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Abstract

Importance: The use of existing data (real world data or prior trials) to design and analyze 

clinical studies has the potential to accelerate drug development processes and can contribute to 

rigorous examination of new treatments.

Objective: We discuss designs and interpretable metrics of bias and statistical efficiency of 

“externally controlled” trials (ECTs) and compare ECTs performance to randomized and single 

arm designs.

Setting: We specify an ECT design that leverages information from real world data (RWD) and 

prior clinical trials, to reduce bias associated with inter-study variations of the enrolled 

populations. We then used a collection of clinical studies in glioblastoma (GBM) and RWD from 

patients treated with the current standard of care to evaluate ECTs. Validation is based on a “leave 

one out” scheme, with iterative selection of a single arm from one of the studies, for which we 

estimate treatment effects using the remaining studies as external control. This produces 

interpretable and robust estimates on ECTs bias and type I errors.

Results: We developed a model-free approach to evaluate ECTs based on collections of clinical 

trials and RWD. For GBM we verified that inflated false positive error rates of standard single-arm 

trials can be considerably reduced (up to 30%) by using external control data.

Conclusions: The use of ECT designs in GBM, with adjustments for the clinical profiles of the 

enrolled patients, should be preferred to single arm studies with fixed efficacy thresholds extracted 

from published results on the current standard of care.
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Introduction

Randomized controlled trials (RCTs) have been the gold standard for clinical 

experimentation since the Medical Research Council trial of streptomycin for tuberculosis in 

19481. Randomization is the foundation for many statistical analyses and provides a method 

for limiting systematic bias related to patient selection and treatment assignment2. Indeed, 

many failures in phase III drug development may be attributed to overestimating treatment 

effects from previous early-stage uncontrolled trials3. Although RCTs reduce the risk of bias 

compared to single arm trials, they tend to require larger sample sizes to achieve the targeted 

power4, take longer to complete enrollment, and patients have typically a lower propensity 

to enroll into a RCT than a single arm trial5–7.

Many methods have been suggested as a compromise between uncontrolled trials and 

RCTs8–11. Recently, availability of data collected from electronic health records (EHR) at 

scale has increased the interest in using real-world data (RWD)12 as a “synthetic” or 

“external” control12–14. Additionally, data from prior clinical trials can be integrated in the 

design and analysis of single arm trials15 rather than using a single published estimate of the 

standard of care primary outcome distribution to specify a benchmark. Leveraging RWD and 

prior clinical trials has the potential for controlling for known prognostic factors that cause 

inter-trial variability of outcome distributions. This can reduce bias in single arms studies, 

and ultimately could lead to better decision making by sponsors and regulators.

In this manuscript, we illustrate the design and validation of an externally controlled trial 

(ECT) design to test for therapeutic impact on overall survival (OS) using both RWD and 

data from prior clinical trials for patients with newly diagnosed glioblastoma (GBM). We 

compare the ECT design to single arm trial designs and RCTs and show the benefits and 

limitations of the ECT approach.

Methods

General approach to design and evaluate ECTs

To design an ECT, estimate the sample size for a targeted power, and evaluate relevant 

operating characteristics, our approach was the following. First, define the patient population 

for the ECT (in our case GBM). Next, identify a set of prognostic factors associated with the 

outcome of interest. Finally, specify the control therapy and identify available datasets (trials 

and RWD) for the control treatment and extract relevant outcomes and patients’ 

characteristics.

As described below, to evaluate the ECT design, the control arm of each study is compared 

(using adjustment methods) to an external control, which is defined by the remaining 

available data for patients that received the same control treatment. In these comparisons the 

treatment effect is zero by construction, which facilitates interpretability and produces bias 

and variability summaries for ECT’s treatment effect estimates, and type I error rates 

estimates.
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If the ECT design maintains (approximately) the targeted type I error rate, we can then 

determine the sample size required for ECT, single arm trial and RCT designs for a targeted 

probability of treatment discovery at a pre-defined treatment effect.

The binary variable A indicates the assignment of a patient to the experimental treatment, A 
= 1, or to the control arm, A = 0, and Y denotes the outcome. We focus on binary endpoints, 

such as survival at 12 months from enrollment (OS12) and expand the discussion to time-to-

event outcomes in the Supplementary Material. The vector X indicates a set of pre-treatment 

patient characteristics. We evaluate whether characteristics X are sufficient to obtain (nearly) 

unbiased treatment effect estimates or not.

Externally Controlled Trial (ECT) design

The ECT is a single-arm clinical study that uses the trial data (experimental treatment) and 

external data (control) to conduct inference on treatment effects. More specifically, for a 

hypothetical randomized study, we estimate the unknown average treatment effect

TE = ∑
x

Pr(Y = 1|A = 1,   x − Pr(Y = 1|A = 0,   x)]   PrX x , (1)

which is a weighted average of the conditional outcome probabilities weighted with respect 

to a distribution PrX(x) of patients characteristics X. Possible definitions for PrX(x) used by 

existing adjustment methods are the distribution of patient characteristics X in the single arm 

study, PrSAT(x), or the distribution of X in the external (historical) control, PrHC(x). The 

unknown probabilities Pr(Y = 1|A, x) do not referee to a particulate parametric statistical 

model but are unknown model-free quantifies. We considered four adjustment methods, all 

based on the usual hypothesis of no unmeasured confounders16 to estimate the unknown 

average treatment effect TE (1), direct standardization, matching, inverse probability 

weighting and marginal structural methods16,17 (Supplementary Material).

Datasets

To develop an ECT design for newly diagnosed GBM, we used data from patients receiving 

standard temozolomide in combination with radiation (TMZ+RT) from both prior clinical 

trials and RWD (Table 1). Clinical trial data was from the Phase III AVAglio18 () trial and 

two phase II trials (PMID: 22120301 and )19,20. RWD was abstracted from patients 

undergoing treatment for newly diagnosed GBM at the Dana-Farber and UCLA, and a 

previously published RWD dataset21.

Model-free evaluation

We evaluated the ECT design by mimicking the comparison of an ineffective experimental 

arm to an external control. Hypothetical ECT experimental arms were generated from data 

of the TMZ+RT arm of one of the studies in Table 1 using the following model-free 

procedure. For each study, we iterated the following steps:
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a. We randomly selected n patients (without replacement) from the TMZ+RT arm 

of the study and use the clinical profiles X and outcomes Y of these patients as 

experimental arm of the ECT. Here n is the number of enrolled patients.

b. The TMZ+RT arms of the remaining 5 studies (Table 1) were used as external 

control.

c. We estimated the treatment effect TE comparing the experimental arm (step a) 

and the external control (step b) using one of the adjustment methods 

(Supplementary Material), and tested the null hypothesis of no-benefit, H0: TE ≤ 

0, at a targeted type I error rate of 10%.

We repeated steps (a-c) with different sets of n randomly selected patients. Here n is less or 

equal to the size of the TMZ+RT arm of each GBM study.

A similar model-free procedure allows one to evaluate the operating characteristics of ECTs 

in presence of positive treatment effects, by reclassifying in step (a) -randomly and with 

fixed probability-negative individual outcomes Y into positive outcomes. Section S1 of the 

supplementary material presents a detailed description of this procedure.

Comparison, ECT, single-arm and RCT designs

We compared the ECT to single-arm and RCT designs. We used the following criteria:

a. bias and variability of treatment effect estimates,

b. deviations of Type I error rates from targeted control of false positive results, and

c. the sample size to achieve a targeted power.

In a single arm trial, an estimate of the proportion πE of patients surviving, at a specific time 

point, say 12 months (OS-12), is compared to a historical estimate for the standard of care 

πHC, typically the result of a prior trial. Here πHC can be expressed as a weighted average of 

the OS-12 probability for a patient with profile X, which is averaged over the study-specific 

distribution PHC(X) of patient characteristics,

πHC = ∑
x

Pr(Y = 1|A = 0,   x)PHC x . (2)

Similarly, the parameter πE can be written as a weighted average of the probability Pr(Y = 1|

A = 1, x) over the distribution PSAT(X) of X in the single arm trial. If the distributions 

PrSAT(X) and PrHC(X) differs substantially, then πHC and πE are not comparable, treatment 

effect estimates can be biased, and type I error rates can deviate from the targeted value. If 

the patient’s prognostic profiles in the single arm study are favorable compared to the study 

used as benchmark, then the type I error probability tends to be above the targeted α-level, 

and vice versa. In the latter case the power decreases.

In an RCT, patients are randomized to the control and experimental arm, with patient 

characteristics -on average- equally distributed between arms, reducing the risk of bias 

compared to single arm trial designs.
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Results

Limitations of the single arm design

We illustrate the bias and type I error deviation associated with single arm trials using an 

example for a hypothetical ineffective experimental treatment in a disease with one known 

prognostic biomarker X. We assume, for each patient, identical outcome probabilities under 

the experimental and control treatment. Panel (A) of Figure 1 shows the difference (πE − 

πHC) when the prevalence of the biomarker varies between PSAT(X = 1) = 0.1 and 0.9 for 

different correlation levels between the outcome Y and the biomarker X. Even with a 

moderate association between the biomarker and the outcome, the differences between the 

distributions (PHC, PSAT) result in bias and departures from the intended 10% type I error 

rate (Panel (B) of Figure 1).

RT+TMZ in newly diagnosed GBM

The standard of care of RT+TMZ for newly diagnosed GBM was established in 2004 based 

on results from the EORTC-NCIC CE.322. Subsequently, nine additional trials enrolled 

patients on RT+TMZ control arms between 2005 and 2013 (Supplementary Table 1). The 

majority of single-arm studies used the reported results of EORTC-NCIC CE.3 as historical 

benchmark (Supplementary Table 1). Sample sizes of the RT+TMZ control arms in the 

RCTs varied between 1619 patients and 46318 patients. Supplementary Figure 1 shows 

reported Kaplan-Maier estimates, median OS, and OS-12 for the RT+TMZ arms. Point 

estimates for OS-12 varied between 0.56 and 0.81 across studies, and between 13.2 to 21.2 

months for median OS.

Prognostic variables

Through a literature review, we identified prognostic factors associated with survival in 

newly diagnosed GBM23–26. A Cox regression analysis, stratified by trial and treatment arm, 

was used to quantify association of covariates with OS (Table 2). On multi-variable analyses, 

age (HR 1.03, p<0.001), male gender (HR 1.15, p=0.012), KPS >80 (HR 0.78, p<0.001), 

gross total resection vs biopsy (HR 0.62, p<0.001), sub-total resection vs biopsy (HR 0.82, 

p=0.028), MGMT promoter methylation (HR 0.46, p<0.001) and IDH1 (HR=0.52, p=0.01) 

showed association with OS.

The prevalence of these factors varied across studies, from 0.5 to 0.64 for male gender, from 

0.45 to 0.76 for KPS >80, and 0.14 to 0.57 for MGMT methylated status. Minimum 

(maximum) age varied between 18 and 36 (68 and 91) years across trials, and also resection 

showed noticeable variation across trials. We selected all five variables (age, gender, KPS, 

MGMT, extent of resection) for adjustments in the ECT design.

ECT and inconsistent definitions of outcomes and pre-treatment characteristics

We initially generated for each study j=1,2,…,6 in Table 1, a ECT by selecting all patients 

on the RT+TMZ arm. This produces a hypothetical experimental arm which is compared to 

all RT+TMZ patients in the remaining studies with adjustments for differences in patients’ 

characteristics X (Supplementary Figure S2). Treatment effects estimates appeared biased 
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for the dataset (TEAve = 0.1, 90%-CI 0.01 to 0.18). Upon further inspection of the definitions 

of patient characteristics and outcome, we noticed that OS in was defined as time from 

diagnosis to death. In contrast, the clinical trials (and DFCI, UCLA cohorts) used time of 

randomization (beginning of therapy) to death. Unsurprisingly, different definitions of the 

outcome or prognostic variables can be important sources of bias.

Evaluation of the ECT design

In consideration of the described definitions of the outcome Y across studies, we removed 

the dataset (Figures 2 and 3).

Model-free ECT evaluation.—Figure 2A shows ECT treatment effect estimates for each 

of the remaining 5 studies. Treatment effect estimates, in all cases, were close to zero. In 

comparison, a single arm trial design, with the EORTC-NCIC CE.3 used as historical 

benchmark (Supplementary Table 1), would lead to overestimation of treatment efficacy.

Next, we generated ECTs for a fixed sample size of n=46. The sample size was selected for 

a targeted power of 80%, and 10% Type I error rate, for a single arm trial (one-sided 

binomial test) with OS-12 improvement from πHC = 61% to 76%, with πHC from the 

EORTC-NCIC CE.322 study. Since the RT+TMZ arm of PM22120301 and had only 16 

patients and 29 patients, we could not use these studies to generate ECTs with size n=46. 

Figures 2B and 2C show the results of nearly identical analyses as Figure 2A across 10,000 

subsamples of n=46 randomly selected patients using four adjustment methods – direct 

standardization (DSM), matching (M), inverse probability weighting (IPW, and marginal 

structural model (MSM). For IPW and MSM we used multiple reference distribution PX(x) 

(see expression 1)27–29. We used IPW-T in the analyses for Figure 2A and 2C. 

Supplementary Figure S3 shows ECT treatment effect estimates obtained by adjustment 

using different sets of prognostic characteristics.

Figure 2C shows the distribution of treatment effect estimates across the generated trials for 

ECT (in blue) and RCT (in black). The RCT data was obtained by randomly dividing the 

simulated single arm trial dataset into two parts of 23 patients which are labeled as control 

and experimental arms. With identical sample size (n=46) the assignment of all patients in 

ECT to the experimental arm results in lower variability of the treatment effect estimates 

compared to the RCT. The empirical type I error rate (targeted value 10%) across generated 

ECTs (model-free analysis with n=46) was 9.1%, 6.1% and 8.6% for the RT+TMZ arm of 

the AVAglio, the DFCI cohort and the UCLA cohort, compared to 40.7%, 21.9% and 40.5% 

for the single arm trial design (historical benchmark: 0.611 reported in EORTC-NCIC CE.

322) and a targeted value of 10%, respectively. The latter estimates, well above the 10% 

target, are consistent with different outcome distributions under RT+TMZ observed in these 

three studies compared to the EORTC-NCIC-CE.3 study. Indeed, underestimation of RT

+TMZ’s efficacy in SAT translates into inflated type I error rates.

Model-based ECT evaluation.—Figure 3A and 3B–F report model-based type I error 

rates and power for hypothetical RCTs, single arm trials and ECTs with sample size ranging 

between 20 and 160. We used the pre-treatment characteristics X from the five studies to 
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evaluate designs using a model-based approach (Supplementary-Material) which consists in 

sampling baseline characteristics X from the studies and generating outcomes Y from 

models P(Y|X, A). We specify P(Y|X, A) with a logistic model, obtained by fitting the RT

+TMZ data from all five studies combined, with or without the addition of a positive 

treatment effect.

Both the RCT and ECT have false positive rates, across simulated trials, close to the targeted 

value of 10% for all five studies (Figure 3A). The single arm trial design (historical 

benchmark: EORTC-NCIC CE.3) overestimates treatment effects, and presents inflated Type 

I error rates, 21–59% for n=30 and 30–83% for n=60 patients (Figure 3A).

The reported power in Figures 3B–3D corresponds to a scenario with improvement in OS-12 

equal to an odds ratio of 2.6. For example, with X corresponding to a male patient, age 59 

(median age in the studies RT+TMZ arms) with biopsy, KPS<=80 and negative MGMT 

status, Pr(Y = 1|A = 0, X) = Pr(Y = 1|A = 0, X) = 0.15. The RCT requires more than 139 

patients (139, 140, 137 154, 150 patients, X-distributions of DFCI, UCLA cohorts, AVAglio, 

PM22120301 and ) to achieve a power of 80% at 10% type I error rate. In contrast, the ECT 

requires between 34 and 40 patients (34, 34, 34, 40 and 37 patients) to achieve the 80% 

power.

Discussion

Clinical researchers have discussed and debated the relative merits of single-arm versus 

randomized trial design4,30–36. Single arm trials have obvious attraction for patients, could 

potentially be smaller, and are logistically easier to employ as pragmatic trials. The 

associated increased risk for bias, however, could lead to poor therapeutic development and 

regulatory decision-making. Overly optimistic analysis and interpretation can result in large 

negative phase III trials. Negatively biased results can cause discontinuation in the 

development of therapies with positive effects. This potential for bias is less pronounced for 

endpoints with minimal variation under the control. For example, single arm designs for 

monotherapies using tumor response as an endpoint have low risk for inflated type I error37. 

Evaluation of therapeutic combinations and use of endpoints such as PFS and OS are more 

complicated with increased risk for biased results, however. Randomization is the best way 

to limit this bias. But alternative methodologies could improve on single arm designs 

without the limitations of setting up a randomized control.

Historic benchmarks in single arm trial designs have two major problems. The first problem 

is ignoring discrepancies of the estimated survival functions across trials due to population 

differences. Controlling for known prognostic factors has been shown to mitigate this issue 

somewhat15. Additionally, single arm trials by design compare a single point of a PFS or OS 

curve, for example OS-12, to a benchmark. Such approaches do not leverage the power of 

statistical analyses that incorporate all time to event data, including censoring. The use of 

external control arms can address both these limitations.

Clearly, ECTs can increase power compared with RCTs by leveraging additional 

information from outside of the trial rather than committing resources to an internal control. 
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In our analysis in GBM the ECT reached nearly the same power as a single arm trial that 

specifies the correct historical response rate (zero bias) of the standard of care. This efficacy 

gain of ECTs will not necessarily be the same in other disease settings, and will depend on 

the size of the external control, the number of patient characteristics X that are required to 

control for confounding and the variability of these patient characteristics across and within 

studies. By standard statistical arguments38–40, in settings that are favorable to the ECT 

design (large external control cohort, a few relevant covariates, and no unmeasured 

confounders), the sample size for an RCT to match uncertainty summaries of ECTs such as 

the variance of a treatment effect estimate TE or the length of a confidence interval for TE is 

approximately four times larger than the sample size of an ECT. The major question is 

whether this comes with the downside of increasing Type I errors. In our analysis in newly 

diagnosed GBM, the ECT’s Type I error rates were comparable to RCTs, whereas SATs 

showed significantly inflated type I error rates. These results are in concordance with 

previous findings of a meta-analysis in GBM of Vanderbeek et al., 201841, which associate 

single arm Phase II trial in GBM during a 10 years period with under-estimation of the RT

+TMZ efficacy. The majority of single arm studies used the EORTC-NCIC CE.3 trial as 

historical benchmark. Under-estimation of the control efficacy translates into inflated type I 

error rates.

Another key question is whether our results were limited to newly diagnosed GBM or 

generalizable. We can consider three questions when evaluating the use of an ECT for a 

given experimental treatment: 1) are there time trends in the outcome under the control; 2) 

are the available prognostic factors sufficient to explain most of the variation in the outcome 

distributions across trials; and 3) is there evidence of significant latent unobserved 

confounding after controlling for known prognostic factors. Our evaluation of ECTs in GBM 

required use of an entire collection of datasets, to address these questions, and there isn’t a 

simple strategy to determine how other diseases or indications might compare.

The first step of our validation analyses was the selection of potential confounders. Based on 

previous recommendations, see for example Greenland, 200842- before data collection and 

analyses - we identified a list of potential confounders through a review of the GBM 

literature. In selecting the set of patient characteristics, we tried to be as comprehensive as 

possible, since the exclusion of confounders can compromise the ECT performance. 

Sensitivity summaries of the validation analysis, similar to supplementary Figure S2, can 

then be computed to illustrate variations of the estimated ECT performances when smaller 

sets of variables are used for adjustments.

A strength of our evaluation was the use of both data from prior clinical trials and RWD. 

Most discussions of external controls tend to focus on one or the other, but each has 

strengths and weaknesses. Clinical trial data is more meticulously collected, resulting in 

more standardized definitions and entry. This was evident in our dataset where several 

covariates from RWD datasets were characterized by missing data. This problem can be 

mitigated through the use of RWD datasets at scale rather than from a single institution. 

Furthermore, we initially found erroneous treatment effects due to differences in the 

definitions of the time to event variables (index dates) in our RWD compared to the 

remaining RCTs. While this is easily correctable in our example, care must be taken to 
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define endpoints in RWD43. Conversely, RWD has the advantage of being generated during 

routine clinical care which is less costly, potentially available at larger scale, and more 

contemporary. Since each kind of data has benefits and limitations, leveraging both has 

value for ECT generation.

A limitation of our study is the relatively small number of datasets that we used to evaluate 

the ECT design. The higher the number of available trials and cohorts, the more precise the 

estimation of ECT type I error rates and other key operating characteristics can be. The 

extension of our results in the future for GBM and the generation of ECTs for other diseases 

will undoubtedly be aided by clinical trial data sharing efforts like Project Data Sphere44, 

Vivli45, YODA46 and the availability of RWD at scale from groups like Flatiron Health, 

Tempus, and ASCO through CancerLinQ47.

The validation procedure that we used builds on clinical studies that included the same 

control (in our case TMZ+RT) with the aim to evaluate the use of ECT for future trials. A 

limitation of the procedure is the identical use of all the available studies. Potentially 

relevant differences, such as the year when each study started the enrollment, are not 

considered. Nonetheless, a simple and interpretable scheme for validation has the advantage 

of being robust to selection-bias. We included all studies for which we could access patient-

level data. However, after the utility of the ECT design has been rigorously evaluated for a 

specific disease setting based on interpretable and robust procedures, it becomes appropriate 

to refine the set of studies used as external control. This could be done for example by multi-

study analyses to identify studies with a risk of inducing bias in the ECT results if used as 

external control. Moreover, Bayesian models that incorporate differences across studies48,49 

could be used to compute treatment effects estimates and credible intervals for ECTs.

An extension of our validation framework could include the evaluation of procedures to use 

external control data in the analysis and interpretation of RCTs. In some cases, external data 

may contribute to more accurate treatment effects estimates in RCTs. Statistical methods for 

the use of external control data in RCTs, for example early stopping rules, will require, 

similar to ECT designs, validation studies before their implementation in clinical trials.

Summary

ECT designs have the potential to improve the evaluation of novel experimental agents in 

clinical trial and accelerate the drug development process by leveraging external data. 

Challenges in the use external data compared to standard RCTs include

i. the identification of a comprehensive list of potential confounders X for 

adjustments,

ii. access to a large set of RWD datasets or completed RCT’s to create a library of 

studies for robust validation analyses,

iii. availability of patient level data and possible missing data problems,

iv. coherent definitions and consistent measurements of patient characteristics and 

outcomes across datasets,
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v. possible trends in calendar time in the distributions of the outcomes under the 

control treatment due to improved clinical practice and

vi. the use of robust statistical procedures to evaluate ECT designs in comparison to 

traditional single arm and RCT designs.

Here we introduced a simple algorithm to evaluated operating characteristics such as bias, 

variability of treatment effect estimates and type I error rates of ECT designs. We considered 

different ECT designs that use distinct adjustment-methods. Our results indicate that the 

ECTs constitute a useful alternative to standard single arms trials and RCTs in GBM, which 

could significantly reduce the current false positive rates41 of single arm Phase II GBM 

trials.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Bias (πSAT − πHC)and deviations from a targeted type I error rate of 10%. Bias is due to 

different patient populations in the single arm trial (SAT) and in the historical study. A single 

binary characteristic (X=1 or X=0) correlates with the binary outcome Y, and the 

experimental treatment has no therapeutic effect Pr(Y|X, A = 1) = Pr(Y|X, A = 0). The 

characteristic X=1 was present in 50% of the patients in the historical control arm, PHC(X = 

1) = 0.5. Panel (A) shows the difference (πSAT − πHC) for a range of probabilities PSAT(X = 

1). We consider four levels of association between X and Y; (Pr(Y|X = 1, A = a) and P(Y|X 
= 0, A = a) equal either to (0.3, 0.9), (0.4, 0.8), (0.5, 0.7) or (0.6, 0.6). Panel (B) indicates, 

for a SAT (with standard z-test for proportions, H0: πSAT ≤ πHC) how the false positive rate 

(y-axis) of the design deviates without adjustments from the targeted type I error rate of 10% 

when the prevalence PSAT(X = 1) = 0.3, 0.5, 0.6 or 0.8. We consider different sample sizes 

(x-axis) of the SAT. In panel (B) we assume to know the parameter πHC.
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Figure 2: 
Treatment effect estimates of the ECT design. For each studies the RT+TZM arm was used 

as ECT’s experimental arm and (after adjustment for patents characteristics) compared to the 

RT+TZM arms of the remaining four studies. Panel (A) shows, for each of the study, 

covariate adjusted treatment effect estimates (point estimates and 90% confidence interval, n 
equals to the arm-specific size). Panel (B) shows treatment effect estimates (average value, 

5th and 95th percentile) across 10,000 subsamples of n=46 patients using different 

adjustment methods. We consider direct standardization, matching, inverse-probability 

weighting and marginal structural models (DSM, PS-M, IPW, MSM). For IPW and MSM 

we use different reference distributions PrX(x) (see expression 1) of pre-treatment 

characteristics X. Panel (C) shows the distribution of treatment effect estimates of the ECT 

(blue line) and RCT (black line) across subsamples of n=46 patients.
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Figure 3: 
Model-based evaluation of the type I error and power for RCT, ECT and single-arm trial 

(SAT) designs for an overall study sample size of n=20, …, 160 patients. In the model-based 

approach (Supplementary-Material) we sampled baseline characteristics X from the five 

studies in Table 1, and generated outcomes Y from models Pr(Y|X, A). Panel (A) shows for 

all studies the type I error rates of RCT, ECT and SAT designs at different overall sample 

sizes. Different line types (solid, dashed, dotted, etc.) indicate different studies (Table 1). 

Panels (B-F) show for each study, the power of RCT, SAT and ECT designs, and sample size 

to achieve 80% power (dotted vertical lines). In panel A, the single arm trial experimental 

outcomes have been generated as in the ECT simulations, but outcomes Y are directly 

compared to the EORTC-NCIC CE.3 study estimates, without adjustments for different 

distributions of patients’ characteristics. For RCTs, half of the randomly selected profiles X 

are used to define the experimental arm and the remaining half defines the control arm. Two-

group (RCT) and single-group (single arm trial) z-tests for proportions were used for testing. 

To compute the power in Panels B-F of the SAT, we assumed that the historical control 

benchmark πHC was correctly specified.
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Table 1:

Distribution of pre-treatment patient characteristics for the TMZ+RT arm of three clinical studies and three 

RWE studies.

Study DFCI-cohort UCLA-cohort AVAglio

NCT ID ---

PubMed ID PM21135282 PM25910950 PM22120301 PM24552318

Datatype RWE RWE RWE Phase II Phase II Phase III

Arm TMZ+RT TMZ+RT TMZ+RT TMZ+RT TMZ+RT TMZ+RT

Enrollment period 8/06–11/08 2/09–6/11 8/05–2/11 6/09–3/11

Enrollments to SOC 378 305 110 29 16 460

OS Events 269 265 89 24 15 344

Age

Median 58 57 59 58 59 57

Range 18–91 20–84 20–90 26–73 36–69 18–79

SD 13 13 14 11 11 10

Sex (%)

Females 0.43 0.36 0.36 0.45 0.5 0.36

Males 0.57 0.64 0.64 0.55 0.5 0.64

KPS (%)

<=80 0.55 0.39 0.32 0.24 0.44 0.31

>80 0.45 0.61 0.68 0.76 0.56 0.69

Data missing (n) 27 17 0 0 0 0

RPA (%)

3 NA 0.22 0.25 NA 0.12 0.16

4 NA 0.42 0.41 NA 0.75 0.61

5 NA 0.34 0.33 NA 0.13 0.23

6 NA 0.02 0.01 NA 0 0

Data missing (n) 378 0 0 29 1 0

Resection (%)

Biopsy 0.14 0.22 0.21 0.21 0 0.09

Sub Total 0.47 0.47 0.36 0.48 0.31 0.49

Gross Total 0.39 0.31 0.43 0.31 0.69 0.42

Data missing (n) 12 15 0 0 0 0

MGMT (%)

Unmethylated 0.43 0.71 0.60 0.86 0.43 0.67

Methylated 0.57 0.29 0.40 0.14 0.56 0.32

Data missing (n) 194 128 40 7 0 0.23

IDH1 (%)

Wildtype 0.91 0.91 0.98 0.83 NA NA

Mutant 0.09 0.09 0.02 0.17 NA NA

Data missing (n) 188 0.46 52 6 16 344
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Abbreviations: KPS, Karnofsky performance status; MGMT, O6-methylguanine-DNA methyltransferase; RPA, recursive partitioning analysis; 
IDH1, isocitrate dehydrogenase 1.
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Table 2:

Pre-treatment patient characteristics associated with OS. Estimated hazard-ratios in univariable and 

multivariable stratified Cox regression models. The baseline hazard rate was stratified by study and treatment 

arm.

Model Univariable Multivariable

Variables HR p-value HR p-value

Age

Linear 1.02 <0.001 1.03 <0.001

Sex (Ref. Female) 1 1

Male 1.17 0.004 1.15 0.012

KPS (Ref. <= 80) 1 1

>80 0.64 <0.001 0.78 <0.001

RPA (Ref. Class 3) 1 1

Class 4 1.50 <0.001 0.90 0.327

Class 5 2.29 <0.001 1.04 0.734

Class 6 7.10 <0.001 2.20 0.059

Resection (Ref. Biopsy) 1 1

Sub Total 0.78 0.001 0.82 0.028

Gross Total 0.56 <0.001 0.62 <0.001

MGMT (Ref. Unmethylated) 1 1

Methylated 0.47 <0.001 0.46 <0.001

IDH1 (Ref. Wilde-Type) 1 1

Mutant 0.35 <0.001 0.52 0.010
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