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As the UK sits in painful deadlock over Brexit, it is important to
remember that governments are regularly faced with crises, and
their responses can create enduring benefit for future generations.
Back in 1858, for example, the UK parliament was dealing with
another messy crisis: “the great stink.” In a world before sanitation,
the river Thames had become an open latrine, and as summer
blossomed parliament was engulfed in a pestilential stench. £2.5
million (about £300 million in today’s money) was hastily
approved to build a network of sewers throughout the capital.1

This particular model of sanitation, developed by Bazalgette, was
adopted by other cities around the world and the rest, as they say,
is history. It is now unthinkable that a developed nation would not
have sanitation infrastructure. However, back in 1858 the debate
was whether sanitation infrastructure was worthy of investment
and whether it was a public or private good. A similar debate has
been simmering for some time regarding health data infrastruc-
ture, defined as the hardware and software to securely aggregate,
store, process and transmit healthcare data. Is data infrastructure
necessary for healthcare organizations and if so, is it the
responsibility of individual healthcare organizations, of local
health systems, or is it a public good?
In the 21st Century, the age of big data and artificial intelligence

(AI), each healthcare organization has built its own data
infrastructure to support its own needs, typically involving on-
premises computing and storage.2,3 Data is balkanized along
organizational boundaries, severely constraining the ability to
provide services to patients across a care continuum within one
organization or across organizations. This situation evolved as
individual organizations had to buy and maintain the costly
hardware and software required for healthcare, and has been
reinforced by vendor lock-in, most notably in electronic medical
records (EMRs). With increasing cost pressure and policy
imperatives to manage patients across and between care
episodes, the need to aggregate data across and between
departments within a healthcare organization and across dis-
parate organizations has become apparent not only to realize the
promise of AI but also to improve the efficiency of existing data
intensive tasks such as any population level segmentation4 and
patient safety monitoring.5

The rapid explosion in AI has introduced the possibility of using
aggregated healthcare data to produce powerful models that can
automate diagnosis6 and also enable an increasingly precision
approach to medicine by tailoring treatments and targeting
resources with maximum effectiveness in a timely and dynamic
manner.7,8

However, “the inconvenient truth” is that at present the
algorithms that feature prominently in research literature are in

fact not, for the most part, executable at the frontlines of clinical
practice. This is for two reasons: first, these AI innovations by
themselves do not re-engineer the incentives that support
existing ways of working.2 A complex web of ingrained political
and economic factors as well as the proximal influence of medical
practice norms and commercial interests determine the way
healthcare is delivered. Simply adding AI applications to a
fragmented system will not create sustainable change. Second,
most healthcare organizations lack the data infrastructure
required to collect the data needed to optimally train algorithms
to (a) “fit” the local population and/or the local practice patterns, a
requirement prior to deployment that is rarely highlighted by
current AI publications, and (b) interrogate them for bias to
guarantee that the algorithms perform consistently across patient
cohorts, especially those who may not have been adequately
represented in the training cohort.9 For example, an algorithm
trained on mostly Caucasian patients is not expected to have the
same accuracy when applied to minorities.10 In addition, such
rigorous evaluation and re-calibration must continue after
implementation to track and capture those patient demographics
and practice patterns which inevitably change over time.11 Some
of these issues can be addressed through external validation, the
importance of which is not unique to AI, and it is timely that
existing standards for prediction model reporting are being
updated specifically to incorporate standards applicable to this
end.12 In the United States, there are islands of aggregated
healthcare data in the ICU,13 and in the Veterans Administration.14

These aggregated data sets have predictably catalyzed an
acceleration in AI development; but without broader development
of data infrastructure outside these islands it will not be possible
to generalize these innovations.
Elsewhere in the economy, the development of cloud comput-

ing, secure high-performance general use data infrastructure and
services available via the Internet (the “cloud”), has been a
significant enabler for large and small technology companies alike,
providing significantly lower fixed costs and higher performance
as well as supporting the aforementioned opportunities for AI.
Healthcare, with its abundance of data, is in theory well-poised to
benefit from growth in cloud computing. The largest and arguably
most valuable store of data in healthcare rests in EMRs. However,
clinician satisfaction with EMRs remains low, resulting in variable
completeness and quality of data entry, and interoperability
between different providers remains elusive.11 The typical lament
of a harried clinician is still “why does my EMR still suck and why
don’t all these systems just talk to each other?” Policy imperatives
have attempted to address these dilemmas, however progress has
been minimal. In spite of the widely touted benefits of “data

Received: 28 April 2019 Accepted: 26 July 2019

1Division of Health Policy and Management, Harvard T.H. Chan School of Public Health, Boston, MA, USA; 2Wellframe Inc., Boston, MA, USA; 3Department of Biostatistics, Harvard
T.H. Chan School of Public Health, Boston, MA, USA; 4Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA and 5Division of
Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
Correspondence: Leo Anthony Celi (lceli@mit.edu)

www.nature.com/npjdigitalmed

Scripps Research Translational Institute

http://orcid.org/0000-0001-6712-6626
http://orcid.org/0000-0001-6712-6626
http://orcid.org/0000-0001-6712-6626
http://orcid.org/0000-0001-6712-6626
http://orcid.org/0000-0001-6712-6626
https://doi.org/10.1038/s41746-019-0155-4
mailto:lceli@mit.edu
www.nature.com/npjdigitalmed


liberation”,15 a sufficiently compelling use case has not been
presented to overcome the vested interests maintaining the status
quo and justify the significant upfront investment necessary to
build data infrastructure. Furthermore, it is reasonable to suggest
that such high-performance computing work has been and
continues to be beyond the core competencies of either
healthcare organizations or governments16 and as such, policies
have been formulated, but rarely, if ever, successfully implemen-
ted. It is now time to revisit these policy imperatives in light of the
availability of secure, scalable data infrastructure available through
cloud computing that makes the vision of interoperability
realizable, at least in theory.
To realize this vision and to realize the potential of AI across

health systems, more fundamental issues have to be addressed:
who owns health data, who is responsible for it, and who can use
it? Cloud computing alone will not answer these questions—
public discourse and policy intervention will be needed. The
specific path forward will depend on the degree of a social
compact around healthcare itself as a public good, the tolerance
to public private partnership, and crucially, the public’s trust in
both governments and the private sector to treat their healthcare
data with due care and attention in the face of both commercial
and political perverse incentives.
In terms of the private sector these concerns are amplified as

cloud computing is provided by a small number of large
technology companies who have both significant market power
and strong commercial interests outside of healthcare for which
healthcare data might potentially be beneficial. Specific contract-
ing instruments are needed to ensure that data sharing involves
both necessary protection as well as, where relevant, fair material
returns to healthcare organizations and the patients they serve.17

In the absence of a general approach to contracting, high profile
cases in this area have been corrosive to public trust.18,19 Data
privacy regulations like the European Union’s General Data
Protection Regulation20 (GDPR) or California’s Consumer Privacy
Act21 are necessary and well intentioned, though incur the risk of
favoring well-resourced incumbents who are more able to meet
the cost of regulatory compliance thereby possibly limiting the
growth of smaller healthcare provider and technology organiza-
tions. Initiatives to give patients access to their healthcare data,
including new proposals from the Center for Medicare and
Medicaid Services22 are welcome, and in fact it has long been
argued that patients themselves should be the owners and
guardians of their health data and subsequently consent to their
data being used to develop AI solutions.16 In this scenario, as in
the current scenario where healthcare organizations are the de-
facto owners and guardians of patient data generated in the
health system alongside fledgling initiatives from prominent
technology companies to share patient generated data back into
the health system,23 there exists the need for secure, high-
performance data infrastructure to make use of this data for AI
applications.
If the aforementioned issues are addressed, there are two

possible routes to building the necessary data infrastructure to
enable today’s clinical care and population health management
and tomorrow’s AI enabled workflows. The first is an evolu-
tionary path to creating generalized data infrastructure by
building on existing impactful successes in the research domain
such as the recent Science and Technology Research Infra-
structure for Discovery, Experimentation and Sustainability
(STRIDES) initiative from the National Institutes of Health24 or
MIMIC from the MIT Laboratory for Computational Physiology13

to generate the momentum for change. Another, more
revolutionary path would be for governments to mandate that
all healthcare organizations store their clinical data in commer-
cially available clouds. In either scenario, existing initiatives such
as the Observational Medical Outcomes Partnership (OMOP25)
and Fast Healthcare Interoperability Resources (FHIR) standard26

that create a common data schema for storage and transfer of
healthcare data as well as AI enabled technology innovations to
accelerate the migration of existing data27 will accelerate
progress and ensure that legacy data are included. There are
several complex problems still to be solved including how to
enable informed consent for data sharing, and how to protect
confidentiality yet maintain data fidelity. However, the prevalent
scenario for data infrastructure development will depend more
on the socio-economic context of the health system in question
rather than on technology.
A notable by-product of a move of clinical as well as research

data to the cloud would be the erosion of market power of EMR
providers. The status quo with proprietary data formats and local
hosting of EMR databases favors incumbents who have strong
financial incentives to maintain the status quo. Creation of health
data infrastructure opens the door for innovation and competition
within the private sector to fulfill the public aim of interoperable
health data.
The potential of AI is well described, however in reality health

systems are faced with a choice: to significantly downgrade the
enthusiasm regarding the potential of AI in everyday clinical
practice, or to resolve issues of data ownership and trust and
invest in the data infrastructure to realize it. Now that the growth
of cloud computing in the broader economy has bridged the
computing gap, the opportunity exists to both transform
population health and realize the potential of AI, if governments
are willing to foster a productive resolution to issues of ownership
of healthcare data through a process that necessarily transcends
election cycles and overcomes or co-opts the vested interests that
maintain the status quo—a tall order. Without this however,
opportunities for AI in healthcare will remain just that—
opportunities.
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