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Abstract

The correct interpretation of hemoglobin (Hb) to identify anemia requires adjusting for altitude 

and smoking. Current adjustments were derived using data collected before 1985, from low-

income preschool-aged children (PSC) in the United States and indigenous men in Peru for 

altitude, and from White women of reproductive age (WRA) in the United States for smoking. 

Given the oldness and limited representativeness of these data, we reexamined associations 

between Hb and altitude and/or smoking using 13 population-based surveys and 1 cohort study 

each conducted after 2000. All WHO regions except South-East Asia were represented. The 

dataset included 68,193 observations among PSC (6−59 months) and nonpregnant WRA (15−49 

years) with data on Hb and altitude (−28 to 4000 m), and 19,826 observations among WRA with 

data on Hb and smoking (status or daily cigarette quantity). Generalized linear models were used 

to assess the robustness of associations under varying conditions, including controlling for 

inflammation-corrected iron and vitamin A deficiency. Our study confirms that Hb should be 

adjusted for altitude and/or smoking; these adjustments are additive. However, recommendations 

for Hb adjustment likely need updating. Notably, current recommendations may underadjust Hb 

Address for correspondence: Andrea J. Sharma, Division of Nutrition, Physical Activity, and Obesity, National Center for Chronic 
Disease Prevention and Health Promotion, International Micronutrient Malnutrition Prevention and Control Program (IMMPaCt), 
Centers for Disease Control and Prevention, 4770 Buford Hwy NE, MS S107-5, Atlanta, GA 30341. AJSharma@cdc.gov.
Author contributions
All authors (A.J.S., O.Y.A., Z.M., and P.S.S.) had substantial contributions to the conception or design of the work; or the acquisition, 
analysis, or interpretation of data for the work; contributed to the drafting of the work or revising it critically for important intellectual 
content; have given final approval of the version to be published; and agree to be accountable for all aspects of the work in ensuring 
that questions related to the accuracy or the integrity of any part of the work are appropriately investigated and resolved.

Publisher's Disclaimer: Disclaimer
Publisher's Disclaimer: The findings and conclusions in this report are those of the authors and do not necessarily represent the 
official position of the Centers for Disease Control and Prevention.

This article has been contributed to by US Government employees and their work is in the public domain in the USA.

Competing interests
As part of their routine work duties, the authors provide technical assistance to countries in the design, training, implementation, data 
management, analysis, and dissemination of public health population-based surveys, including collection of Hb and anemia.

Supporting information
Additional supporting information may be found in the online version of this article.

HHS Public Access
Author manuscript
Ann N Y Acad Sci. Author manuscript; available in PMC 2020 February 01.

Published in final edited form as:
Ann N Y Acad Sci. 2019 August ; 1450(1): 190–203. doi:10.1111/nyas.14167.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for light smokers and for those residing at lower altitudes and overadjust Hb for those residing at 

higher altitudes.
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Introduction

Hemoglobin (Hb) is the red, iron-containing chromoprotein within a circulating mature 

erythrocyte that has the primary physiologic function of transporting oxygen to tissues and 

plays a role in carbon dioxide transport. Anemia, a common global health problem,1 is 

defined by having an Hb concentration lower than normal. It has been well established that 

normal Hb concentrations vary with age, sex, and at different stages of pregnancy. Hb 

cutoffs to define anemia by age, sex, and trimester of pregnancy have remained relatively 

unchanged since 1968.2

Exposure to chronic hypoxia is also known to increase erythropoiesis.3 The partial pressure 

of oxygen in the atmosphere decreases with altitude (height above mean sea level, 0 m), thus 

Hb concentration increases with altitude as an adaptive response to lower oxygen saturation 

of the blood. Cigarette smoking is also known to cause an increase in Hb concentration, 

likely mediated by exposure to carbon monoxide, which markedly reduces oxygen-carrying 

capacity.4,5 To compensate for decreased oxygen delivery, smokers maintain higher Hb 

concentrations relative to nonsmokers. The increase in Hb is positively associated with the 

number of cigarettes smoked per day.6 Because of these adaptive increases in Hb, the correct 

interpretation of Hb concentration to identify anemia requires adjusting for these factors. In 

2001, WHO UNICEF UNU established Hb concentration cutoffs to define anemia, which 

also included adjustments needed to take into account altitude and smoking.7

Adjustments for altitude were published in 1989.8 Based on data from the Centers for 

Disease Control and Prevention (CDC), Pediatric Nutrition Surveillance System (PedNSS), 

and data from Hurtado et al.,9 the adjustment for altitude is based on the equation:

Hb−adjustment (g/dL) = − 0.032 × (altitude × 0.0032808) + 0.022 × (altitude × 0.0032808)2 

where the adjustment is the value added to the Hb cutoff defining anemia, or subtracted from 

an individual’s observed Hb concentration using standard cutoffs to define anemia.10,11 

PedNSS data were from low-income children, aged 2−4 years (predominately White 

people), with little to no iron deficiency (ID), enrolled in public health programs from 1974 

to the mid-1980s. Children resided at altitudes ranging from <900 to 2150 m above sea level.
8 Higher altitude adjustments were derived from Hurtado’s 1945 publication that assessed 

healthy, indigenous men, 19−48 years of age, living at 3730–4540 m in Peru and men living 

at sea level in Peru. Hurtado also included data from previous publications in the 1930s from 

Denver (1500 m), Chile (5335 m), and the United Kingdom (sea level).9 A study of 469 

children aged 6−59 months with no evidence of iron or zinc deficiency, residing at 0−3400 
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m in Ecuador, confirmed similar adjustments.12 Refer to Figure 1 for a summary of 

equations for Hb adjustment for altitude based on these publications and the current WHO 

recommended adjustments.

Smoking adjustments, published in 1990, were derived from data among White women aged 

18−44 years in the United States participating in the Second National Health and Nutrition 

Examination Survey (NHANES II, 1976−1980).6 Smokers, defined as having ever smoked 

more than 100 cigarettes and being a current cigarette smoker at the time of the interview, 

were compared with never smokers and adjustments categorized according to standard 

cigarette pack size found in the United States (i.e., 20 cigarettes/pack). Smoking adjustments 

are the same for all population groups (e.g., sex, age, and race). Note, adjustments for 

altitude and smoking are additive such that a smoker living at a high altitude would have Hb 

adjusted for both altitude and smoking.

Given the oldness and limited representativeness of data (i.e., geographic, age, and race) 

used to establish existing adjustments as well as the advancement of scientific understanding 

of biological aspects affecting Hb,13 there is a need to reevaluate guidance on Hb 

adjustments for altitude and smoking. Our objective was to examine the association between 

Hb and altitude and/or smoking among diverse population groups using more recent (since 

2000), multinational data in an effort to evaluate current WHO recommendations for 

adjusting Hb for altitude and smoking.

Methods

Data source and study population

Data for this study were primarily drawn from the Biomarkers Reflecting Inflammation and 

Nutritional Determinants of Anemia (BRINDA) project (www.BRINDA-nutrition.org), a 

multiagency, multi-country collaboration formed in 2012 as an effort to improve 

micronutrient assessment and anemia characterization. BRINDA includes datasets from 

nationally and/or regionally representative household nutrition surveys conducted after 2000 

with similar sampling and data collection methodologies that have been described in detail 

elsewhere.14,15 We used 12 out of 25 surveys (representing 11 countries) that reported data 

on altitude and/or smoking behaviors. Two additional data sources were also included to 

increase observations at altitudes >2500 m. This included data from the Guatemalan Sistema 
de Vigilancia Epidemiológicade Salud y Nutrición (SIVESNU, 2013), nationally 

representative integrated nutrition and maternal child health surveillance system with 

altitudes up to 3000 m, and the Nutricion, Immunologia, y Diarrea Infantil study 

(2013−2015) in El Alto, Bolivia (4000 m), a research study where the primary aim was to 

assess the effect of global nutritional status on rotavirus vaccine response.16 All data sources 

included a measure of Hb, iron, and/or vitamin A (VA) status as well as biomarkers of 

inflammation (C-reactive protein (CRP) and/or alpha-1 acid glycoprotein (AGP)). All 

subjects with data on Hb, age, and either altitude or smoking status were eligible. Analyses 

were restricted to preschool-aged children (PSC) aged 6−59 months for analysis of altitude, 

and women of reproductive age (WRA) aged 15−49 years for analysis of altitude and 

smoking. We did not examine infants <6 months of age because data were scarce in our 

dataset, and there remains uncertainty around the appropriate cutoff to define anemia in this 
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age group.17 Women known to be pregnant were excluded. A summary of the 15 surveys 

included in the analysis can be found in Table 1. In total, our multinational dataset included 

68,193 observations among PSC and WRA with data on Hb and altitude, and 19,826 

observations among WRA with data on Hb and smoking. All data were deidentified and 

each survey had appropriate prior ethical approval, thus this study was considered nonhuman 

subjects research and exempt from Institutional l Review Board review.

Variables

Hb concentrations were measured at the time of blood collection using point-of-care 

photometers (HemoCue® all surveys, except in Georgia, which used HumaMeter) or by 

Beckman Coulter MAXM hematology flow cytometer in the United States. Anemia was 

considered present when Hb <110 g/L for PSC and Hb <120 g/L for WRA after adjusting 

for altitude and smoking (subtracting indicated adjustment from measured Hb). Altitude, in 

meters (m), was reported as a continuous variable except for Laos (altitude coded as 999, 

1125, and 1251 m), the United Kingdom (altitude coded as 80 m for all subjects based on 

the average altitude of the 10 most populous areas18), and Georgia (altitude reported as 

<1000, 1000−1249, 1250−1749, and 1750−2249 m, but recoded based on average altitude in 

the cluster19). Method for determining altitude was typically at the cluster level using 

topographic maps, GIS data, or handheld GIS devices (more common in surveys after 2010). 

Smoking status was reported as smoker or nonsmoker. A number of cigarettes smoked per 

day were coded as a continuous variable. Cigarettes represent combustible tobacco products, 

not chewing tobacco or vaping products. Duration of smoking was not available in any 

survey. Age was a continuous variable coded in months for PSC, and years for WRA. The 

survey was a categorical variable.

Presence of ID was determined preferentially by serum ferritin (SF; <12 μg/L for PSC; <15 

μg/L for WRA).20 If SF was unavailable, the ID was determined using soluble transferrin 

receptor (sTfR; >8.3 mg/L based on the Ramco method cutoff,21 for both PSC and WRA) of 

those categorized with ID, <5% were based on sTfR. VA deficiency (VAD) was considered 

present if either serum retinol (SR) or retinol binding protein (RBP) was low (SR or RBP 

<0.70 μmol/L for PSC; SR or RBP <1.05 μmol/L for WRA).22 Indicators of iron and VA 

status were assessed with and without correcting for inflammation as recommended23 and 

described in detail elsewhere.24 Briefly, the corrected biomarker value was calculated by 

subtracting out (e.g., SF) or adding back (e.g., RBP) the inflammation “influence” of CRP 

and/or AGP using a linear regression approach. Specifically, we corrected SF for CRP 

and/or AGP (depending on indicator availability) among PSC and WRA; sTfR was corrected 

for AGP among PSC and WRA; and SR and RBP were corrected for CRP and/or AGP for 

PSC only. BRINDA regression corrections for inflammation for each of the nutritional 

biomarkers were conducted separately for each survey. Assay methods used to measure SF, 

sTfR, SR, RBP, CRP, and AGP have been reported elsewhere.14,16,25

Statistical analysis

We began by examining the association between Hb and altitude with a series of generalized 

linear models (GLMs) to assess robustness of the association under varying conditions. First, 

we assessed whether altitude (continuous) had a nonlinear association with Hb as well as 
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effect modification by population group and sex (PSC only). Second, because Hb 

(uncorrected) and altitude were correlated with ID (PSC: r = −0.16, P < 0.0001 and r = 0.05, 

P < 0.0001; WRA: r = −0.26, P < 0.001 and r = −0.02, P < 0.001, respectively) and VAD 

(PSC: r = −0.06, P < 0.0001 and r = −0.04, P < 0.0001; WRA: r = −0.07, P < 0.0001 and r = 

0.02, P = 0.03, respectively), we examined the independent association between Hb and 

altitude by adjusting models for ID and VAD (biomarkers examined both uncorrected or 

corrected for inflammation). Third, we restricted the study sample only to those with no ID 

and no VAD (biomarkers corrected for inflammation). We refer to this group as “healthy” 

and assumed that this group may be less likely to have another micronutrient deficiencies 

that are correlated with ID or VAD. We considered other indicators of health status, 

including wasting (weight-for-height Z-score <−2) among PSC or presence of malaria, but 

after excluding those with ID or VAD, we found few additional cases of wasting (<100) and 

only one survey (Malawi) with data on ID and VAD included data on malaria based on rapid 

test kit. Finally, we conducted several sensitivity analyses to assess the robustness of results. 

We examined associations where (1) we excluded from the “healthy” group any observations 

with evidence of wasting (PSC) or malaria; (2) we excluded surveys where altitude was 

approximated (i.e., United Kingdom, Laos, and Georgia); (3) ID was defined using SF only; 

and (4) we excluded Bolivia data as this was not a population-based survey. All models 

included (1) age (in months for PSC and years for WRA) because Hb was correlated with 

age (PSC: r = 0.29, P < 0.001; WRA: r = −0.05, P < 0.0001) and altitude (PSC: r = −0.06, P 
< 0.001; WRA: r = −0.02, P < 0.0001) in these data due to the population selection criteria 

(Bolivia at 4000 m, in particular, includes younger PSC and WRA) and(2) survey (i.e., 

country) to account for potential unmeasured confounding associated with each location and 

to account for the underlying difference in mean Hb associated with each location. For each 

model, we report the adjustment equation and proportion of Hb variance explained (R2). The 

model adjusting for ID and VAD (biomarkers corrected for inflammation) was considered 

the best model to estimate the independent association between altitude and Hb and used as 

the proposed equation for estimating cutoffs, which were calculated for each 500-m increase 

in altitude. We additionally examined survey-specific adjustments among surveys that 

covered a range of altitude by analyzing the model stratified by the survey.

Among surveys that included a marker of erythropoiesis (i.e., sTfR), we assessed whether 

those identified as having anemia after applying the new proposed equations also had 

evidence of increased erythropoiesis. We categorized Hb into five groups—severe, moderate 

and mild anemia and two groups of normal Hb split to be approximately equal in sample 

size. We determined whether mean sTfr was significantly elevated among those identified as 

with anemia compared with the normal Hb groups. sTfR was examined both uncorrected 

and corrected for inflammation.

Mean Hb concentration for smokers and non-smokers was estimated for each survey. We 

used GLM to estimate the overall means and adjusted mean difference in Hb between 

smokers and non-smokers controlling for the survey, and without and with adjusting Hb for 

altitude using the new equation for WRA. We examined the association between smoking 

and Hb with smoking categorized as smoker or nonsmoker or with smoking assessed as the 

number of cigarettes smoked per day. Similar to altitude, we used GLM to assess 

nonlinearity (number of cigarettes smoked per day), effect modification by altitude 
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(continuous), and the association between smoking and Hb, adjusted for ID. Hb 

(uncorrected) and smoking (number of cigarettes per day) were correlated with ID (WRA: r 
= −0.19, P < 0.001 and r = 0.03, P = 0.006, respectively). We did not include VAD because 

the availability of VAD data was limited among surveys that also included data on smoking; 

furthermore, the prevalence of VAD was low (<2%) and was not associated with smoking (P 
= 0.7). We additionally examined associations restricted to WRA considered “healthy” (no 

ID). For sensitivity analysis, we examined associations where ID was defined using SF only. 

All models included age, which was also correlated with cigarette number (r = 0.13, P < 

0.0001) and survey to account for potential unmeasured confounding associated with each 

location and to account for the underlying difference in mean Hb associated with each 

location. For each model, we report the adjustment for smoking and the proportion of Hb 

variance explained (R2). The model adjusting for ID (biomarkers corrected for 

inflammation) was considered the best model to estimate the independent association 

between smoking and Hb and used as the proposed adjustments for smoking. Among 

surveys that included a marker of erythropoiesis (i.e., sTfR), we assessed whether those 

identified as having anemia, after applying the new proposed equations for smoking and 

altitude, also had evidence of increased erythropoiesis.

In a post-hoc analysis, we examined models that included weight-for-length/height Z-score 

(WFH-Z) among children or body mass index (BMI) among women. While these measures 

were weakly correlated with Hb (PSC, r = 0.07; WRA, r = 0.03; P < 0.0001 for both), 

altitude (PSC, P = 0.74; WRA, r = −0.02, P < 0.0001), and cigarette number (WRA, r = 

0.05, P < 0.0001), their inclusion had no change on total R2 or the Hb adjustments for 

altitude or smoking. To maximize analytic sample size and model parsimony, we did not 

include WFH-Z or BMI in final models.

All analyses were conducted with SAS 9.4 with statistical significance considered at P < 

0.05 for main effects and P < 0.15 for interactions. Bolivia included some subjects with 

repeated measures of Hb (185 children and 231 WRA) collected at visits about 7 months 

apart. Among the PSC, 78 also had indicators of both ID and VAD measured at the second 

visit (no repeated ID or VAD measures among WRA). We retained repeated measures in our 

analyses without controlling for correlated data because these subjects accounted for <0.7% 

of all observations for any model. We did examine crude models using generalized 

estimating equations, specifying an exchangeable working correlation matrix to account for 

correlated data, and found no meaningful differences in effect estimates or statistical 

significance. Survey weights were not applied to analyses examining associations between 

Hb and altitude or smoking since the intent was to assess the biological association among 

the study sample. Once the regression coefficients were calculated, we adjusted for complex 

survey design in later applications of the data. We assessed differences in the population 

prevalence of anemia among the BRINDA surveys using the new proposed adjustments for 

altitude (based on equations) and smoking (based on equation for number of cigarettes, if 

number unknown then adjustment for a smoker, amount unknown applied) compared with 

the use of existing adjustments (WHO cut-points and/or 1989 MMWR equation). When 

estimating the population prevalence of anemia for each survey (except Bolivia, which was 

not a population-based survey), we accounted for complex survey design by using the Taylor 

Sharma et al. Page 6

Ann N Y Acad Sci. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



linearization method to obtain an unbiased estimate that incorporates the original sampling 

weights, strata, and cluster (as applicable).

Results

Hb and altitude

There were 31,967 observations (from 12 countries) for PSC and 36,226 observations (from 

13 countries) for WRA with data to assess Hb and altitude. However, data were relatively 

sparse at altitudes below sea level (0 m) and above 3000 m (Table S1, online only). We 

tested and confirmed effect modification by population group (P < 0.0001) and a statistically 

significant quadratic term for altitude among each population group (PSC, P = 0.0004; 

WRA, P = 0.01). We found no effect modification by sex among PSC (P > 0.75). All 

subsequent analyses included a quadratic term for altitude and examined PSC and WRA 

separately.

We report variation in sample size and in age for PSC and WRA and anemia prevalence for 

each survey across select models assessing altitude in Table S2 (online only). Not all surveys 

contribute data to every model. Mean age tended to be slightly older among PSC and WRA 

with data on ID and VAD or who were categorized as healthy. Among PSC, 52% were males 

(data not shown). Prevalence of anemia was generally lower among PSC with data on ID 

and VAD or who were categorized as healthy but varied among WRA with data on ID and 

VAD or who were categorized as healthy.

Adjustment equations and R2 for each model are reported in Table S3 (online only) and 

visualized in Figure 2. Across all models, the proportion of Hb variance explained by 

models was higher among WRA. All models, including sensitivity analyses, had a similar fit 

with slightly more variation among WRA. Results were similar when models 1−3 were 

analyzed with the same subjects (n = 12,887 PSC; n = 13,889 WRA; data not shown). Hb 

adjustments for each 500-m increase in altitude are reported in Table 2. Adjustment criteria 

according to WHO cutoffs and the 1989 CDC equation are also provided for comparison. 

Survey-specific associations are visualized in Figure S1 (online only) and adjustments are 

provided in Table S4 (online only). Using the new proposed equations, we confirmed that 

mean sTfR was highest among those categorized as having anemia (Fig. S2, online only).

Hb and smoking

Among WRA, there were 19,826 observations (from nine surveys) with data to assess Hb 

and smoking status; 14.3% were smokers. Women who reported being a current smoker 

were older than nonsmokers (31.8 (SD = 10.4) versus 29.6 (SD = 10.4) years old, P < 

0.0001). Eight surveys also included data on the number of cigarettes smoked per day (9724 

observations; 22.0% categorized as smokers). Among smokers, women smoked 6.5 (SD = 

7.9) cigarettes per day on average. The majority (63.9%) reported smoking 1−5 cigarettes 

per day. Only 3.7% reported smoking more than 20 cigarettes per day. Detailed smoking 

characteristics for each survey are reported in Table 3. We report variation in sample size 

and anemia prevalence for each survey across select models assessing smoking in Table S5 
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(online only). There were no meaningful differences in mean age. Prevalence of anemia was 

generally lower among WRA who were categorized as healthy (no ID).

Mean Hb concentration was generally higher among smokers compared with nonsmokers 

across all surveys although the difference was not always statistically significant (Fig. S3, 

online only). Overall, mean Hb was 3.3 g/L (95% CI 2.5−4.0) higher among smokers 

compared with nonsmokers controlling for the survey, and 2.3 g/L (95% CI 1.6−2.9) higher 

after additionally adjusting Hb for altitude.

We tested and confirmed a statistically significant quadratic term for cigarette quantity (P < 

0.001). All subsequent analyses examining cigarette quantity as a continuous variable 

included a quadratic term for cigarette quantity. There was no evidence of effect 

modification between altitude and smoking quantity (P value for interaction >0.2). 

Therefore, we used Hb adjusted for altitude (based on the proposed equation for WRA) so 

that any adjustments for smoking be considered independent of, and in addition to, altitude.

Smoking adjustments based on mean difference in Hb between smokers and nonsmokers 

and by cigarette quantity are reported in Table 4. Model R2 ranged from 0.09 to 0.20 with 

models controlling for ID having the highest R2 (data not shown); however, the calculated 

adjustments for smoking were the same regardless of model specification. We confirmed 

that mean sTfR was highest among those categorized with anemia after adjusting for altitude 

and smoking (Fig. S2, online only).

Comparison of proposed adjustments to current adjustments

We estimated the population prevalence of anemia for each survey applying the new 

proposed adjustments for altitude and smoking and compared prevalence with that estimated 

when applying either current WHO cut-points or 1989 MMWR equation for altitude or the 

WHO cut-points for smoking (PSC, Fig. 3; WRA, Fig. 4). Relative to current WHO cutoffs 

and 1989 MMWR equation, the population prevalence of anemia was generally higher using 

the proposed adjustments across all surveys for both PSC and WRA. Among population-

based surveys only adjusting for altitude (i.e., all PSC and WRA in Afghanistan, Azerbaijan, 

Laos, and Malawi), the increase in anemia prevalence across adjustment criteria ranged from 

3 to 22 (Laos) percentage points. Among population-based surveys only adjusting for 

smoking (i.e., WRA in the United Kingdom and the United States), the increase in anemia 

prevalence across adjustment criteria ranged from 1 to 2 (the United Kingdom) percentage 

points. In Bolivia, a research study where participants all resided at 4000 m, prevalence of 

anemia decreased with application of proposed adjustments by 15–25 percentage points. 

Application of the WHO cutoffs consistently resulted in lower prevalence of anemia relative 

to the 1989 MMWR equation because the WHO cutoff is equivalent to the adjustment at 

lowest altitude in the given altitude category range (e.g., an adjustment of 2 for 1000−1499 

m, an adjustment of 5 for 1500−1999 m, etc.), whereas the equation adjusts for the exact 

altitude reported.
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Discussion

It has been well established that Hb concentrations increase as an adaptive response to 

hypoxic conditions, such as residing at high altitudes and smoking cigarettes. The results of 

this multinational study among approximately 32,000 PSC and 35,000 nonpregnant WRA 

confirm the need to adjust Hb concentration for altitude and/or smoking for the correct 

interpretation of Hb concentration to identify anemia. Further, these adjustments are 

additive. However, our findings suggest that current WHO recommendations for the 

adjustment of Hb for altitude and/or smoking likely need updating. Notably, current 

recommendations may underadjust Hb for light smokers (<10 cigarettes per day) and for 

those residing at lower altitudes (<2000 m) and overadjust Hb for those residing at higher 

altitudes (>3000 m).

Our findings also demonstrate that the association between Hb and altitude is modified by 

population group (young children versus WRA), suggesting that adjustments to Hb may 

need to be tailored to different population groups. Population-specific adjustments increase 

the complexity of adjustments, particularly in the clinical context. The difference in the 

adjustment made to Hb at a given altitude between PSC and WRA in our study was no more 

than 3 g/L suggesting that common criteria for all population groups may be reasonable and 

more practical, but this needs confirmation. It should be noted that population surveys often 

sample participants from the same cluster and households, and some of the WRA could have 

been mothers or related to the PSC. Thus, our population groups are not entirely 

independent of each other. For Bolivia, women and children were enrolled as dyads. 

Additional data confirming associations between Hb and altitude among other population 

groups, including school-age children, pregnant women, men, and the elderly, as well as 

additional modeling determining the degree of misclassification in anemia status using a 

combined population-group criteria would assist with determining the appropriateness of 

one common criterion across all population groups.

We estimated the population prevalence of anemia using different criteria for adjusting Hb 

and found differences in anemia prevalence between the currently recommended WHO 

cutoffs and the direct equation (1989 MMWR). Thus, better guidance on the preferred 

adjustment method is warranted. Guidance should specify the utility of using cutoffs versus 

equations for clinical practice and for population-based surveys. Direct use of prediction 

equations gives a more exact adjustment of Hb concentration for altitude and/or smoking, 

but one has to balance this with ease of practical application and the technical capacity of the 

setting. Further, the current WHO recommendation describes the cutoff for altitude at a 

given altitude (e.g., 5 g/L at 1500 m).2 Clearer guidance is needed as to whether the 

adjustment is applied to all altitudes between cutoffs (e.g., Fig. 1: the 5 g/L adjustment is 

applied to 1500−1999 m) or whether the adjustment represents the midpoint and is applied 

to the surrounding altitudes (e.g., Fig. 1: the 5 g/L adjustment is applied to 1250−1749 m); 

the latter approach more closely resembles the adjustment based on the 1989 MMWR 

prediction equation.

Our study had several strengths. We were able to examine associations with Hb using 

population-based data (with the exception of Bolivia) from multiple countries; all WHO 
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Regions, except South East Asia, were represented. This enhanced our ability to examine Hb 

across a wide range of altitudes with data encompassing multiple racial and ethnic groups 

and levels of socioeconomic status. Similarly, with multicountry data, we were able to 

examine the additive effect of smoking across a wide range of altitudes and the associations 

with smoking account for heterogeneity in the smoke delivery (e.g., carbon monoxide) of 

local tobacco products.26 In addition, we were able to control for individual iron and VA 

deficiency. Micronutrient deficiencies are associated with Hb and may vary by altitude due 

to the context of location, including diet quality and composition. Controlling for 

micronutrient status permits the assessment of the independent contribution of altitude and 

smoking on Hb concentration. Our findings were robust across multiple model specifications 

and sensitivity analyses. Furthermore, erythropoietic activity is known to increase in 

response to low oxygen concentration due to low Hb and functional ID.27 We found that 

classification of anemia independent of altitude and/or smoking (i.e., adjusted using the new 

proposed equations) was associated with significantly higher levels of sTfR (a marker of 

erythropoiesis), indicating that those with anemia were correctly identified.

Our study has limitations. First, we were unable to explore whether the association between 

Hb and altitude or smoking is modified by race/ethnicity or other population groups (e.g., 

adolescents, men, and pregnancy) as these data are not currently harmonized across datasets. 

Second, data among individuals residing at altitudes above 3000 m were limited in our 

study. However, our finding that current WHO recommendations may overadjust Hb for 

those who reside at high altitudes has also been reported in a recent study of children 6−59 

months residing in Peru.28 In this paper, the regression equation resulted in altitude 

adjustments about 2−4 g/L lower than we report. Studies also report genetic or epigenetic 

adaptions to high-altitude hypoxia that may differ among indigenous populations residing in 

high-altitude Andean, Tibetan, and Ethiopian regions.29–31 The increase in Hb 

concentrations due to altitude has been shown to be higher in high-altitude Andean 

compared with high-altitude Tibetan and Ethiopian populations.30 Because ongoing debate 

remains whether adaptation to high altitude hypoxia varies by genetic descent and duration 

of residence, and our high-altitude data predominantly came from populations in the Andean 

region (Bolivia and Ecuador), our findings warrant confirmation in other high-altitude 

regions. In general, we observed the association between altitude and Hb to be similar across 

surveys among the two population groups examined. There also remains debate as to 

whether the threshold to define anemia (or polycythemia) based on health outcomes differs 

between those who reside at low and high altitudes.32,33 Our study was not designed to 

examine differences in Hb concentration and health outcomes by altitude. Third, smoking 

status and cigarette quantity were self-reported and there was no information on the duration 

of smoking. Self-reported smoking is known to be underreported,34,35 which may lead in an 

overestimate of adjustment at lower smoking levels of smoking. Less than 4% of women 

reported being heavy smokers (>20 cigarettes per day), thus additional research is likely 

needed to confirm the adjustment for this group. We also had no data on e-cigarette use. 

Fourth, some study subjects were missing data on key variables, such as inflammation-

corrected ID and VAD reducing sample size for models. Subjects with complete data tended 

to be older, and fewer children and more women were categorized with anemia, thus missing 

data may have introduced selection bias. However, associations and adjustments were 
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similar across models indicating the impact of selection bias may be minimal. Finally, our 

models accounted for less than half of the variation in Hb. It is possible that we have not 

controlled for all sources of confounding, including obstructive pulmonary diseases, 

exposure to air pollution, or the status of other micronutrients. Folate and B12, in addition to 

iron, are required for hematopoiesis and may be correlated with altitude due to diet quality 

and composition.

Anemia is prevalent worldwide. Findings from this analysis will inform the current review 

of global guidelines on the use of altitude and smoking−adjusted Hb concentrations for the 

assessment of anemia.
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Figure 1. 
Summary of previously published equations to adjust hemoglobin for altitude and current 

WHO adjustment valuesa.
aAdjustment is the amount added to the hemoglobin (Hb) cutoff defining anemia or 

subtracted from an individual’s observed hemoglobin level.
bBased on the equation Hb_adjustment (g/L) = 6.83 × EXP(0.000445 × altitude) +113.3 and 

reported as the difference between hemoglobin at a given altitude and hemoglobin at sea 

level (0 m). Hemoglobin was assessed up to 4540 m.9,12

cBased on the equation Hb_adjustment (g/L) = [(−0.032 × (altitude × 0.0032808) + 0.022 ×

(altitude × 0.0032808)2) × 10]. Hemoglobin was assessed up to approximately 2150 m.8

dBased on the equation Hb_adjustment (g/L) = 3.44 × EXP(0.000633 × altitude) + 116.9 and 

reported as the difference between hemoglobin at a given altitude and hemoglobin at sea 

level (0 m). Hb was assessed up to 3400 m.12

eWHO cutoffs shown with an X at each (altitude, Hb_adjustment) coordinate with the 

recommended Hb adjustment value shown above each X.7
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Figure 2. 
Hemoglobin adjustment for altitude for preschool-age children (PSC) and women of 

reproductive age (WRA) by model. Note: All models adjusted for age and the survey. ID and 

VAD biomarkers corrected for inflammation using BRINDA method.23,24
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Figure 3. 
Prevalence of anemia among preschool-aged children (6−59 months) based on different 

criteria to adjust for hemoglobin for altitude.* Note: *All adjustments subtracted from 

individual’s Hb concentration. Anemia defined as Hb < 110 g/L. **Prevalence weighted to 

be nationally representative, except for Bolivia, as it was not sampled to be a representative 

survey.
aWHO (2001) based on WHO recommended cutoffs.2

bMMWR (1989) based on the equation Hb_adjust_altitude (g/L) = [(−0.032 ×(altitude × 

0.0032808) + 0.022 (altitude × 0.0032808)2) ×10].8

cProposed adjustment, Hb_adjust_altitude (g/L) = (0.0048108 × altitude) + (0.0000004 × 

altitude2).
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Figure 4. 
Prevalence of anemia among women of reproductive age (15−49 years) based on different 

criteria to adjust for hemoglobin for altitude and smoking.* Note: *The United Kingdom 

and the United States adjusted for smoking only; Afghanistan, Azerbaijan, Bolivia, Laos, 

and Malawi adjusted for altitude only. All adjustments subtracted from the individual’s Hb 

concentration. Anemia defined as Hb < 120 g/L. **Prevalence weighted to be nationally 

representative, except for Bolivia, as it was not sampled to be a representative survey.
aWHO (2001) based on WHO recommended cutoffs for altitude and smoking.2

bMMWR (1989) based on the equation Hb_adjust_altitude (g/L) = [(−0.032 (altitude 

×0.0032808) + 0.022 × (altitude × 0.0032808)2) × 10] and the WHO recommended cutoffs 

for smoking.2,10

cProposed adjustments, Hb_adjust_altitude (g/L) (0. 0052792 × altitude2); Smoker, cigarette 

quantity known Hb_adjust_smoking (g/L) = (0.4459 ×cigarette_number)+(−0.007× 

cigarette_number2); Smoker, cigarette quantity unknown Hb_adjust_smoking (g/L) = 2.
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Table 2.

Proposed adjustments
a
 to hemoglobin (g/L) by 500-m increments of altitude by population group

Altitude (m)
WHO

cutoffs
b

MMWR 1989

equation
c

PSC
d

WRA
e

−50 to −1 0 0 0 0

0 0 0 0 0

1–499 0 0 1 1

500–999 0 1 4 4

1000–1499 2 2 7 7

1500–1999 5 5 10 10

2000–2499 8 10 13 13

2500–2999 13 15 16 17

3000–3499 19 22 20 20

3500–3999 27 29 24 24

4000–4499 35 38 28 28

a
Adjustment is amount (g/L) added to the hemoglobin cutoff defining anemia, or subtracted from an individual’s observed hemoglobin level.

b
WHO cutoffs published as the lowest altitude value in range (e.g., 1500 m for the 1500−1999 range).2

c
MMWR cutoffs calculated using Hb_adjustment (g/L) = [(−0.032 × (altitude × 0.0032808) + 0.022 × (altitude × 0.0032808)2) × 10], where 

altitude is based on the midpoint of altitude range (e.g., 1750 m for the 1500−1999 range).8,10

d
Proposed cutoffs calculated using Hb_adjust_altitude (g/L) = (0.0048108 × altitude) + (0.0000004 × altitude2), where altitude is based on the 

midpoint of altitude range (e.g., 250 m for the 1−499 range).

e
Proposed cutoffs calculated using Hb_adjust_altitude (g/L) = (0.0052792 × altitude) + (0.0000003 × altitude2), where altitude is based on the 

midpoint of altitude range (e.g., 250 m for the 1−499 range).

Note: Current WHO recommendations and adjustments based on the MMWR 1989 equation provided for comparison.

PSC, preschool-aged children (6−59 months); WRA, women of reproductive age (15−49 years).
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Table 4.

Proposed adjustments
a
 to hemoglobin for smoking status and cigarettes per day

WHO adjustments (g/L)
b

Proposed Hb adjustment (g/L)
c

Smoker, quantity unknown 3 Smoker, quantity unknown 2

Cigarettes (packs) per day Cigarettes per day

 < 10 1
2 0 1–5 2

6–10 4

 10 − 19 1
2  to 1 3 11–15 5

16–20 6

 20–39 (1–2) 5 >20 7

 ≥40 (>2) 7

a
Adjustment is the amount added to the hemoglobin cutoff defining anemia, or subtracted from an individual’s observed hemoglobin level.

b
WHO cutoffs published as packs per day.2

c
Adjustments based on Hb adjustment (g/L) = (0.4565 × cigarette_number) + (−0.0078 × cigarette_number2), solved for the upper end of each 

interval (e.g., 5 for the 1−5 range). >20 solved using 30 cigarettes/day.

Note: Current WHO recommendations provided for comparison.
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