44 For gene expression models, the MH has been combined 

with the FSP for parameter inference and model selection in several studies.10,15

The appropriate choice of Σ is crucial for the performance of the Metropolis algorithm. 

Haario et al.32 proposes an Adaptive Metropolis (AM) algorithm in which the proposal Σ is 

updated at every step using the values visited by the chain. This is the version that we will 

implement for sampling the posterior distribution with the full FSP model. In particular, let 

θ1, … , θi be the samples accepted so far, the AM updates the proposal covariance using the 

formula

Σ = Σi: =
Σ0, i < n0

sdCov(θ1, …, θi) + 10−6sdId, i ≥ n0
.

Here, the function Cov returns the sample covariances. The constant sd is assigned the value 

(2.4)2/d following Haario et al.32 The matrix Σ0 is an initial choice for the Gaussian proposal 

density, and n0 is the number of initial steps without proposal adaptations. Using the 

adaptive Metropolis allows for more efficient search over un-normalized and correlated 

parameters spaces and eliminates the need for the user to manually tune the algorithmic 

parameters. In the numerical results that we will show, the adaptive Metropolis results in 

reasonable acceptance rates (19% − 23.4%). The adaptive MH has been used in previous 
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works on gene expression models in combination with fluorescent time-course data and flow 

cytometry data.47,48

MATERIALS AND METHODS

Delayed acceptance Metropolis-Hastings algorithm

Previous applications of the MH to gene expression have required 104 to 106 or more 

iterations per combination of model and data set,15 and computational cost is a significant 

issue when sampling from a high-dimensional distribution whose density is expensive to 

evaluate. A practical rule of thumb for balancing between exploration and exploitation for a 

MH algorithm with the Gaussian proposal is to have an acceptance rate close to 0.234, 

which was derived by Roberts et al.49 as the asymptotically optimal acceptance rate for 

random walk MH algorithms. Assuming the proposal density of Algorithm 1 is tuned to 

have an acceptance rate of approximately 23.4%, one could achieve significant improvement 

to computation time by quickly rejecting poor proposals without evaluating the expensive 

posterior density.
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Algorithm   1 Metropolis‐Hastings                                                               

 

Input:

Target density  f ( . );

Initial parameter θ0;

Proposal density q( ⋅ | ⋅ );

 

1: for   i = 0, 1, …, do

2: Draw θ′ from the proposal density q( ⋅ |θi)

3: Compute the acceptance probability

α(θi, θ′) = min 1, f (θ′)
f (θi)

q(θi θ′)

q(θ′ θi)

4: With probability α(θi,θ′), set θi + 1 θ′   (accept); otherwise θi + 1 θi (reject) .

5: end   for

Output:  samples θ1, θ2, …

The delayed acceptance Metropolis-Hasting (DAMH)33 seeks to alleviate the computational 

burden of rejections in the original MH by employing a rejection step based on a cheap 

approximation to the target density (cf. Algorithm 2). Specifically, let f (.) be the density of 

the target distribution of the parameter θ. Let f θ
⋆( . ) be a cheap state-dependent 

approximation to f. At iteration i, let θ′ be a proposal from the current parameter θ using a 

pre-specified proposal density q(.|.). The DAMH promotes θ′ as a potential candidate for 

acceptance with probability

α(θ, θ′) = min 1,
f θ
⋆(θ′)

f θ
⋆(θ)

q(θ θ′)
q(θ′ θ) .
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If θ′ fails to be promoted, the algorithm moves on to the next iteration with θi+1 := θi. If the 

θ′ passes the first inexpensive check, than a second acceptance probability is computed 

using the formula

β(θ, θ′) = min 1, f (θ′)
f (θ)

f θ
⋆(θ)

f θ
⋆(θ′)

,

and the DAMH algorithm accepts θ′ for the next step with probability β. In this manner, 

computational savings can be expected if unlikely proposals are quickly rejected in the first 

step, leaving only the most promising candidates for careful evaluation in the second step. 

Christen and Fox show that the ADAMH converges to the target distribution under 

conditions that are easily met in practice.33 However, the quality of the approximation f θ
⋆

affects the overall efficiency. Poor approximations lead to many false promotions of 

parameters that are rejected at the expensive second step. On the other hand, the first step 

may falsely reject parameters that could have been accepted using the accurate log-

likelihood evaluation. This leads to subsequent developments that seek appropriate 

approximations and ways to adapt these approximations to improve the performance of 

DAMH in specific applications.35,50 Specifically, the adaptive DAMH variant in Cui et al., 

201450 formulates f θ
⋆ via reduced basis models that can be updated on the fly using samples 

accepted by the chain. The adaptive version in Cui et al., 2011,35 allows adaptations for the 

proposal density and the error model, with convergence guarantees.36 We will borrow these 

elements in our sampling scheme that we introduce below. However, the stochastic gene 

expression models that we investigate here differ from the models studied in those previous 

contexts, since our likelihood function incorporates intrinsic discrete state variability instead 

of external Gaussian noise.

Reduced-order models for the FSP dynamics

Projection-based parametric model reduction—In this subsection, we review the 

principle of projection-based model reduction, which consists of projecting a high-

dimensional dynamics onto a low-dimensional subspace.20 In particular, consider the 

parameter-dependent FSP dynamics
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Algorithm   2 Delayed Acceptance Metropolis‐Hastings                                                               

 

Input:

Target density  f ( . );

State‐dependent density approximation f θ
⋆( . );

Initial parameter θ0;

Proposal density q( ⋅ | ⋅ );

 

1: for   i = 0, 1, …, do

2: Draw θ′ from the proposal density q( ⋅ |θi)

3: Compute the first‐stage acceptance probability

ρ(θi, θ′) = min 1,
f θi
⋆(θ′)

f θi
⋆(θi)

q(θi θ′)

q(θ′ θi)

4: With probability ρ(θi,θ′), promote the value of θ′ to the next stage .   Otherwise, set θi + 1 θi .

5: If θ′was promoted, compute the second‐stage acceptance probability

α(θi, θ′) = min 1, f (θ′)
f (θi)

f θi
⋆(θi)

f θi
⋆(θ′)

6: With probability α(θi,θ′), set θi + 1 θ′   (accept); otherwise θi + 1 θi (reject) .

7: end   for

Output:  samples θ1, θ2, …
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d
dt p(t; θ) = A(θ)p(t; θ), p(0) = p0, t ∈ [0, t f ], (6)

where the parameter-dependent transition rate matrix A(θ) satisfies assumption (4) and p(t; 
θ) is the high-fidelity approximation to the probability distribution of the CME. Consider a 

user-specified partitioning of the time interval [0, tf ] into nB subintervals [ti−1, ti] with i = 1, 

… , nB and t0 = 0. We will sequentially project the high-fidelity dynamical system onto a 

sequence of low-dimensional subspaces associated with these subintervals. In particular, 

consider an ordered set of reduced bases Φ = (Φ(i))i = 1
nB , where Φ(i) ∈ ℝ

n × ri, ri ≤ n is the 

orthogonal basis matrix of the subspace associated with the i-th subinterval. We seek an 

approximation of the form

p(t) ≈ pΦ(t) = Φ(i)q(i)(t), t ∈ [ti − 1, ti], (7)

which leads to the approximate dynamical system

d
dt q(i)(t; θ) = B(i)(θ)q(i)(t; θ), t ∈ [ti − 1, ti]

q(i)(ti − 1; θ) = (Φ(i))T p(ti − 1; θ)

where B(i)(θ) = (Φ(i))T A(θ)Φ(i). Under assumption (4), the reduced system matrices B(i)(θ) in 

eq. (9) can be decomposed as

B(i)(θ) =
j = 1

M
g j(θ)B j

(i), (8)

where B j
(i) = (Φ(i))T A jΦ

(i). This decomposition allows us to assemble the reduced systems 

quickly with O(ri
2) complexity. Using the approximation p(ti−1; θ) ≈ Φ(i−1)q(i−1)(ti−1) again 

and substitute this to the preceding reduced system, we get

d
dt q(i)(t; θ) = B(i)(θ)q(i)(t; θ), (9)

q(i)(ti − 1; θ) = (Φ(i))TΦ(i − 1)q(i − 1)(ti − 1; θ) . (10)

This results in a sequence of reduced-order models that we will use for our model reduction 

method. Equation (10) implies that the solution at a previous time interval will be projected 
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onto the subspace of the next interval. While this introduces some extra errors, subdividing 

the long time interval helps to reduce the subspace dimensions for systems with complicated 

dynamics.

The choice of the basis set Φ clearly determines the approximation quality of the reduced 

systems. Our basis construction procedure proceeds at two levels. First, we construct local 

bases that yield approximate models of the FSP at individual parameters. From there, we 

proceed to construct a global basis that approximates the FSP model over the whole 

parameter domain. The details of this procedure are explained in the next two subsections.

Krylov subspace approximation for single-parameter model reduction—
Consider a fixed parameter combination θ. Let the time points 0 < t1 < … < tnB

= t f  be 

given. Using a high-fidelity solver, we can compute the full solution at those time points, 

and we let pi denote the full solution at time ti. Our aim is to construct a sequence of 

orthogonal matrices V (i) ≡ V (i)(θ) with i = 1 … nB such that the full model dynamics at the 

parameter θ on the time interval [ti−1, ti] is well-approximated by a projected reduced model 

on the span of V (i).

A simple and effective way to construct the reduced bases is to choose V (i) as the 

orthogonal basis of the Krylov subspace

Kmi
(θ, ti − 1) = span pi, A(θ)pi, …A(θ)

mi − 1
pi . (11)

Here, 𝒱 = span 𝒰 means that every element of 𝒱 is a linear combination of a finite number 

of elements in 𝒰. In order to determine the subspace dimension mi, we use the error series 

derived by Saad38 which we reproduce here using our notation as

exp(τiA(θ))pi − 1 − V(i)exp(τiH
(i))e1 =

k = 1

∞
hmi + 1, mi

emi
T φk(τiH

(i))e1τi
k − 1A(θ)k − 1υmi + 1

(i) .

(12)

Here, υmi + 1
(i)  and hmi + 1, mi

 are the outputs at step mi of the Arnoldi procedure (Algorithm 

10.5.1 in Golub and Van Loan51) to build the orthogonal matrix V (i), where 

φk(X) = 0
1 1

k!exp((1 − s)X)ds for any square matrix X. The matrix H(i) = (V(i))T A(θ)V(i) is the 

state matrix of the reduced-order system obtained via projecting A onto the Krylov subspace 

Kmi
. The terms emi

T φk(τiH
(i))e1 can be computed efficiently using Expokit (Theorem 1, 

Sidje39). We use the Euclidean norm of the first term of the series (12) as an indicator for the 

model reduction error. Given an error tolerance εKrylov, we iteratively construct the Krylov 
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basis V (i) with increasing dimension until the error per unit time step of the reduced model 

falls below the tolerance, that is,

|hmi + 1, mi
emi

T φ1(τiH
(i))e1 | ≤ εKrylovτi . (13)

We clarify that the Krylov-based model reduction method has been around for decades and 

has been applied to the solution of linear systems many non-biological fields. Krylov 

subspaces provide a way to integrate the full FSP model in a non-parameteric setting, as 

studied in many previous works.40,41,52,53 The novelty of our work is in using the Krylov 

bases constructed at different parameters in order to produce a global basis that 

approximates the parameter-dependent FSP over the entire parameter domain. This is 

explained below.

Global basis construction—We build the reduced basis for the parameter-dependent 

dynamics by concatenation (see, e.g., Benner et al.20). Specifically, for any θ let V(i)(θ) i = 1

nB

be the sequence of orthogonal basis matrices constructed with Krylov projection as 

described above. We can sample different bases from a finite set of ‘training’ parameters 

θ1, …, θntrain
. Then, through the iterative updates

Φ(i, 1) = V(i)(θ1), (14)

Φ(i, j) = ConcatenateSubspace (Φ(i, j − 1), V(i)(θ j)), (15)

we obtain the bases Φ(i) = Φ
(i, ntrain)

 that provide global approximations for the full 

dynamical system across the parameter domain. The operator ConcatenateSubspace(X, Y ), 

assuming X is already orthogonal, builds an orthogonal basis matrix for the union of the 

subspaces spanned by the columns of both X and Y by first orthogonalizing each column of 

Y against all columns of X and concatenating these orthogonalized columns to X.

The selection of the training instances θ1, …, θntrain
 influences the quality of the global 

bases. The classical Greedy scheme54 consists of an offline and an online phase. All training 

parameters are generated from the prior distribution in the offline phase and a global basis is 

constructed from these training parameters. In the online phase, only the reduced model is 

used for optimization and other purposes. However, since the posterior is necessarily shaped 

differently than the prior, building a global basis based on the prior distribution is inefficient 

for the purpose of MCMC analysis. In particular, the offline phase may sample from from 

regions with low posterior density, thus adding excessive information that is not needed by 

the MCMC. We instead follow the approach of Cui et al.,50 which builds a small initial basis 
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using the MCMC starting poiint and update this basis as the chain explores more parameters. 

This is accomplished via the Delayed Acceptance framework. We give more details below.

Adaptive Delayed Acceptance Metropolis with reduced-order models of the CME

The approximate log-likelihood formula—Following the discussion above, suppose 

that an initial reduced basis Φ is given, and we have a reduced-cost approximations p ≈ pΦ 
to the full FSP dynamics. We can then approximate the full log-likelihood of single-cell data 

in equation (3) by the reduced-model-based log-likelihood

LΦ
⋆(𝒟 |θ) =

i = 1

T

j = 1

ni
logmax(εs, pΦ(ti, c j, i |θ)), (16)

where εs is a small constant, chosen to safeguard against undefined values. We need to 

include εs in our approximation since the entries of the reduced-order approximation are not 

guaranteed to be positive (not even in exact arithmetic). We aim to make the approximation 

to be accurate for parameters θ with high posterior density, and crude on those with low 

density, which should be visited rarely by the Monte Carlo chain.

One can readily plug in the approximation (16) to the DAMH algorithm. Since 

exp(LΦ
⋆(𝒟 |θ)) > 0 for all θ ∈ ℝ+

d , the chain will eventually converge to the target posterior 

distribution (Theorem 1 in Christen and Fox,33 and Theorem 3.2 in Efendiev et al.34). On the 

other hand, a major problem with the DAMH is that the computational efficiency depends on 

the quality of the reduced basis approximation. Crude models result in high rejection rates at 

the second stage, thus increasing sample correlation and computation time. Therefore, it is 

advantageous to fine-tune the parameters of the algorithm and update the reduced models 

adaptively to ensure a reasonable acceptance rate. This motivates the adaptive version of the 

DAMH, which we discuss next.

Delayed acceptance posterior sampling with infinite model adaptations—We 

propose an adaptive version of the DAMH for sampling from the posterior density of the 

CME parameters given single-cell data (Algorithm 3). We have borrowed elements from the 

adaptive DAMH algorithms in Cui et al.35,50 The first step proposal uses an adaptive 

Gaussian similar to the adaptive Metropolis of Haario et al.,32 where the covariance matrix 

is updated at every step from the samples accepted so far.

The reduced bases are updated as the chain explores the parameter domain. Instead of using 

a finite adaptation criterion to stop model adaptation as in Cui et al.,50 we introduce an 

adaptation probability with which the reduced basis updates are considered. This means that 

an infinite amount of model adaptations could occur with diminishing probability as the 

chain progresses. This idea is taken from the “doubly-modified example” in Roberts and 

Rosenthal.55 The advantage of the probabilistic adaptation criteria is that it allows us to 

prove ergodicity for the adaptive algorithm. The mathematical proofs are presented in the 

Supportiing Information.
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The adaptation probability a(i) is chosen to converge to 0 as the chain iteration index i 
increases. In particular, we use

a(i) = 2
−i/I0,

where I0 is a user-specified constant. This formula states that the probability for an 

adaptation to occur decreases by half after every I0 chain iterations. In addition, we further 

restrict the adaptation to occur only when the error indicator is above a threshold at the 

proposed parameters. As a consequence of our model updating criteria, the reduced-order 

bases will be selected at points that are close to the support of the target posterior 

distribution.
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Algorithm   3 ADAMH‐FSP‐Krylov                                                                

 

Input:

Prior density  f 0;

Parameter‐dependent CME matrix A( . );

Chain starting point θ0, Initial proposal covariance C0 .

Basic update tolerance εbasis, Krylov tolerance εKrylov, reduced model time partition 𝒯 = tk k = 1
nB ;

Adaptation probability  a(i) i = 0
∞ ;

Maximum basis dimension mmax .

 

1: Φ0 = GenerateKrylovBases(A(θ0), p0,𝒯, εKrylov);

2: for   i = 0, 1, … do

3: Compute the proposal θ′ N(θi, Ci);

4: With probability α, Promote θ′, where

α = min 1, exp(LΦi
⋆ (D |θ′) + log f 0(θ′) − LΦi

* (D |θi) − log f 0(θi)) .

5: Otherwise, θi + 1:=θi and move on to the next iteration .

6: If θ′was promoted then

7: With probability β, accept θ′ as the next sample θi + 1 . Here,

β = min 1, exp(L(D |θ′))
exp(L(D |θi))

exp(LΦi
* (D |θi))

exp(LΦi
* (D |θ′))

8: Otherwise, set θi + 1 = θ .

9: Compute ErrorEst(θ′, Φi): = |L(D |θ′) − LΦi
* (D |θ′) | / |L(D |θ′) |

10: if ErrorEst(θ′, Φi) > εbasis and θ′ was accepted  then

11: With probability a(i), Φi + 1= UpdateBases(Φi,θi), otherwise Φi + 1:=Φi .

12: else

13: Φi + 1:=Φi .

14: end if

15: end   if

16: Ci + 1 = Cov(θ0,…,θi + 1) + 2.42
d 10−6Id; Update the proposal density

17: end for

Output: Samples θ0, θ1, …
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Using ADAMH in approximate Bayesian inference—A limitation of the delayed 

acceptance schemes we presented above is that every accepted parameter incurs an 

expensive FSP evaluation. Trivially, the number of full model solutions could be reduced by 

using a proposal with low acceptance rate. However, this leads to statistical inefficiency and 

eventually we still have to run very long chains to obtain enough independent samples. In 

many realistic situations, we may only be able to solve the full models for a limited number 

of times. Drawing from an approximate posterior distribution becomes the only viable 

option. The ADAMH provides a way to construct such an approximate posterior. In 

particular, we propose a ‘Hybrid’ chain that spends the first few iterations using the same 

transition kernel as the ADAMH. These first steps allow us to gradually build up a reduced 

basis to approximate the true FSP model across parameters with high posterior probability 

densities. Once a sufficiently good model has been constructed (or we have exceeded the 

maximum budget allowed for the full FSP solves), the chain transits to a second phase in 

which only the cheap approximations provided by the reduced model are used for the 

Metropolis-Hastings criteria. We test a prototypical implementation of this idea in the next 

section, where we found that using the two-phase scheme can bring dramatic speedup (up to 

an order of magnitude for a sizeable example) while giving almost identical results to the 

adaptive Metropolis-Hastings and ADAMH schemes. A similar strategy was previously 

introduced by Cui et al.50 for inverse problems related to elliptic PDEs.

RESULTS

We conduct numerical tests on several stochastic gene expression models to study 

performance of our proposed Algorithms. For the first two examples, the test platform is a 

desktop computer running Linux Mint and MATLAB 2018b, with 32 GB RAM and Intel 

Core i7 3.4 GHz quad-core processor. The last example is tested on a single node of the 

Keck Computing Cluster at Colorado State University, which consists of 16 cores Xeon E5–

2620 v4, with 64 GB RAM with MATLAB 2017b installed. Both MATLAB versions are 

allowed to use the maximum number of threads available on each machine, which are 

respectively four (Desktop) and 16 (cluster node).

We compare three sampling algorithms:

1. Adaptive Metropolis-Hastings with full FSP-based likelihood evaluations (AMH-

FSP): This version is an adaptation of the Adaptive Metropolis of Haario et al.,32 

which updates the covariance of the Gaussian proposal density at every step. The 

algorithm always uses the FSP-based likelihood (3) to compute the acceptance 

probability, and it is solved using the Krylov-based Expokit.39 This is the 

reference algorithm by which we assess the accuracy and performance of the 

other sampling schemes. This is the best scheme that we know of that can 

automatically balance between exploration and exploitation for the MCMC 

samples. The AMH has been used in several previous works to investigate gene 

expression models.47,48

2. Adaptive Delayed Acceptance Metropolis-Hastings with reduced FSP model 

constructed from Krylov subspace projections (ADAMH-FSP-Krylov): This is 

Algorithm 3 mentioned above. Similar to AMH-FSP, this algorithm uses a 
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Gaussian proposal with an adaptive covariance matrix. However, it has a first-

stage rejection step that employs the reduced model constructed adaptively using 

Krylov-based projection.

3. Hybrid method that consists of two phases. A reduced model is constructed 

during the first phase as in the ADAMH-FSP-Krylov. The second phase then 

uses the Adaptive Metropolis-Hastings updates with only reduced model-based 

likelihood evaluations. This is similar to AMH-FSP, but we instead use the 

approximate log-likelihood formula (16). For a user-specified chain length ℓ, we 

let the first phase persist for the first ten percent of the iterations, and switch to 

the second phase for the rest of the iterations. The ten percent threshold is 

tentative, and it comes from our observation that the ADAMH-FSP-Krylov 

performs most of its model updates during the first ten percent of the iterations. 

This scheme does not have strong asymptotic convergence guarantees as the 

ADAMH-FSP-Krylov, but we will see from the numerical tests that it can still 

yield similar parameter estimation results to the other schemes in dramatically 

less computation time.

We rely on two metrics for performance evaluation: total CPU time to finish each chain, and 

the multivariate effective sample size as formulated in Vats et al.56 Given samples θ1, … , 

θn, the multivariate effective sample size is estimated by

mESS = n
Λn
Σn

1/d
,

where Λn is an estimation of the posterior covariance using the sample covariance, and Σn 

the multivariate batch means estimator. An algorithm, whose posterior distribution matches 

the full FSP implementation, but with a lower ratio of CPU time per (multivariate) effective 

sample will be deemed more efficient. We use the MATLAB implementation by Luigi 

Acerbi1 for evaluating the effective sample size from the MCMC outputs. We also conduct 

Geweke diagnostics57 and calculate the integrated autocorrleation time (IACT) of the chains 

using the MATLAB package MCMCSTAT2.

In all examples considered, the prior and the parameters are first transformed into log10 scale 

before applying the MCMC algorithms. This transformation allowed a better exploration of 

the parameter space, especially for cases where the parameters are poorly constrained by the 

data.

To achieve reproducible results for each example, we reset the random number generator to 

Mersenne Twister with seed 0 in Matlab before simulating the single-cell observations with 

Gillespie’s Algorithm58 and running the three algorithms for a specified number of 

iterations.

1https://https://github.com/lacerbi/multiESS
2https://github.com/mjlaine/mcmcstat
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Two-state gene expression

We first consider the common model of bursting gene expression7,59–62 with a gene that can 

switch between ON and OFF states and an RNA species that is transcribed when the gene is 

switched on (Table 1).

We simulate data at ten equally spaced time points from 0.1 to 1 hour, with 200 independent 

observations per time point. The gene states are assumed to be unobserved. We generate the 

reduced bases on subintervals generated by the time points in the set

Tbasis = Δtdata j j = 1, …, 10 ∪ Δtbasis j j = 1, …, 100 ,

where ∆tdata = 0.1hr and ∆tbasis = 0.01hr. Thus, Tbasis includes the observation times. We 

choose the basis update threshold as δ = 10−4. The prior distribution in our test is the log-

uniform distribution on a rectangle, whose bounds are given in Table 2. The full FSP state 

space is chosen as

OFF, ON × 0, 1, …, 1100 .

We choose a starting point for the sampling algorithms using five iterations of MATLAB’s 

genetic algorithm with a population size of 100, resulting in 600 full FSP evaluations. We 

then refine the output of the genetic algorithm with a local search using fmincon with a 

maximum of 1000 further evaluations of the full model. This is a negligible cost in 

comparison to the 10, 000 iterations that we set for the sampling algorithms.

We summarize the performance characteristics of the sampling schemes in Table 3. The 

ADAMH-FSP-Krylov requires less computational time (Fig. 1) without a significant 

reduction in the multivariate effective sample size. In terms of computational time, the 

ADAMH-FSP-Krylov takes less time to generate an independent sample. This is partly 

explained by observing that the first stage of the scheme filters out many low-density 

samples with the efficient approximation, resulting in 81.09% fewer full evaluations in the 

second stage (cf. Table 3).

We observe from the scatterplot of log-posterior values of the parameters accepted by the 

ADAMH-FSP-Krylov that the reduced model evaluations are very close to the FSP 

evaluations, with the majority of the approximate log-posterior values having a relative error 

below 10−4, with an average of 9.39 × 10−7 and a median of 2.26 × 10−7 across all 2152 

accepted parameter combinations (Fig. 1 C). This accuracy is achieved with a reduced set of 

no more than 152 basis vectors per time subinterval that was built using solutions from only 

four sampled parameter combinations (Fig. 2). All the basis updates occur during the first 

tenth portion of the chain, and these updates consume less than one percent of the total chain 

runtime (Table 4).

From the samples obtained by the ADAMH-Krylov-FSP, we found that full and reduced 

FSP evaluation take approximately 0.19 and 0.07 seconds on average, allowing for a 

maximal speedup factor of approximately 100(0.19 − 0.07)/0.19 ≈ 61.51% for the current 
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model reduction scheme. Here, the term reduced model refers to the final reduced model 

obtained from the adaptive reduced basis update of the ADAMH-Krylov-FSP. The speedup 

offered by the ADAMH-Krylov-FSP was found to be 100(20319.33 − 11243.99)/20319.33 

≈ 44.66%, or approximately two thirds the maximal achievable improvement for the current 

model reduction scheme. Interestingly, the Hybrid scheme yields almost identical results 

using the reduced model alone in comparison to using the full model (Fig. 2 and Table 5), 

and the 65.03% reduction in computational effort matched very well to the maximal 

estimated improvement.

Genetic toggle switch

The next model we consider in our numerical tests is the nonlinear genetic toggle switch, 

which is based on a well-known synthetic gene circuit that consists of two genes whose 

products repress each other.63 In the model that we consider,64,65 the gene products are 

represented by two species where each species’ production rate is repressed by the copy 

number of the other species according to a Hill function (Table 7). As a result when one 

gene has high activity, the other is repressed and vice versa. Using the stochastic simulations 

and the ‘true’ parameters as given in Table 8 (we use the same parameters as those in Fox 

and Munsky66), we generate data at 2, 6 and 8 hours, each with 500 single-cell samples. To 

build the reduced bases for the FSP reduction, we use the union of ten equally-spaced points 

between zero and 8 hrs and the time points of observations. The prior distribution in our test 

was chosen as the log-uniform distribution on a rectangle, whose bounds are given in Table 

9. The full FSP size is set as the rectangle {0, … , 100} × {0, … , 100}, corresponding to 

10,201 states.

To find the starting point for the chains, we run five generations of MATLAB’s genetic 

algorithm with 1100 full FSP evaluations. Then, we run another 600 iterations of fmincon to 

refine the output of the ga solver. Using the parameter vector output by this combined 

optimization scheme as initial sample, we run both the ADAMH-FSP-Krylov and the AMH-

FSP for 100, 000 iterations.

From the samples obtained by the ADAMH, we found that Expokit takes 0.29 sec to solve 

the full FSP model and 0.08 sec to solve the reduced model. This results in a maximal 

potential savings of about 71.78% when exclusively using the reduced FSP model.

The efficiency of the ADAMH-Krylov-FSP is confirmed in Table 10, where the delayed 

acceptance scheme is 49.85% faster than the AMH-FSP algorithm. Similar to the last 

example, we observe a close agreement between the first and second stage of the ADAMH 

run, where 96.41% of the proposals promoted by the reduced-model-based evaluations are 

accepted by the full-FSP-based evaluation. This high second-stage acceptance rate is 

explained by the quality of the reduced model in approximating the log-posterior values 

(Fig. 4 C). The accurate reduced model, constructed from only ten parameter samples, 

consists of no more than 530 basis vectors per time subinterval, with all the basis updates 

occurring during the first tenth portion of the chain.

The effectiveness of the ADAMH’s model-building procedure explains the good behavior of 

the Hybrid algorithm, which yields similar results to the reference chain (Fig. 5) but with 

Vo et al. Page 20

J Phys Chem B. Author manuscript; available in PMC 2020 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reduced computational time (Table 10). The Hybrid scheme achieves a saving of 60.50%, 

which is close to the estimated maximum speedup of 71.78% mentioned above.

A gene expression model with spatial components

The last two demonstrative examples allow us to vaildate the accuracy and to some extent 

the computatial speedups brought by the new approximate sampling schemes. We now 

consider an example where the exact Bayesian analysis is no longer practical. We extend the 

gene expression model described above to distinguish between the nucleus and cytoplasmic 

compartments in the cell, similar to a stochastic model recently considered for MAPK-

activated gene expression dynamics in yeast.15 The gene can transition between four states 

{0, 1, 2, 3} with transcription activated when the gene state is in states 1 to 3. RNA is 

transcribed in the nucleus and later transported to the cytoplasm as a first order reaction. 

These cellular processes and the degradation of RNA in both spatial compartments are 

modeled by a reaction network with six reactions and three species (Table 13).

We simulated a data set of 100 single-cell measurements at five equally-spaced time points 

between one and 10 minute(s) (min), that is, Tdata = {2, 4, 6, 8, 10} (min). The time points 

for generating the basis are Tbasis = Tdata ∪ {j × 0.2 min, j = 1, … , 50}. We chose the basis 

update threshold as δ = 10−4. The prior distribution in our test is the log-uniform distribution 

on a rectangle, whose bounds are given in Table 14. The full FSP state space is chosen as

0, 1, 2, 3 × 0, …, 169 × 0, …, 349 ,

which results in 238, 000 states. We only run the ADAMH-FSP-Krylov and the Hybrid 

schemes, starting from the reference parameters.

Inspecting the autocorrelation plots (Fig. 9) and performing Geweke diagnostics on the two 

chain outputs (Table 18) did not reveal any convergence issues. Table 15 summarizes the 

performance of the two algorithms for 104 iterations. From the posterior samples of the 

ADAMH chain, we estimate that an average full FSP evaluation would take 101.82 seconds. 

Therefore, we estimate that running the AMH-FSP to the same number of iterations as the 

other two chains would have taken more than one week to finish (about 282 hours ≈ 11.75 

days). In contrast, the ADAMH-FSP-Krylov scheme took about 93.9 hours (about four days) 

to finish, resulting in a reduction of 66.7%, or a speedup factor of three, in terms of total 

computational time.

For the ADAMH-FSP-Krylov chain, the log-posterior evaluations from the reduced model 

are accurate (Fig. 7 C and Table 16), with relative error below the algorithmic tolerance of 

10−4, with a mean of 4.09 × 10−5 and a median of 2.45 × 10−5. This accurate model was 

built automatically by the ADAMH scheme using just 17 points in the parameter space (Fig. 

7 D), resulting in a set of no more than 538 vectors per time subinterval. All the basis 

updates occur during the first fifth portion of the chain, and these updates consume about 

5.91% of the total runtime (Table 17). The high accuracy of the posterior approximation 

translates into a very high second-stage acceptance of 90.53% of the proposals promoted by 

the first-stage reduced-model-based evaluation. Such high acceptance rates in the second 
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stage are crucial to the efficiency for the delayed acceptance scheme, since almost all of the 

expensive FSP evaluations are accepted.35

The hybrid scheme took only 26 hours to finish, yielding an estimated reduction of 90% in 

computational time, that is, an order of magnitude speedup. We note that an average reduced 

model evaluation takes only 2.66 seconds, leading to a maximum reduction (in terms of total 

CPU time) of approximately 97.39%, or a speedup factor of 37. The less than ideal speedup 

in our run is due to the fact that the Hybrid scheme devoted its first 1000 iterations to learn 

the reduced model. However, as the number of iterations increase, the cost of the learning 

phase becomes less significant and we expect that the Hybrid scheme would become much 

more advantageous. Most importantly, switching solely to the reduced model does not incur 

a significant difference in the parameter estimation results (Table 16 and Fig. 8).

DISCUSSION

There exists a growing literature on Bayesian inference for temporally resolved stochastic 

gene expression. These methods concern mainly three types of data analysis: time-course 

trajectories for individual cells, temporal trajectories of statistical moments, and temporal 

trajectories of entire populations. Because different types of experimental data provide 

different kinds of information, they require a diversity of Bayesian methods.

Fluorescence time-course data has attracted the largest interest in stochastic model inference. 

These data measurements consist of one or more single-cell trajectories observed at discrete 

time points. The likelihood of the time-course data is usually not directly evaluated but 

instead estimated via simulations.37,67–69 Since the classical stochastic simulation algorithm 

(SSA)58 may be inefficient for large systems with many timescales, many approximation 

methods have been used to speed up the inference process (see Schnoerr et al.5 for an 

extensive tutorial review on approximation methods for the CME and SSA). Approximate 

Bayesian Computation (ABC) approaches have also been proposed for time-course data.70 

We notice that in principle the finite state projection could also be used to directly 

approximate the log-likelihood for time-course data, and we refer to Andreychenko et al.71 

for an example that uses an FSP-based likelihood in a frequentist setting. Golightly et al.37 

also used a delayed acceptance scheme to analyze time-course data. Their method uses a 

particle filtering scheme to estimate the first-stage approximate likelihood via the Chemical 

Langevin equation (CLE) or the Linear Noise approximation (LNA) and the second-stage 

exact likelihood via the SSA.58

Flow cytometry methods collect large amounts of single-cell population data at specific time 

instances (i.e., snapshots), but lose the temporal correlation of individual cell trajectories. 

Inference methods based on moments are particularly well suited to these high-throughput 

experiments thanks to the application of the central limit theorem.72,73 The related methods 

of Approximate Bayesian Computation (ABC) can also be well utilized for such data.74 

Recently, Zechner et al.75 introduced a hierarchical Bayesian inference framework based on 

moments of distributions that can incorporate extrinsic noise. A notable challenge in 

analyzing flow cytometry data is the uncertainty in converting fluorenscence signal into 
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discrete molecular counts. Tiberi et al.48 recently introduced a hierarchical Bayesian scheme 

that enables the inference of measurement noise parameters in addition to model parameters.

Single-molecule optical microscopy approaches such as smFISH provide more precise 

estimates of molecular counts, but at much lower throughput. smFISH experimens provide 

spatial, single-molecule resolution, but yields fewer observations than flow cytometry, and in 

this case, the data are insufficient to accurately estimate the true moments. These moment 

estimation errors can lead to a breakdown of moment-based inference as discussed recently 

by Munsky et al.15 Maximum likelihood fitting via FSP was found to be able to make much 

better use of the full information available in these data to effectively constrain the 

parameters and yield accurate predictions. Unfortunately, full FSP solutions are 

computationally expensive, which has prevented their wide spread applications. Research on 

Bayesian and frequentist approaches for analyzing low-count single-cell data appears to be 

relatively unexplored in comparison to the techniques mentioned above. A few recent 

examples include the work of Gomez-Schiavon et al.10 and Fox and Munsky66 are two 

recent works that represent respectively a Bayesian and frequentist approach to the analysis 

and design of smFISH experiments. In this work, we show how MCMC sampling of the 

posterior from smFISH data can be done efficiently by using reduced order modeling in the 

delayed acceptance framework. A surprising observation from our numerical results is that 

once trained, the reduced model constructed by the ADAMH-FSP-Krylov closely matches 

the original FSP sampling. This suggests that the ADAMH-FSP-Krylov algorithm could be 

used as a data-driven method to learn reduced representations of the full FSP-based model, 

which could then be successfully substituted for the full FSP model in subsequent Bayesian 

updates. In other words, it could be equally accurate but more efficient to cease full FSP 

evaluations in the ADAMH scheme once we are confident about the accuracy of the reduced 

model. In our numerical tests, the ADAMH updates completed within the first 10–20% of 

the MCMC chain, at which point the remaining chain could have been sampled using only 

the reduced model. Perhaps other approaches to substituting function approximations into 

expensive likelihood evaluations76,77 could provide additional insights to the reduced order 

modeling approximations.

While we have achieved a significant reduction in computational time with our 

implementation of the Krylov subspace projection, other model reduction algorithms may 

yet improve this performance.78 For example, the reduced models considered here achieved 

levels of accuracy (i.e., relative errors of 10−5 or less) that are much higher than one would 

expect to be necessary to compare models in light of far less accurate data. In light of this 

finding and the fact that parameter discrimination can be achieved at different levels of 

accuracy for different combinations of models and data,79 we suspect that it could be 

advantageous to build less accurate models that can be evaluated in less time.

Our present work assumes that the full FSP-based solution can be computed to learn the 

reduced model bases and to evaluate the second stage likelihood in the ADAMH-FSP-

Krylov algorithm. For many problems, the required FSP state space can be so large that it is 

impossible even to keep the full model in computer memory. Representing the FSP model in 

a low-rank tensor format25 is a promising approach that we plan to investigate in order to 

overcome this limitation. Another important direction is to extend our work here to models 
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where nonlinear dependence on parameters require the full FSP matrix to be assembled for 

every parameter evaluation.

Our current work focused on using reduced models for Bayesian estimation of posterior 

parameters for a given experiment design. In addition to this application, the task of finding 

optimal parameter fits could also benefit from reduced order modeling. For example, 

techniques from other engineering fields, such as trust-region methods,80 may provide 

valuable improvements to infer stochastic models from gene expression data. Similar 

strategies to find reduced FSP models could be utilized to explore sensitivity of single-cell 

response distributions to parameter variations, which could subsequently be used to compute 

Fisher Information and design more informative experiments.66 In time, a wealth of 

algorithms and insights remains to be gained by adapting computational methods from the 

broader computational science and engineering communities to analyze stochastic gene 

expression.

CONCLUSION

There is a clear need for efficient computational algorithms for the uncertainty analysis of 

gene expression models. In this work, we proposed and investigated new approaches for 

Bayesian parameter inference of stochastic gene expression parameters from single-cell 

data. We employed adaptive tuning of proposal distributions in addition to delayed 

acceptance MCMC and reduced-order modeling. Numerical tests confirmed that the reduced 

models can be used to significantly speed up the sampling process without incurring much 

loss in accuracy. While we have only focused on smFISH data in this work, we plan to 

extend our algorithm to other types of data such as time-course trajectories using time-lapse 

fluorescence microscopy; for higher-throughput, but lower precision single-cell 

measurements available using flow cytometry; and eventually for lower throughput but 

higher content data using single-cell sequencing.
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Figure 1: 
Two-state gene expression example. (A) CPU time vs number of iterations for a sample run 

of the ADAMH-FSP-Krylov and the AMH-FSP. (B) Scatterplot of the unnomarlized log-

posterior evaluated using the full FSP and the reduced model. Notice that the approximate 

and true values are almost identical with a correlation coefficient of approximately 0.99853. 

(C) Distribution of the relative error in the approximate log-likelihood evaluations at the 

parameters accepted by the ADAMH chain. (D) 2-D projections of parameter combinations 

accepted by the ADAMH scheme (blue) and parameter combinations used for reduced 

model construction (red).
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Figure 2: 
Two-state gene expression example. Estimations of the marginal posterior distributions of 

the parameters kon, koff, kr, γ using the Adaptive Delayed Acceptance Metropolis-Hastings 

with Krylov reduced model (ADAMH-FSP-Krylov), the Adaptive Metropolis-Hastings with 

full FSP (AMH-FSP), and the Hybrid method.
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Figure 3: 
Two-state gene expression example. Autocorrelation in the outputs of the Adaptive Delayed 

Acceptance Metropolis-Hastings with Krylov reduced model (ADAMH-FSP-Krylov), the 

Adaptive Metropolis-Hastings with full FSP (AMH-FSP), and the Hybrid method for the 

parameters kon, koff, kr, γ. The autocorrelation functions are estimated in the log10-

transformed space of the parameters, in which the three chains draw their proposals. Actual 

chain lengths are 105, which is approximately 2500-fold longer than the longest 

decorrelation time (cf. Table 6).
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Figure 4: 
Genetic toggle switch example. (A) CPU time vs number of iterations for a sample run of 

the ADAMH-FSP-Krylov and the AMH-FSP. (B) Scatterplot of the unnomarlized log-

posterior evaluated using the full FSP and the reduced model. Notice that the approximate 

and true values are almost identical with a correlation coefficient of approximately 0.99851. 

(C) Distribution of the relative error in the approximate log-likelihood evaluations at the 

parameters accepted by the ADAMH chain. (D) 2-D projections of parameter combinations 

accepted by the ADAMH scheme (blue) and parameter combinations used for reduced 

model construction (red).
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Figure 5: 
Genetic toggle switch example. Estimations of the marginal posterior distributions of the 

parameters k0X, k1X, γX, k0Y, k1Y, γY using the Adaptive Delayed Acceptance Metropolis-

Hastings with Krylov reduced model (ADAMH-FSP-Krylov), the Adaptive Metropolis-

Hastings with full FSP (AMH-FSP), and the Hybrid method.
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Figure 6: 
Genetic toggle switch example. Autocorrelation in the outputs of the Adaptive Delayed 

Acceptance Metropolis-Hastings with Krylov reduced model (ADAMH-FSP-Krylov), the 

Adaptive Metropolis-Hastings with full FSP (AMH-FSP), and the Hybrid method for the 

parameters k0X, k1X, γX, k0Y, k1Y, γY. The autocorrelation is estimated directly in log10-

transformed space of parameters, where the chains draw their proposals.
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Figure 7: 
Spatial gene expression example. (A) CPU time vs number of iterations for a sample run of 

the ADAMH-FSP-Krylov and the AMH-FSP. (B) Scatterplot of the unnomarlized log-

posterior evaluated using the full FSP and the reduced model. Notice that the approximate 

and true values are almost identical with a correlation coefficient of approximately 0.99851. 

(C) Distribution of the relative error in the approximate log-likelihood evaluations at the 

parameters accepted by the ADAMH chain. (D) 2-D projections of parameter combinations 

accepted by the ADAMH scheme (blue) and parameter combinations used for reduced 

model construction (red).
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Figure 8: 
Spatial gene expression example. Estimations of the marginal posterior distributions using 

the Adaptive Delayed Acceptance Metropolis-Hastings with Krylov reduced model 

(ADAMH-FSP-Krylov) and the Hybrid method.
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Figure 9: 
Spatial gene expression example. Autocorrelation in the outputs of the Adaptive Delayed 

Acceptance Metropolis-Hastings with Krylov reduced model (ADAMH-FSP-Krylov), the 

Adaptive Metropolis-Hastings with full FSP (AMH-FSP), and the Hybrid method for all six 

free parameters of the model. The autocorrelation is estimated directly in log10-transformed 

space of parameters, where the chains draw their proposals.
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Table 1:

Two-state gene expression reactions and propensities

reaction propensity

1. GOFF

kon
GON

α1 = kon[GOFF]

2. GON

ko f f
GOFF

α2 = koff [GON]

3. GON

kr
GON + RNA α3 = kr[GON ]

4. RNA
γ ∅ α4 = γ[RNA]

Parameters’ units are hr−1. [X] is the number of copies of the species X.
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Table 2:

Bounds on the support of the prior distribution of the parameter in the Two-state gene expression example

Parameter kon koff kr γ

Lower bound 1.00e−06 1.00e−06 1.00e−06 1.00e−06

Upper bound 1.00e+01 1.00e+01 1.00e+04 1.00e+01

Prior is uniform on the log10-transformed parameter space.

Parameter units are hr−1.
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Table 3:

Performance of the sampling algorithms on the Two-state gene expression example

mESS CPU time (sec)
CPU time

mESS (sec) Number of full 
evaluations

Number of 
rejections

Number of rejections 
by full FSP

AMH-FSP 6078.61 20319.33 3.34 100000 79152 79152

ADAMH-FSP-
Krylov 5141.64 11243.99 2.19 18905 81193 98

Hybrid 5104.85 8226.57 1.61 2111 79378 7

Each algorithm was run for 105 iterations.
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Table 4:

Breakdown of CPU time spent in the main components of ADAMH-FSP-Krylov run in the Two-state gene 

expression example

Component Time occupied (sec) Fraction of total time (per cent)

Full FSP Evaluation 3632.34 32.30

Reduced Model Evaluation 7402.34 65.83

Reduced Model Update 5.07 0.05

Total 11243.99 100.00
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Table 5:

Posterior mean and standard deviation of the Two-state gene expression example estimated by the sampling 

schemes

Parameter AMH-FSP ADAMH-FSP-Krylov Hybrid True

mean std mean std mean std

log10(kon) −4.52e−01 1.50e−01 −4.51e−01 1.66e−01 −4.58e−01 1.71e−01 −3.01e−01

log10(koff) −1.40e−01 1.92e−02 −1.40e−01 1.95e−02 −1.41e−01 1.93e−02 −9.69e−02

log10(kr) 3.00e+00 1.76e−03 3.00e+00 1.78e−03 3.00e+00 1.76e−03 3.00e+00

log10(γ) 8.33e−04 6.05e−03 1.03e−03 6.09e−03 9.85e−04 6.06e−03 0.00e+00

Parameter values are shown in log10 scale.

All parameters have units hr−1.

The ‘True’ column shows the true parameter values.
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Table 6:

Geweke diagnostics and integrated autocorrelation time for the three chains in the Two-state gene expression 

example

Parameter AMH-FSP ADAMH-FSP-Krylov Hybrid

Geweke IACT Geweke IACT Geweke IACT

log10(kon) 9.92e−01 2.32e+01 9.25e−01 4.10e+01 9.90e−01 4.01e+01

log10(koff) 9.97e−01 1.98e+01 9.99e−01 2.11e+01 9.92e−01 2.04e+01

log10(kr) 1.00e+00 1.86e+01 1.00e+00 2.04e+01 1.00e+00 1.93e+01

log10(γ) 7.55e−01 1.93e+01 6.87e−01 2.10e+01 7.01e−01 2.07e+01

Geweke column shows the p-values in the Geweke diagnostics. This test is passed at 5% significance level if the p-value is above 0.05.

IACT column shows the integrated autocorrelation time, which is the number of samples in the MCMC chain that are equivalent to an independent 
posterior sample.
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Table 7:

Genetic toggle switch reactions and propensities

reaction propensity

1. X → ∅ γX[X]

2. ∅ → X
k0X +

k1X

1 + ayx([Y]
nyx)

3. Y → ∅ γY [Y ]

4. ∅ → Y
k0Y +

k1Y

1 + axy([X]
nxy)

The units for the parameters k0X, k1X, γX, k0Y, k1Y, γY are sec−1. The other parameters (dimensionless) are fixed at ayx = 2.6 × 10−3, axy = 

6.1 × 10−3, nyx = 3, nxy = 2.1

J Phys Chem B. Author manuscript; available in PMC 2020 March 14.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Vo et al. Page 45

Table 8:

Posterior mean and standard deviation of the Genetic toggle switch parameters estimated by the sampling 

schemes

Parameter AMH-FSP ADAMH-FSP-Krylov Hybrid True

mean std mean std mean std

log10(k0X) −2.65e+00 2.79e−02 −2.65e+00 2.83e−02 −2.65e+00 2.79e−02 −2.66e+00

log10(k1X) −1.75e+00 2.27e−02 −1.75e+00 2.31e−02 −1.75e+00 2.23e−02 −1.77e+00

log10(γX) −3.40e+00 2.53e−02 −3.40e+00 2.57e−02 −3.40e+00 2.51e−02 −3.42e+00

log10(k0Y ) −5.05e+00 5.45e−01 −5.05e+00 5.44e−01 −5.08e+00 5.40e−01 −4.17e+00

log10(k1Y ) −1.77e+00 2.14e−02 −1.77e+00 2.19e−02 −1.77e+00 2.13e−02 −1.80e+00

log10(γY ) −3.39e+00 2.26e−02 −3.39e+00 2.31e−02 −3.39e+00 2.25e−02 −3.42e+00

True parameter values are shown in the ‘True’ column.

Parameter values are shown in log10 scale.

All parameters shown have unit sec−1.
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Table 9:

Bounds on the support of the prior in the Genetic toggle switch example

Parameter k0X k1X γX k0Y k1Y γY

Lower bound 1.00e−06 1.00e−06 1.00e−06 1.00e−06 1.00e−06 1.00e−06

Upper bound 1.00e−01 1.00e−01 1.00e−01 1.00e−01 1.00e−01 1.00e−01

Parameters have the same unit sec−1.

Prior is uniform in the log10-transformed parameter space, covering five orders of magnitude for each parameter.
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Table 10:

Performance of the sampling algorithms applied to the Genetic toggle switch example

mESS CPU time (sec)
CPU time

mESS (sec) Number of full 
evaluations

Number of 
rejections

Number of rejections 
by full FSP

AMH-FSP 4343.31 30238.78 6.96 100000 76267 76267

ADAMH-FSP-
Krylov

4299.54 15165.87 3.53 23530 77314 844

Hybrid 4276.67 7100.20 1.66 2915 76169 276

The total chain length for each algorithm was 105.

The ADAMH-FSP-Krylov scheme uses markedly fewer full evaluations than the AMH-FSP scheme, and 96.41% of the parameters promoted by 
the first-stage are accepted in the second stage.
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Table 11:

Breakdown of CPU time spent in the main components of ADAMH-FSP-Krylov run in the Genetic toggle 

switch example

Component Time occupied (sec) Fraction of total time (per cent)

Full FSP Evaluation 6774.00 44.67

Reduced Model Evaluation 8121.47 53.55

Reduced Model Update 23.39 0.15

Total 15165.87 100.00
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Table 12:

Convergence diagnostics for the three sampling algorithms applied to the Genetic toggle switch example

Parameter AMH-FSP ADAMH-FSP-Krylov Hybrid

Geweke IACT Geweke IACT Geweke IACT

log10(k0X) 1.00e+00 2.57e+01 1.00e+00 2.68e+01 1.00e+00 2.61e+01

log10(k1X) 1.00e+00 2.59e+01 1.00e+00 2.72e+01 1.00e+00 2.54e+01

log10(γX) 1.00e+00 2.56e+01 1.00e+00 2.69e+01 1.00e+00 2.60e+01

log10(k0Y ) 9.78e−01 2.79e+01 9.91e−01 2.70e+01 9.93e−01 2.85e+01

log10(k1Y ) 1.00e+00 2.65e+01 1.00e+00 2.64e+01 9.99e−01 2.47e+01

log10(γY ) 1.00e+00 2.64e+01 1.00e+00 2.62e+01 1.00e+00 2.46e+01

Geweke column shows the p-values in the Geweke diagnostics. This test is passed at 5% significance level if the p-value is above 0.05.

IACT column shows the integrated autocorrelation time, which is the number of samples in the MCMC chain that are equivalent to an independent 
posterior sample.
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Table 13:

Spatial gene expression reactions and propensities

reaction Propensity

1.

Gi

kgene
+

Gi + 1
α1 = kgene

+ [i ≤ 2]

2.

Gi

kgene
−

Gi − 1
α2 = kgene

− [i ≥ 1]

3.
Gi

kr
Gi + RN Anuc

α3 = kr[i ≥ 1]

4.
RN Anuc

γnuc ∅
α4 = γnuc[RN Anuc]

5.
RN Anuc

ktrans
RN Acyt

α5 = ktrans[RN Anuc]

6.
RN Acyt

γcyt ∅
α6 = γcyt[RN Acyt]

The gene is considered as one species with 4 different states Gi, i = 0, … , 3.

Parameters’ units are sec−1.
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Table 14:

Bounds on the support of the prior in the Spatial gene expression example

Parameter kgene
+ kgene

− kr γnuc ktrans γcyt

Lower bound 1.00e−06 1.00e−06 1.00e−06 1.00e−08 1.00e−06 1.00e−06

Upper bound 1.00e+00 1.00e+00 1.00e+01 1.00e+00 1.00e+00 1.00e+00

All parameters have the same unit sec−1.

Prior is uniform in the log10-transformed parameter space.
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Table 15:

Performance of the sampling algorithms applied to the Spatial gene expression example

mESS CPU time (sec)
CPU time

mESS (sec) Number of full 
evaluations

Number of 
rejections

Number of rejections 
by full FSP

ADAMH-FSP-
Krylov

455.96 337955.28 741.20 2863 7408 271

Hybrid 470.37 92990.58 197.70 407 7192 46

The total chain length for each algorithm is 105.
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Table 16:

Posterior mean and standard deviation of the Spatial gene expression parameters estimated by the sampling 

schemes

Parameter ADAMH-FSP-Krylov Hybrid True

mean std mean std

log10(kgene
+ ) −2.51e+00 3.73e−02 −2.52e+00 3.82e−02 −2.52e+00

log10(kgene
− ) −2.18e+00 2.88e−02 −2.19e+00 2.91e−02 −2.22e+00

log10(kr) 1.71e−01 8.98e−03 1.70e−01 9.80e−03 1.76e−01

log10(γnuc) −2.55e+00 6.42e−02 −2.56e+00 6.98e−02 −2.52e+00

log10(ktrans) −2.00e+00 8.23e−03 −2.00e+00 8.49e−03 −2.00e+00

log10(γcyt) −2.54e+00 1.72e−02 −2.54e+00 1.84e−02 −2.52e+00

Parameter values are shown in log10 scale. All parameters have units sec−1.

True values are shown in the ‘True’ column.
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Table 17:

Breakdown of CPU time spent in the maiin components of ADAMH-FSP-Krylov in the Spatial gene 

expression example

Component Time occupied (sec) Fraction of total time (per cent)

Full FSP Evaluation 291320.11 86.20

Reduced Model Evaluation 26614.29 7.88

Reduced Model Update 19975.21 5.91

Total 337955.28 100.00
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Table 18:

Convergence diagnostics for the three sampling algorithms applied to the Spatial gene expression example

Parameter ADAMH-FSP-Krylov Hybrid

Geweke IACT Geweke IACT

log10(kgene
+ ) 9.91e−01 3.05e+01 9.95e−01 3.17e+01

log10(kgene
− ) 9.90e−01 2.78e+01 9.92e−01 3.87e+01

log10(kr) 9.78e−01 2.77e+01 9.55e−01 3.49e+01

log10(γnuc) 9.90e−01 3.19e+01 9.78e−01 3.62e+01

log10(ktrans) 9.99e−01 3.63e+01 9.99e−01 1.74e+01

log10(γcyt) 9.99e−01 2.65e+01 1.00e+00 2.34e+01

Geweke column shows the p-values in the Geweke diagnostics. This test is passed at 5% significance level if the p-value is above 0.05.

IACT column shows the integrated autocorrelation time, which is the number of samples in the MCMC chain that are equivalent to an independent 
posterior sample.
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