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ABSTRACT Hearing loss is associated with �8100 mutations in 152 genes, and within the coding regions of these genes are
over 60,000 missense variants. The majority of these variants are classified as ‘‘variants of uncertain significance’’ to reflect our
inability to ascribe a phenotypic effect to the observed amino acid change. A promising source of pathogenicity information is
biophysical simulation, although input protein structures often contain defects because of limitations in experimental
data and/or only distant homology to a template. Here, we combine the polarizable atomic multipole optimized energetics for
biomolecular applications force field, many-body optimization theory, and graphical processing unit acceleration to repack all
deafness-associated proteins and thereby improve average structure MolProbity score from 2.2 to 1.0. We then used these opti-
mized wild-type models to create over 60,000 structures for missense variants in the Deafness Variation Database, which are
being incorporated into the Deafness Variation Database to inform deafness pathogenicity prediction. Finally, this work demon-
strates that advanced polarizable atomic multipole force fields are efficient enough to repack the entire human proteome.
SIGNIFICANCE We are interrogating the genetics of deafness using a targeted sequencing panel (called OtoSCOPE)
that includes 152 deafness-associated genes. OtoSCOPE enables us to identify an average of 545 variants per patient,
which are curated in the deafness-specific database we purpose built called the Deafness Variation Database (http://
deafnessvariationdatabase.org). To inform the interpretation of missense variants from a structural biology perspective,
we describe new, to our knowledge, algorithms for repacking protein structures. Our approach, implemented in the publicly
available software Force Field X (https://ffx.biochem.uiowa.edu), is used to generate 473 wild-type structures for
OtoSCOPE genes. These protein models have been integrated into the Deafness Variation Database to inform
classification of missense variants and form the foundation for downstream analyses of protein-protein binding and folding
stability.
INTRODUCTION

As the most common human sensory deficit, deafness im-
pacts an estimated 360 million people globally (World
Health Organization data, http://www.who.int/pbd/deafness/
estimates/en/index.html). Its cause is multifactorial, and
with recent advances in the application of targeted genetic
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sequencing technology to clinical medicine, our understand-
ing of genetic contributions to deafness has greatly advanced.
The use of deafness-specific gene panels has changed the
clinical paradigm in the evaluation of the deaf patient and
is laying the foundation for personalized gene therapy to treat
hearing loss.

The targeted genetic sequencing panel developed by our
group, which we refer to as OtoSCOPE, includes 152 deaf-
ness-associated genes (1,2). Its use enables us to identify an
average of 545 variants per patient, which are curated in the
publicly available deafness-specific database we purpose
built called the Deafness Variation Database (DVD,
Fig. 1; Table S1; http://deafnessvariationdatabase.org)
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FIGURE 1 Incorporating structural biophysics

into variant classification. (a) OtoSCOPE

sequencing technology discovers 545 variants per

patient on average, 71 of which are nonsynony-

mous coding, splice site, or indel variants. (b) Pro-

tein structural coverage for OtoScope genes is an

important step toward identifying the molecular

causation of disease-causing variants along with

classifying VUSs. (c) Variants collected through

OtoSCOPE sequencing are curated in the Deafness

Variation Database (DVD). For each variant, the

DVD combines minor allele frequency, experi-

mental results, pathogenicity predictions from

sequence conservation-based classifiers, and now,

insights from protein structures (i.e., OtoProtein,

described in this work). The pathogenicity for

nearly 80% of the variants in the DVD remains un-

known, which means they are placed into the

variant of uncertain significance (VUS) category.

To see this figure in color, go online.
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(3,4). The DVD collates data from major public databases
and uses criteria recommended by the American College
of Medical Genetics and Genomics to classify every genetic
variant as benign (B), likely benign (LB), variant of uncer-
tain significance (VUS), likely pathogenic (LP), or patho-
genic (P) based on collected evidence and curation by
experts in genetic hearing loss. Of the �800,000 variants
in the genes included on OtoSCOPE that are listed in the
DVD, more than 60,000 missense variations exist. Of these
variants, �4000 are LP/pathogenic, �38,000 are VUSs, and
�18,000 are LB/B.

Many of the missense variations labeled as VUSs will ul-
timately be classified as LP/pathogenic, but we are currently
relegated to classifying them as VUSs as a reflection of our
inability to predict the phenotypic consequences of most ge-
netic variations. We often lack variant-specific wet-lab-
based functional evidence (5), and insights derived from
atomic resolution simulations must continue to mature to
reliably make meaningful genotype-phenotype correlations.

Atomic resolution simulation techniques such as molecu-
lar dynamics (MD) provide a promising first-principles
approach for computationally predicting the potential
impact of missense variants. However, its success is depen-
dent, in part, on accurate protein structures. These structures
are typically determined from an experimental method (i.e.,
x-ray crystallography, NMR, cryo-electron microscopy,
etc.) or from homology modeling. The latter leverages exist-
ing protein structure(s) as a template from which to create
the model of a homologous amino acid sequence. Homol-
ogy modeling is most reliable when homologous sequences
have at least 30% sequence identity, which typically indi-
cates protein fold is conserved (6,7). To complement and
enhance models available in databases such as ModBase
(8) and SwissProt (9), dramatic improvements are possible
by global optimization (i.e., repacking) of amino acid side
chains using more advanced molecular physics than was
originally available (or could be computationally afforded)
at the time of their creation.

For example, most protein structures found in both the
Protein Data Bank (10) and homology modeling databases
(8,9) are based on refinement with pairwise potential energy
functions (i.e., force fields) such as the fixed-charge Amber
(11,12), CHARMM (13,14), and OPLS-AA (15,16) models
(17). Over the past decade, more accurate polarizable force
fields have emerged that overcome limitations in previous
generation pairwise models (18), including both the Atomic
Multipole Optimized Energetics for Biomolecular Applica-
tions (AMOEBA) force field (19,20) and the CHARMM
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Drude (21) model. Structural optimization with these state-
of-the-art energy functions, when used with continuum
representations of solvation (22–24), can compensate for
limitations in experimental data and improve homology
models. However, multiple challenges must be overcome
to realize the benefits of polarizable atomic multipole force
fields, including mitigating their increased computational
expense and overcoming the loss of convenient pairwise ap-
proximations that are widespread in structural biology soft-
ware such as Modeler (25), Phenix (26), and Rosetta (27).

Our decision to use the AMOEBA force field for this
work is based on a series of previous structural refinement
studies performed over the last decade (28–35) that system-
atically demonstrate both improved agreement to x-ray and
neutron diffraction data (i.e., lower R/Rfree) and improved
MolProbity metrics (36,37) compared to fixed-charge force
fields. MolProbity identifies high-energy atomic clashes,
unfavorable side-chain conformations, and polypeptide
backbone conformations inconsistent with low-energy sec-
ondary structure. The algorithm is widely used by crystal-
lographers to aid refinement of models by reporting
structural features that are known to be unphysical. Lower
MolProbity scores are consistent with higher-quality x-ray
diffraction data (i.e., a score of 1.0 is calibrated to reflect
1.0 Å resolution data). For example, AMOEBA-assisted
x-ray refinement on ultra-high-resolution (0.43–0.59 Å)
peptide crystals (28) and high-resolution (0.65–0.89 Å)
lysozyme, trypsin, and DNA data sets (29) demonstrated
lower R/Rfree values compared to conventional refinement
using force fields without advanced electrostatics. Work
on joint x-ray/neutron data sets for B-form DNA and
Z-form DNA (31) demonstrated that AMOEBA-assisted
refinement outperformed a variant of OPLS-AA in terms
of both lower R/Rfree values and improved water hydrogen
bonding networks. Finally, more recent work on a series
of proliferating cell nuclear antigen structures thoroughly
compared AMOEBA-assisted x-ray refinement to OPLS-
AA/L, including rotamer repacking in both cases, and
AMOEBA again outperformed OPLS-AA/L in terms of
both lower R/Rfree and improved MolProbity scores (35).

Building on the promising refinement results from these
previous studies, here we use refinement with AMOEBA to
generate a family of deafness-related protein structures
called OtoProtein. Our approach combines the AMOEBA
potential energy function (19,20), many-body optimization
theory (35), and GPU acceleration (38,39) to optimize all
available deafness-associated protein models. To assess
the resulting structures objectively, we evaluated overall
quality with the MolProbity (36,37) algorithm. Correcting
rotamer outliers often improves other metrics and permits
further relaxation of the structure with local minimization,
resulting in more realistic, lower-energy structures for
downstream analysis (e.g., MD, alchemical free-energy
simulations, or feature extraction for bioinformatics
analysis).
604 Biophysical Journal 117, 602–612, August 6, 2019
As described in the Results, our mean postoptimization
MolProbity score is consistent with near-atomic resolu-
tion. The structures have been integrated with the DVD
to provide insight into the biophysical impacts of deaf-
ness-related genetic variations, which aids in predicting
variant effect and pathogenicity. Our polarizable protein
repacking algorithm is freely available in the open source
software Force Field X (FFX, http://ffx.biochem.uiowa.
edu) and may be useful to others in the community
that are integrating structural biophysics into variant
classification.
MATERIALS AND METHODS

Many-body energy expansion parallelization
across GPUs

Generation and assessment of OtoProtein structures, as depicted in Fig. 1,

will now be described in detail. Under a many-body potential, the total en-

ergy of a protein E(r) can be defined to arbitrary precision using the

expansion

EðrÞ ¼ Eenv þ
X
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where Eenv is the energy of the environment (i.e., the protein backbone and

residues that are not being optimized); Eself(ri) is the self-energy of residue i

that includes its intramolecular bonded energy terms and nonbonded inter-

actions with the backbone; E2(ri, rj) is the two-body nonbonded interaction

energy between residues i and j with other residues turned off; and E3(ri, rj,

rk) is the three-body nonbonded interaction energy between residues i, j,

and k with other residues turned off. The self, two-body, and three-body en-

ergy terms are calculated as follows, where EBB/SC is the total energy of the

backbone with the side chain(s) of the selected residue(s) included (shown

graphically in Fig. 2 a).
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Individual energy evaluations are calculated on graphical processing

units (GPUs) via the CUDA kernels of OpenMM (39), and the evaluations

are distributed over many GPUs, potentially over multiple nodes, using the

PJ library (Fig. 2 b; (40)). Side-chain rotamer conformations that are not

part of the optimum structure can be rigorously eliminated using mathemat-

ical expressions (Fig. 2 c; (35,41,42)).

Computing the self, two-body, and three-body energy terms as a func-

tion of rotamer conformation is computationally expensive. To address

this challenge, our FFX program utilizes two complementary paralleliza-

tion approaches, including 1) use of the Parallel Java (PJ) (40) message-

passing interface library to distribute terms among multiple processes

and 2) use of the OpenMM application programming interface (39) to

perform force-field-energy evaluations on NVIDIA GPUs (Nvidia, Santa

http://ffx.biochem.uiowa.edu
http://ffx.biochem.uiowa.edu


FIGURE 2 Overview of the protein repacking algorithm. (a) Depictions of rotamer self, two-body, and three-body energy terms are given. (b) Parallel

computation of energy terms across processes and GPUs is shown. Processes (blue boxes) are each assigned a group of self-energies to calculate, where

Nself ¼
PNresidues

i¼1

ni is the sum of rotamers across all residues to give Nself/P evaluations per process. Processes compute energy values by sending a conformation

x to a GPU (green box) for evaluation using the OpenMM application programming interface, followed by return of the energy E(x) and its communication to

all processes using the Java message-passing interface (red arrows). The two-body and three-body energies are parallelized in a similar fashion. (c) The

number of side-chain energies and conformational permutations for a 98-residue COCH protein domain are shown as an example. After all energy terms

have been calculated (green rectangles), the combinatorial side-chain conformational space is reduced using many-body Goldstein rotamer and rotamer

pair elimination criteria (see Materials and Methods) to achieve a tractable number of permutations to evaluate. Before eliminations, 4.65 � 1074 side-chain

permutations exist, but only 208 permutations remain to be evaluated after eliminations. To see this figure in color, go online.

Polarizable Protein Repacking
Clara, CA) via CUDA kernels. FFX uses PJ to divide each shared mem-

ory node of a multiple node compute cluster into one or more processes

(Fig. 2 b). Energy terms are then assigned to processes, evaluated, and

globally communicated across all processes using PJ message passing,

with synchronization steps between calculation of the self, two-body,

and three-body energy terms (i.e., two-body terms depend on self-terms

as shown in Eq. 3, and thus must be calculated after self-energies are

completed and before three-body energies). The FFX-OpenMM interface

(based on Java Native Access wrappers to the OpenMM Cþþ applica-

tion programming interface) is used to offload energy evaluations from

FFX, which executes on central processing units (CPUs), to OpenMM

on a GPU. Once all energy terms are calculated, side-chain rotamers

and rotamer pairs are eliminated by lower-energy alternatives based on

rigorous mathematical inequalities that have been described for pairwise

force fields (e.g., dead-end elimination (41) and Goldstein elimination

(42)) and more recently generalized to include three-body terms for

use with many-body force fields (35) such as the polarizable AMOEBA

model (20,30). The many-body Goldstein criteria for rotamer elimination

(35), truncated at three-body terms, is given by
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and, if satisfied, indicates rotamer a of residue i is eliminated by rotamer b

(the ellipses signify the presence of further higher-order terms). The expres-

sion for rotamer pair elimination is given by
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and, if satisfied, indicates that the rotamer pair ðrai ; rbj Þ for residues i and j is
eliminated by rotamer pair ðrg; rdÞ.
i j

Four approximations to rigorous use of the many-body Goldstein in-

equalities given above were explored, each of which is summarized here

and described more fully in the Results. First, it was determined that the

expansion could be truncated at pairwise terms because of damping of

three-body and higher-order terms by the generalized Kirkwood implicit

solvent. However, in the absence of implicit solvent, previous work demon-

strated that inclusion of three-body terms is sometimes necessary (35). The

second approximation was a distance cutoff; if the closest rotamers for a

residue pair or triple are more than 2 Å apart, the interaction energy is

set to 0. Third, pruning was utilized to remove rotamers with self-energies

25 kcal/mol or more above the lowest self-energy of a residue before calcu-

lation of two-body energies. This criterion is based on the heuristic obser-

vation that rotamers with such an unfavorable self-energy (e.g., due to an

atomic clash with backbone atoms) are not found in well-packed structures.

However, for structures with significant backbone flaws, this approximation
Biophysical Journal 117, 602–612, August 6, 2019 605
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must be used with care because it can incorrectly eliminate the ‘‘least bad’’

rotamer that is actually part of the global minimal conformation. Our final

approximation involved imposing a three-dimensional grid over the protein,

followed by optimization within each subdomain (cube) of the grid, rather

than including all protein residues simultaneously. Although the repacking

algorithm is a provable global optimizer within a single subdomain of the

grid, it is not for the protein grid as a whole because coordinated changes

between subdomains are neglected.
The OtoProtein Structure Database

Comparative protein modeling provides a means to predict the structure of a

protein whose atomic coordinates have not been solved experimentally by

crystallography, NMR, etc. (43). Many human genes implicated in hearing

loss have not been studied experimentally, so computational approaches are

necessary to generate high-quality protein structures. Comparative protein

modeling begins from an experimental structure for an evolutionarily related

protein, which is used as a template for the target sequence (10,44). The

percent sequence identity between the homologs provides an estimate of

model reliability (45). Comparative proteinmodels are conducive to the study

of protein function, dynamics, and interactions with other molecules such as

ligands, DNA, RNA, or other proteins. Homology models can also be used

to study missense variants, providing a promising basis for understanding

the role of protein phenotypes in heterogenic diseases like hearing loss.

However, comparative protein models from leading databases often

include defects directly related to approximations in the methods used for

their generation (e.g., pairwise force fields, local rather than global optimiza-

tion, etc.).We sought to improve comparative proteinmodels fromSwissProt

(44) and ModBase (8) for 152 genes included in the OtoSCOPE platform.

Although using homology models based on a sequence identity of 30% or

greater generally gives confidence that the protein backbone fold has been

evolutionarily conserved (45), this work includes all publicly available

models (the average sequence identity was 41.7% for all 473 structural

models). Both SwissProt and ModBase strive to provide structural coverage

for the largest portion of the human proteome possible; however, this limits

their ability to explore the use of advanced many-body force fields. Here, we

show that use of the polarizable AMOEBA force field in tandem with global

optimization of amino acid side chains (35) can significantly improve the

quality of SwissProt orModBase structures as assessed by tools likeMolPro-

bity (36,37). High-quality protein structural models, in turn, provide optimal

starting points for downstream MD simulations that can be used to analyze

missense variations (i.e., calculation of folding and/or binding free-energy

differences). The parallelized repacking algorithm described here demon-

strates that it is now feasible to refine large databases of homology models

using advanced polarizable atomic multipole force fields.

All homologymodels were refined using the 2018 AMOEBA protein force

field (20,46) with generalized Kirkwood implicit solvent (23). The input ho-

mology models were first locally optimized using the low-memory Broy-

den-Fletcher-Goldfarb-Shanno algorithm to a root mean square (RMS)

gradient convergence criterion of 0.8 kcal/mol/Å. The rationale for mini-

mizing with a relatively loose convergence criterion before rotamer optimiza-

tion was to relax the backbone conformation without excessively favoring the

startingconformationover alternative rotamers.Locally optimizing toa tighter

convergence criterion before side-chain optimization resulted in higher-en-

ergy, less favorable structures because of overstabilizing starting rotamers.

Next, the side-chain repacking algorithmwas applied, followed by a final local

low-memory Broyden-Fletcher-Goldfarb-Shanno minimization to an RMS

gradient convergence criterion of 0.1 kcal/mol/Å. The resulting protein struc-

tures and original homology models were then evaluated and compared using

both theMolProbity assessment tool and AMOEBA/GKenergies. These opti-

mized wild-type structures were used as input for creating more than 60,000

variant structures for missense variations in the DVD. For each missense

variant in theDVDwith structural coverage available in thewild-typeOtoPro-

tein data set, the corresponding structure(s) were mutated.We then locally re-

packed all residues within 2 Å of the missense variant (i.e., based on Eq. 7
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below) to correct any atomic clashes introduced by the variant amino acid.

Many proteins in our data set have more than one homology model available,

often covering similar residue ranges. For each missense variant, a locally re-

packed structure was created for every available wild-type model, which

yielded multiple structures for many missense variants in our data set.
RESULTS

Polarizable protein repacking algorithm using
GPUs

To benefit fully from the emergence of polarizable force fields
in the context of protein structure prediction and repacking,
the theory that underlies established algorithmsmust be revis-
ited to incorporate many-body electronic polarization and to
optimize performance across GPUs. We examined four ap-
proximations to our many-body protein repacking algorithm
to enhance efficiency while maintaining structural quality.
The approximations are illustrated using a 98-residue
COCH protein (residues 27–125), which was chosen based
on its high sequence identity to an experimental NMR tem-
plate (98% identity) and modest size. Previous work showed
that truncating the energy expansion at three-body terms re-
sulted in accurate side-chain positions being identified in the
context of real-space x-ray refinement (35). However, when
using the native environment approximation (47) in combina-
tion with the AMOEBA/GK implicit solvent (23), we found
that the contribution of energy termswithin the energy expan-
sion decays quickly. The magnitude of each term in Eq. 1
dampens significantly enough that truncation at two-body
terms is sufficiently accurate for repacking in implicit solvent
(Table 1). This damping manifests as smaller two-body and
three-body contributions when GK is enabled (Table S2). In
fact, the magnitude of three-body interactions is reduced to
such an extent that they generally do not affect side-chain ro-
tamer eliminations (whereas our prior crystal refinementwork
did not employ an implicit solvation model). Truncation at
two-body energy terms results in a nearly 52� speed-up (Ta-
ble S3) as compared to the original rotamer optimization pro-
tocol (35)without any rotamer changes compared to including
three-body terms. In futurework, we plan to additionally opti-
mize the protonation states of all titratable residues, which
will necessitate a fresh appraisal of the impact of three-body
energies because of the formal charge of residues changing.

The second approximation applies a distance-based cut-
off between residues, which results in the interaction energy
of two or more side chains being set to 0 if the minimal
atomic distance between rotamer permutations is above a
defined cutoff. The minimal distance dmin between two res-
idues i and j is calculated using the expression

dminði; jÞ ¼ min
fa¼ 1::ni ;b¼ 1::njg

�
dist

�
rai ; r

b
j

��
; (7)

where the min operation is over the set of all rotamer permu-
tations (i.e., residues i and j have ni and nj rotamers,



TABLE 1 Adjustable Repacking Parameters Are Examined in the Context of Computational Expense and Structural Quality

Truncation of the Energy Expansion at Either Two-Body or Three-Body Terms

Expansion Truncation Relative Energy Time Speed-Up –

Two-body* 0.0 847 51.7� –

Three-body 0.0 43,850 1.0� –

Based on Truncation at Two-Body terms, Residue Distance Cutoffs from 1 to 6 Å Are Evaluated

Residue Cutoff (Å) Relative Energy Time Speed-op Overall

1 32.6 137 5.9� 320.0�
2* 0.2 304 2.7� 144.2�
3 0.0 420 1.9� 104.4�
6 0.0 813 1.0� 53.9�
Based on Truncation at Two-Body Energy Terms and a 2 Å Residue Cutoff, Pruning Thresholds Are Evaluated

Pruning Threshold Relative Energy Time Speed-Up Overall

5 0.2 43 7.1� 1019.8�
15 0.2 113 2.7� 388.1�
25* 0.2 142 2.1� 308.8�
No pruning 0.0 304 1.0� 144.2�
Based on Truncation at Two-Body Energy Terms, a 2 Å Residue Cutoff, and 25 kcal/mol Pruning Threshold, Cube Edge Lengths from 10 to 30 Å Are

Evaluated for Cube Optimization

Cube Size (Å) Relative Energy Time Speed-Up Overall

10* 0.2 40 3.6� 1096.3�
20 0.9 94 1.5� 466.5�
30 0.2 142 1.0� 308.8�
All tests used residues 27–125 of isoform 1 of the COCH protein. All relative potential energies (in kcal/mol) are compared to the global rotamer minimum of

the COCH protein as calculated when using no approximations. Times are wall clock times in seconds using a node with four GPUs. The individual and

overall speed-ups for each approximation are given. Criteria for evaluating residue distance cutoffs are described in the main text.

*The recommended choice for use with AMOEBA and the GK implicit solvent for each adjustable parameter.

Polarizable Protein Repacking
respectively, to give ni � nj permutations), and the distance
function (dist) returns the minimal pairwise atomic distance
given rotamer conformations rai and rbj . We tested a range of
cutoffs and found that 2 Å, when combined with truncation
at two-body energies, provides a 144.2� speed-up compared
to the original protocol while only increasing the energy rela-
tive to the global minimum by 0.2 kcal/mol (i.e., two solvent-
exposed side chains had different conformations) (Table 1).
Although 2 Å appears to be an overly aggressive cutoff at first
glance, evidence from our data set of protein models (Table
S4) shows structures still closely approach the global rotamer
minimum. We emphasize that AMOEBA/GK force-field en-
ergetics are still evaluatedwith a typical 12 Å pairwise atomic
cutoff, whereas the 2 Å residue cutoff is applied only in the
context of using Eq. 7 to define interacting residues of the
many-body energy expansion (see Figs. S1 and S2 for exam-
ples of applying Eq. 7).

The third approximation prunes rotamers and/or rotamer
pairs if their conformation is higher than the lowest energy
alternative plus a threshold

Eself

�
rai
�
> Eself

�
rbi
�þ threshold: (8)

A pruning threshold of 25 kcal/mol results in further
speed-up without compromising the quality of output struc-
tures (Table 1). Although pruning inequalities are not
rigorous, unlike the mathematically proven Goldstein elim-
inations (see Materials and Methods), they obviate calcu-
lating many pair energies to yield over a 3� speed-up.
Pruning did not result in any additional changes to rotamer
conformations as compared to the global minimum found
when using a two-body expansion and cutoff of 2 Å.

The final approximation uses a series of cube-shaped do-
mains defined by imposing a three-dimensional grid over
the protein, followed by sequential optimization of each
cube of the grid. This approximation is especially useful
for large protein domains that have an intractable number
of energetically closely spaced permutations even after
application of elimination criteria. By varying cube size
and cube overlap, we determined that a cube edge length
of 10 Å with no overlap optimized performance without de-
grading quality (Table 1). Cube optimization results in no
additional change in energy relative to the global minimum
found when using a two-body expansion and residue cutoff
of 2 Å (note that a 30 Å cube contains the whole COCH
domain and is a global optimization). Combining all four
optimal approximations results in a total speed-up of �3 or-
ders of magnitude.

We next implemented a parallelization approach that
combines PJ with GPU acceleration. As the number of no-
des is increased, our PJ message-passing parallelization al-
gorithm achieved a near-linear speed-up (Tables 2 and S5).
Offloading energy evaluations to OpenMM on a single node
equipped with a GPU (two Intel Xeon E5-2680v4 CPUs
Biophysical Journal 117, 602–612, August 6, 2019 607



TABLE 2 Energy Evaluation Timings for Global Side-Chain Optimization of ACTG1 Residues 6–375 and COCH Residues 27–

125 Using a Varying Number of GPUs

Number of Nodes Number of GPUs

Time for Energies (sec) Speed-Up (Relative to Using All CPU Cores)

ACTG1 COCH ACTG1 COCH

1 0 (CPUs only) 33,126 5505 1.0� 1.0�
1 1 2576 479 12.9� 11.5�
1 2 1277 251 25.9� 21.9�
1 4 656 142 50.5� 38.8�
2 8 336 76 98.6� 72.4�
4 16 175 43 189.3� 128.0�
Each node contains two Intel Xeon E5-2680v4 CPUs and four NVIDIA GTX 1080 TI GPUs.

Tollefson et al.
(Intel, Santa Clara, CA) and one NVIDIA GTX 1080 TI
GPU [Nvidia]) resulted in a 11.5-fold speed-up compared
to using the same node with no GPU (i.e., a single GPU
was 11.5� faster than parallelization over all 28 Intel
CPU cores) on the COCH protein domain. Testing paralle-
lization on a larger protein domain such as ACTG1 residues
6–375 demonstrated greater speed-ups relative to the
smaller COCH domain (e.g., a 189.3� speed-up for
ACTG1 using 16 GPUs, compared to 128.0� for COCH).
Our original CPU parallelized Java implementation of the
algorithm with no approximations (COCH protein domain
run on two Intel Xeon E5-2680v4 CPUs (Intel), three-
body expansion, 6 Å cutoff, and no pruning) required calcu-
lation of over 6 million energy terms and consumed 16.5
compute days on a node. By combining algorithm approxi-
mations, parallelization across four processes on one node
(i.e., PJ message passing) and GPU acceleration (1 GPU
per process, four GPUs total), our algorithm executes the
20,232 AMOEBA/GK energy terms in only 142 s.
Comparison of Amber99sb/GB and AMOEBA/GK
protein repacking

In ongoing work, we are performing AMOEBA free-energy
simulations of DVD variants to provide insights into
their pathogenic mechanisms. To illustrate the impact
of optimizing structures using AMOEBA/GK compared to
Amber99sb/generalized born (GB) before MD simulations,
we optimized a model of CDH23 containing residues 887–
1408 in both the Amber99sb/GB and AMOEBA/GK force
fields. We chose to analyze CDH23 887–1408 because of
its prevalence in hearing loss; CDH23 has more than 2000
missense variants in the DVD. Optimizing the CDH23 model
with Amber99sb/GB resulted in 31 side chains changing
from their original conformation, whereas optimizing with
AMOEBA/GK resulted in 54 rotamer changes (Fig. 3).
The extensive discrepancies between CDH23 conformations
that result from repacking under AMOEBA/GK and Am-
ber99sb/GB are consistent with our extensive prior structural
refinement comparisons (28–35). Thus, because our focus is
on using AMOEBA for downstream free-energy simulations,
further Amber99sb/GB repacking was not justified.
608 Biophysical Journal 117, 602–612, August 6, 2019
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We applied our accelerated repacking algorithm to a set of
473 deafness-associated protein models. For both starting
homology models and refined structures, quality was as-
sessed using the heuristic MolProbity algorithm, which ex-
amines steric clashes, poor side-chain rotamers, and amino
acid backbone favorability (e.g., f/j dihedral angle combi-
nations). The MolProbity score is calibrated to predict the
quality of x-ray diffraction data that is expected to have pro-
duced the assessed structure (i.e., a MolProbity score of 1.5
corresponds to an expected x-ray resolution of 1.5 Å, where
lower values indicate higher quality). On average, we
reduced steric clashes per 1000 atoms from 25.1 to 0.03,
decreased Ramachandran outliers from 2.03 to 0.94%, and
decreased the percentage of poor side-chain rotamers from
2.3 to 1.6% (Table 3). Overall, the repacking protocol
improved the mean MolProbity score from 2.16 to 1.04,
demonstrating that our structures are consistent with protein
structural models near-atomic resolution (Fig. 4). The
average AMOEBA force-field energy for the data set
when locally optimized to RMS gradient convergence
criteria of 0.8 kcal/mol/Å was �15,342 kcal/mol. After
global side-chain optimization, the average AMOEBA en-
ergy for the data set was reduced to �16,287 kcal/mol, a
reduction of 945 kcal/mol from the structures that were
minimized to an RMS gradient criterion of 0.8 kcal/mol/Å
without rotamer optimization. Although local minimization
without rotamer optimization dramatically reduces atomic
clashes, the number of poor rotamers increased from 2.3
to 2.9% and motivates the need for side-chain repacking.
The overall repacking procedure required just 71 GPU
days for all 473 OtoProtein structures. The complete list
of statistics for each model is available in Table S6. Based
on these results, GPU-accelerated repacking with the polar-
izable AMOEBA force field could potentially be used to
improve the quality of large protein structure databases
with only a modest investment in hardware.

To assess the impact of our optimization algorithm as a
function of protein features, we compared both final
MolProbity score and MolProbity improvement (i.e., the
change in MolProbity score due to refinement) with
sequence identity to the homology template using linear



FIGURE 3 CDH23 residues 887–1408 opti-

mized using (a) Amber99sb/GB and (b)

AMOEBA/GK. Side chains with changes in

conformation relative to the original homology

model are shown as space-filling spheres. When

optimized with the fixed-charge Amber99sb/GB

force field, 31 side-chain rotamers changed confor-

mation, whereas repacking with AMOEBA/GK re-

sulted in 54 side-chain rotamers changing. To see

this figure in color, go online.

Polarizable Protein Repacking
regression (Figs. S3 and S4). With R2 values of only 0.0035
and 0.0256, respectively, neither the MolProbity score nor
MolProbity improvement were strongly correlated with
sequence identity to the homology model. Similarly, neither
MolProbity score nor MolProbity improvement were
strongly correlated with the number of residues in the pro-
tein structure based on R2 values of only 0.0119 and
0.0449, respectively (Figs. S5 and S6). We conclude that
the favorable improvements afforded by the repacking
approach described here are largely independent of both
sequence identity to the homology model and protein size.

We demonstrate the impact of repacking protein models
on variant interpretation through modeling of a pathogenic
variant that causes Usher syndrome. Buried in a domain
of the CDH23 structure shown in Fig. 3 is valine residue
1090, which causes Usher syndrome when mutated to
isoleucine (Fig. 5 a). In the unrefined model of CDH23, a
neighboring valine (position 1039) is oriented away from
residue 1090 (Fig. 5 b). Optimization using the repacking
approach presented here results in the b sheets surrounding
Val1090 lengthening and the Val1039 rotamer closely ap-
proaching Val1090 (Fig. 5 c). When isoleucine is introduced
at position 1090 in the unoptimized structure, Ile1090 and
Val1039 do not clash, and accommodation of the variant ap-
pears possible. However, when Ile1090 is introduced in the
AMOEBA/GK repacked structure, Val1039 and Ile1090
clash, indicating that the variant (known to be pathogenic)
is consistent with destabilization of the CDH23 fold.
Despite the qualitative nature of this analysis, it illustrates
TABLE 3 Average Refinement Statistics for the OtoProtein Structu

Database Clash Score Poor Rotamers Ramachan

Homology 25.09 2.33% 91

Minimization 2.75 2.92% 91

OtoProtein 0.03 1.60% 93

The data set contains 473 structures.
that without repacking, downstream variant free-energy
simulations based on homology models will generally
need to reach longer timescales to accommodate structural
relaxations.

The OtoProtein Structure Database has been incorporated
into the DVD to provide public availability of the models in
combination with the exhaustive DVD genetic information.
The combination of OtoProtein structural information with
existingDVDdata (e.g.,minor allele frequency, pathogenicity
assessment, etc.) provides a powerful platform for the auditory
research community. For example, it is now possible to visu-
alize clustering of pathogenicvariations in specificdomains of
a protein and to examine structural features that correlatewith
pathogenicity (Fig. 6). Additionally, more than 60,000
variant-specific structures are available publicly (https://
github.com/mrkeeney/deafness-variant-structures) and are
currently being incorporated into the DVD.
DISCUSSION

Structural coverage of the human proteome has increased
rapidly since the early 1990s, with �40% of the human pro-
teome now having comparative models based on templates
with a sequence identity of at least 30% (9). Here, we
applied a GPU-accelerated polarizable protein repacking
algorithm to the deafness-associated proteome defined by
homology models of any sequence identity (average
sequence identity of the data set is 41.7%). We found that
38.8% of the deafness-associated proteome could be
re Database

dran Favored Ramachandran Outliers MolProbity Score

.95% 2.03 2.16

.85% 1.87 1.66

.48% 0.94 1.04
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FIGURE 4 Histogram of MolProbity scores for the OtoProtein Structure

Database before and after optimization. Before optimization (red), the 473

structures have an average MolProbity score of 2.16, whereas after optimi-

zation (blue), the data set has an average MolProbity score of 1.04 (i.e., ap-

proaching the quality expected of atomic resolution x-ray structures). To

see this figure in color, go online.
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modeled structurally, comparable to structural coverage of
the entire human proteome. The 473 structural models we
collected and optimized span 145 deafness-associated
genes. These structures had an initial average MolProbity
score of 2.16, but after repacking, the average score
improved to approximately atomic resolution at 1.04. These
calculations required just 71 GPU days. In addition to
covering nearly 40% of OtoSCOPE with atomic resolution
structural models, our OtoProtein database provides struc-
tural coverage for 22,809 of the 61,971 missense variations
in the DVD (16,203 are VUSs, 1931 are LP/pathogenic, and
610 Biophysical Journal 117, 602–612, August 6, 2019
4675 are B/LB). These models are publicly available in the
DVD through the NGL protein viewer (48). When inte-
grated with information on patient missense variations
available through the DVD, the OtoProtein database repre-
sents a unique tool for understanding deafness genetics from
a structural perspective. Building on the OtoProtein struc-
tural platform, we have created more than 60,000 models
of DVD missense variations, which are publicly available.
Future work will simulate these missense variations to quan-
tify thermodynamic free-energy differences and thereby
provide insight into how they disrupt protein folding and/
or alter protein-protein interactions.

The GPU-accelerated protein repacking algorithm is
freely available to the research community through the
FFX program, which may be useful to refine other structural
data sets outside of the deafness domain. The algorithm is
designed for use with advanced polarizable force fields
and features an energy expansion up to three-body interac-
tions. Computational speed is achieved using an architecture
based on parallelization across an arbitrary number of
compute nodes and GPUs and, together with algorithm op-
timizations, provides multiple orders of magnitude speed-up
without compromising structural quality. Although polariz-
able repacking algorithms were previously not efficient
enough to apply to large-scale data sets, this work opens
the door to their application to all protein structures in the
human proteome. For example, the Swiss Model Repository
(SMR) lists 45,083 homology models with an average resi-
due length of 232 amino acids (9). Structures of this size
(i.e., �230 residues) require only �260 s to repack using
our algorithm on a node with four GPUs (e.g., repacking
our DSSP 88–318 model of 230 residues took 262 s of
wall clock time). Based on the average model size in the
SMR, we estimate that repacking all SMR human proteins
FIGURE 5 CDH23 structure showing the patho-

genic DVD variant Val 1090 Ile. (a) The wild-type

CDH23 model for residues 887–1408 is shown,

with Val 1090 highlighted by a red box. (b) Shown

in spacefill format are Val 1039 and Val 1090. (c)

After AMOEBA/GK repacking, the conformation

of Val 1039 changes relative to the variant. (d) A

clash is present between Val 1039 and the Ile

1090 variant, which is consistent with altered

folding stability and classification as disease

causing. This example illustrates that without re-

packing, downstream free-energy simulation time-

scales must (in general) increase to allow relaxation

of nonoptimal side-chain conformations. To see

this figure in color, go online.



FIGURE 6 Incorporation of OtoProtein structures into the DVD. All models developed with the GPU-accelerated AMOEBA/GK protein repacking algo-

rithm are publicly available in the DVD, where they can be viewed in combination with genomic and variant data. To see this figure in color, go online.

Polarizable Protein Repacking
would require only�140 days on a node equipped with four
GPUs (i.e., �2 weeks on our compute cluster, which has 10
such nodes).

A limitation of this repacking algorithm is its reliance on
existing homology models to serve as initial coordinates.
Although we have demonstrated this improves the quality
of existing structural models, it does not provide coverage
of proteins through ab initio or de novo techniques. This
limitation is the subject of ongoing work based on GPU-
accelerated biased sampling methods, which we are using
to expand structural coverage of the OtoSCOPE proteome.
Despite this limitation, the OtoProtein structural informa-
tion is already being used to gain insight into the protein
phenotype of missense variants associated with deafness.
SUPPORTING MATERIAL

Supporting Material can be found online at https://doi.org/10.1016/j.bpj.
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