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Deep multiomics profiling of brain tumors identifies
signaling networks downstream of cancer driver
genes
Hong Wang 1,2,3, Alexander K. Diaz3,4, Timothy I. Shaw2,5, Yuxin Li1,2,4, Mingming Niu1,4, Ji-Hoon Cho2,

Barbara S. Paugh4, Yang Zhang6, Jeffrey Sifford1,4, Bing Bai1,4,10, Zhiping Wu1,4, Haiyan Tan2, Suiping Zhou2,

Laura D. Hover4, Heather S. Tillman 7, Abbas Shirinifard8, Suresh Thiagarajan9, Andras Sablauer 8,

Vishwajeeth Pagala2, Anthony A. High2, Xusheng Wang 2, Chunliang Li 6, Suzanne J. Baker4 &

Junmin Peng 1,2,4

High throughput omics approaches provide an unprecedented opportunity for dissecting

molecular mechanisms in cancer biology. Here we present deep profiling of whole proteome,

phosphoproteome and transcriptome in two high-grade glioma (HGG) mouse models driven

by mutated RTK oncogenes, PDGFRA and NTRK1, analyzing 13,860 proteins and 30,431

phosphosites by mass spectrometry. Systems biology approaches identify numerous master

regulators, including 41 kinases and 23 transcription factors. Pathway activity computation

and mouse survival indicate the NTRK1 mutation induces a higher activation of AKT down-

stream targets including MYC and JUN, drives a positive feedback loop to up-regulate

multiple other RTKs, and confers higher oncogenic potency than the PDGFRA mutation. A

mini-gRNA library CRISPR-Cas9 validation screening shows 56% of tested master regulators

are important for the viability of NTRK-driven HGG cells, including TFs (Myc and Jun) and

metabolic kinases (AMPKa1 and AMPKa2), confirming the validity of the multiomics inte-

grative approaches, and providing novel tumor vulnerabilities.
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A central gap in cancer biology concerns how oncogenes
drive the rewiring of molecular signaling networks to
execute phenotypic changes1–3. Initial attempts to decode

the molecular networks were through proteomic characterization
via antibody-based approaches (e.g. the reverse phase protein
array). However, these targeted approaches are restricted by
profiling breadth and depth, largely due to antibody availability
and specificity. Because signaling networks are highly regulated
by protein posttranslational modifications, and particularly
phosphorylation, phosphoproteomic analyses are indispensable
for studying cancer signaling4. Recently, mass spectrometry
(MS)-based proteomics technology has been emerging as the
mainstream strategy for unbiased analysis of the genome-wide
proteome and phosphoproteome5,6. Together with advanced
DNA sequencing, these methodologies provide an unprecedented
opportunity for deep omics analysis. It is now possible to inte-
grate transcriptome, deep proteome and phosphoproteome to
dissect oncogenic signaling networks, broadening our under-
standing of cancer biology1–3,7–10.

High-grade gliomas (HGG) are the most prevalent malignant
brain tumors, and confer devastating mortality11. Although sig-
nificant efforts in glioma sequencing have unveiled comprehen-
sive genome-wide mutation landscapes11–18, a complete
understanding of how genomic alterations lead to dysregulation
of particular master regulators and specific pathways remains
unclear. Previous HGG proteomic and phosphoproteomic studies
extend our understanding of HGG signaling19,20, but most of
these attempts have used proteomic approaches of relatively
shallow depth. There is essentially no deep HGG proteomic
landscape available for the cancer research community. Here, for
the first time, we present a new paradigm of identifying ~12,000
gene products (proteins) and >30,000 phosphosites at a false
discovery rate (FDR) of approximately 1% for dissecting HGG
cancer biology.

In the present paper, we compared two HGG mouse models
driven by oncogenic receptor tyrosine kinases (RTKs: PDGFRA
D842V and TPM3-NTRK1 fusion), using integrative systems
biology analyses of proteome, phosphoproteome and tran-
scriptome. Mutations and/or amplifications of platelet-derived
growth factor receptor alpha (PDGFRA) and fusion genes of the
neurotrophic tyrosine receptor kinase (NTRK) have often been
identified in pediatric and adult HGG11,13,17,21–23. We used
engineered mouse HGGs expressing the mutated RTKs to
examine signaling networks downstream of these cancer driver
genes. With an integrated bioinformatics pipeline, we identified
various functional modules and master regulators that are rewired
in HGGs and demonstrated that the TPM3-NTRK1 oncogene
upregulates multiple other RTKs to form a positive feedback loop
within the PI3K-AKT pathway, driving more rapid tumor
development compared with the PDGFRA-driven HGG. Finally,
we performed CRISPR-Cas9 validation screening to show that
multiple master regulators that are RTK-PI3K-AKT downstream
transcription factors (TF) and key metabolic sensor kinases are
crucial for the survival of the NTRK-driven HGG cells.

Results
Deep proteome and phosphoproteome profiling of mouse
HGGs. To generate a deep mouse HGG proteome and phospho-
proteome landscape, we used our newly developed MS pipeline
with extensive peptide separation power and high mass resolu-
tion24–27. Mouse HGG samples were generated by intracranial
implantation of p53-null primary astrocytes transduced with either
PDGFRA D842V mutation or the TPM3-NTRK1 fusion, two
oncogenic RTKs found in human HGGs (Fig. 1a, referred to as
PDGFRA HGG and NTRK HGG, respectively). Both models

generated HGGs with highly mitotic pleomorphic tumor cells,
many with features of astrocytic differentiation. The HGGs grew as
focal masses with clear areas of invasion into the surrounding
parenchyma at the boundaries of the tumor (Fig. 1b)13,22. The
HGG and normal mouse cortex (control) samples were submitted
to proteome, phosphoproteome and transcriptome profiling.
Tandem mass tag (TMT) labeling was used to enable massively
parallel proteome and phosphoproteome quantification of ten
samples (Fig. 1c). Extensive basic pH reverse phase liquid chro-
matography (LC) prefractionation followed by an ultra-long acidic
pH reverse phase LC were applied to facilitate maximal peptide
separation. As a result, 13,860 proteins (11,941 gene products,
200,454 peptides and 3,264,804 MS2 scans) and 30,431 phospho-
sites (5959 phosphoproteins, 45,574 phosphopeptides, 1,829,889
MS2 scans) were identified (<1% FDR, Fig. 1c). Among them,
13,567 proteins (11,718 gene products) and 28,527 phosphosites
were quantified in every sample (Supplementary Data 1 and 2),
representing one of the deepest HGG proteomic datasets available
to date.

To evaluate the quality of the datasets, we examined the MS-
based results of the two transduced human oncogenes compared
with phosphorylation events assayed by Western blotting as
reported in our previous study22, as well as the classification of all
measurements. The protein expression levels of exogenous
human PDGFRA D842V and TPM3-NTRK1 agreed with the
HGG genotypes (Fig. 1d). MS data of specific phosphosites were
also consistent with immunoblot assays described previously in
these HGG mouse models: AKT S473, PRAS40 T247, PDGFRA
Y742, S6 S235 and S6 S23622 (Supplementary Fig. 1). Principal
component analyses and hierarchical clustering analyses revealed
that the two RTK oncogenes drive distinct proteome, phospho-
proteome and transcriptome profiles (Fig. 2a–d). In the MS
analysis, the intragroup replicate samples showed minimal
variations with low standard deviation, whereas the inter-group
comparisons exhibited differences with a much larger standard
deviation (Supplementary Fig. 2a, b). For transcriptome profiling,
RNAseq replicates from a second cohort of HGGs displayed high
reproducibility of these HGG mouse models (R2 > 0.95, Supple-
mentary Fig. 3a, b, Supplementary Data 3). Furthermore, the
levels of expression of mutant PDGFRA or NTRK fusion genes
expressed in the mouse HGGs are relevant to the levels of
expression found in human tumor cells with these mutations
(Supplementary Fig. 3c, d). Together, these results indicate the
high quality of our omics datasets and demonstrate that the two
oncogenic RTKs drive HGGs with reproducibly distinct global
proteome and phosphoproteome profiles.

We further analyzed the correlation and profiling depth of
proteome and transcriptome. The transcript levels and protein
abundances showed moderate correlation (Fig. 2e, R2= 0.5),
consistent with previously reported datasets28,29. We first applied
a cutoff of FPKM > 1 for the transcriptome to filter out low-
quality data. In 12,842 accepted transcripts, 10,838 (84%)
corresponding proteins were mapped by MS (Supplementary
Fig. 4a). Next, we investigated peptide coverage of each protein in
this unbiased proteomics analysis. More than 96% of proteins
were identified by at least two peptides (Supplementary Fig. 4b),
and the average coverage of theoretically observable protein
sequences reached 42% (Supplementary Fig. 4c). In addition, we
estimated the phosphoproteomic profiling depth by comparing to
all previous curated mouse phosphosites in the PhosphoSitePlus
database, the most comprehensive protein modification database.
Our phosphoproteome covered approximately 68% of the mouse
phosphosites collected from all cell types and tissues, and
contained 12,354 novel phosphosites not in the database. In
summary, these data present a paradigm of one of the deepest
proteome and phosphoproteome analyzed in cancer studies.
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Proteomic analyses reveal HGG network modules and path-
ways. We first identified differentially expressed (DE) proteins in
mouse cortex, PDGFR and NTRK HGGs, and performed gene
coexpression clustering, pathway analysis, and functional module
classification by WGCNA30 and ClueGO packages31 (Fig. 3a). A
total of 4703 DE proteins and 6768 DE phosphosites (2301
phosphoproteins) were identified and distributed into five whole
proteome coexpression clusters (WP-C) and five phosphopro-
teome coexpression clusters (PP-C) respectively (Fig. 3b, c, Sup-
plementary Data 1 and 2), leading to 67 functional modules
(Supplementary Data 4a, b). As expected, the two largest modules
rewired in tumors compared with normal cortex are cell cycle (in
WP-C1, Fig. 3d) associated with tumor cell proliferation, and the
PI3K signaling cascade (in PP-C2, Fig. 3e), which transduces
signals downstream of RTKs. Collectively, a series of module
groups including cancer signaling, gene expression, cell adhesion,
metabolism, and neuronal functions are rewired in HGG tumors
(Fig. 3f; Supplementary Data 4a, b). Remarkably, three clusters
(WP-C1, PP-C1, and PP-C2) display similar alteration patterns:
Cortex <PDGFRA HGG <NTRK HGG (Fig. 3b, c), and the
majority of known glioma pathways are enriched in these three
clusters (Fig. 3f), suggesting that NTRK HGG activates similar

oncogenic pathways, but with a greater magnitude of response at
the global pathway level than PDGFRA HGG. Moreover, the
majority of HGG cancer signaling pathways are only altered in
phosphoproteome but not in whole proteome (Fig. 3f), under-
lining the indispensable role of phosphoproteomic profiling to
decode oncogenic signaling. Thus, these results suggest RTK
oncogenes drive massive rewiring of signaling networks at the
phosphorylation and/or protein expression level in the HGG
mice.

We then investigated the global changes of regulatory protein
families including TFs, epigenetic genes, kinases and cancer genes
in the HGG tumors. Regulatory proteins in general are present at
low abundance32, thus difficult to analyze without highly sensitive
methods. Nevertheless, our deep profiling systematically char-
acterized both whole protein and phosphorylation levels of a large
number of regulatory proteins (Supplementary Fig. 5, Supple-
mentary Data 4c, d). Strikingly, we observed a global increase of
protein expression and phosphorylation of most regulatory
protein families in HGG tumors (p value was determined by
one-way ANOVA, and cutoff 0.001 was applied, Supplementary
Data 4c, d). The majority of these proteins were expressed and
phosphorylated even higher in NTRK HGG tumors when
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compared with PDGFRA HGGs. Indeed, most top DE genes show
the expression pattern of NTRK > PDGFRA > Cortex (Supple-
mentary Fig. 5a–h), including well-known master regulators (e.g.
CHEK1, MAP3K1, PRKD1, INSR, and RB1) of HGG oncogenic
pathways. Numerous other regulatory proteins (LYN, HMGB2,
HMGA2, CD74, and CTNNB1) also follow this pattern. Lyn
(Supplementary Fig. 5b) is an SRC family tyrosine kinase that
enhances Glut-4 translocation to the cell membrane to increase
glucose uptake33, a hallmark of cancer metabolism34. HMGB2
and HMGA2 (Supplementary Fig. 5c, d) are transcription and
chromatin modulators that promote stemness and tumorigenicity
in HGG35. CD74 (Supplementary Fig. 5e) is an attractive
candidate target for immunotherapy as it is present in limited
amounts in normal tissues but high levels on a variety of
hematological tumors36. CTNNB1 (Supplementary Fig. 5f) reg-
ulates cell adhesion and WNT signaling37. Thus, our results
indicate an active role for TFs, epigenetic genes, kinases and
cancer genes to reprogram signaling networks and maintain
tumor homeostasis. Additionally, the NTRK genotype drives
stronger global reprogramming than the PDGFRA genotype.

Multiomics integration identifies master kinases and TFs. Since
protein kinase activity can be inferred by substrate phosphor-
ylation levels using computer programs, we used IKAP38, a
machine learning algorithm, to evaluate the activities of 187
kinases, 41 of which are reprogrammed in the mouse HGGs
(Supplementary Data 4e). Hierarchical clustering analysis classi-
fied these kinase activities into multiple major clusters (Fig. 4a),
resembling three major differential regulation patterns among
cortex, PDGFRA, and NTRK HGGs in Fig. 3c (i.e. PP-C1, PP-C2,
PP-C5). These individual kinases were further connected in a
kinase-to-kinase signaling transduction network by examining
the reported kinase−substrate relationships in PhosphoSitePlus
database (Fig. 4b). Multiple known kinases in gliomagenesis are
identified in HGGs, encompassing AKT, PKC, MAP Kinase
cascade, and SRC family kinases11,39–41. Other kinases regulating
key intracellular systems are rewired as well, including AMPK
(PRKAA1, PRKAA2) and p21-activated kinases (PAK1, PAK3).
AMPK is a metabolic master sensor that regulates glucose
transporter GLUT4 production, fatty acid β-oxidation, and
mitochondria biogenesis42. PAKs regulate cytoskeleton
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reorganization and cell motility43. HGGs also show higher levels
of CDK5, CAMK2A, and CAMK2D, compared with normal
cortex. Although these kinases are well-characterized regulators
of neuronal function and synaptic plasticity, they are also
expressed in glioblastoma, where they play roles in migration,
invasion, mitochondrial regulation, and calcium signaling44–46.
We further summarized the activities of these kinases at the level
of kinase superfamilies. While AGC (cyclic nucleotide-dependent
family, protein kinase C family, ribosomal S6 family and related
kinases), CMGC (cyclin-dependent kinases, mitogen-activated

protein kinases, glycogen synthase kinases and cdk-like kinases)
and CAMK (primarily kinases modulated by calcium/calmodu-
lin) superfamily kinases are turned on significantly in HGG
tumors (p value was determined by Fisher’s exact test, and cutoff
0.001 was applied, Supplementary Fig. 6), NTRK HGGs display
even higher activity in AGC and CMGC superfamilies than
PDGFRA HGGs, supporting stronger cell proliferation signaling
and cell cycle rewiring47 (Fig. 4c).

Considering that AKT is the central node of PI3K-AKT
signaling cascade upon RTK activation, we further analyzed the
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output of kinase activation on AKT substrates (Fig. 4d). 34 AKT
substrates show a phosphorylation pattern in agreement with
AKT activity (Supplementary Fig. 7, Supplementary Data 4f). The
top activated AKT substrates are cell cycle and proliferation
regulators (CHEK1 S280 and BRCA1 S686), central glucose
metabolism regulators (e.g. AMPKA1 S496 and AS160 T649),
and migration and angiogenesis regulators (e.g. eNOS S1176,
VIM S39, and FLNC S2234, Fig. 4d). Similar results were
obtained for the coregulation of other kinase−substrate connec-
tions (AMPKA1, CDK5, MAPK3, ATR, ATM, PAK1, and FYN,
Supplementary Fig. 8). Collectively, our comprehensive kinase
activity analysis enables the identification of master kinases and
the downstream outcomes of kinase activation in two HGG
tumor models in which PI3K pathway activation is driven by
different receptor tyrosine kinase mutations that are found in
human HGG.

We also explored the activity of TFs through integrative
analysis of transcriptome, proteome and phosphoproteome in the
mouse HGGs via a systems biology approach in multiple steps
(Fig. 5a). A total of 47 TF activities were derived from target gene
expression in the transcriptome, of which 38 TFs were identified
by MS. Additional whole proteome and/or phosphoproteome
data supported the activation of 23 out of the 38 TFs (Fig. 5b).
For instance, five TFs show active status based upon the increase
of phosphorylation at the reported activation sites (c-MYC S62,
JUND S100, JUN S73, BRCA1 S686, and EP300 S2312). Among
the most activated TFs, were the TFII family (GTF2B, GTF2F1,
TAF1, TAF7, and TBP) of general TFs, which assemble the RNA
polymerase II pre-initiation complex and control general
transcription rate; and the transcription suppressor REST, a
chromatin modifier in brain48. Consistently, REST target gene
expression was low in the tumors and high in normal cortex
(Fig. 5b), implicating a possible role of REST in HGG tumor
transformation through suppression of target gene expression.
Thus, this integrative analysis reveals the activation of both TF
activators and suppressors, which lead to distinct reprogramming
of tumor cell transcriptome and proteome.

Finally, we constructed a kinase-TF centered network in HGG
by incorporating known kinase to kinase and TF to target genes
connections in the PhosphoSitePlus database and the ENCODE
database, with consistent coactivation patterns in our datasets,
resulting in a simplified kinase-TF centered network consisting of
five kinases (AKT1, MAPK3, CDK5, PRKCA, and AMPK) and
six TFs (c-MYC, JUND, JUN, EP300, BRCA1, and CEBPB)
(Fig. 5c). The c-MYC family (MYC, MAX) and AP-1 family
(JUN, JUND) regulate a variety of central biological processes in
tumorigenesis. Indeed, more than 100 c-MYC targets were

transcriptionally active, strongly supporting the central role of c-
MYC in HGG tumors (Fig. 5c).

Close examination of master TFs uncovered major transcrip-
tionally activated downstream biological processes in HGGs
(Fig. 5c). The most activated biological processes are related to
proliferation including ribosome biogenesis, translation, and
RNA processing (targets of c-MYC, BRCA1 and CEBPB), energy
metabolism including mitochondrial and metabolism (targets of
c-MYC, JUN and EP300), and cell migration including
extracellular matrix and focal adhesion (targets of JUN and
EP300). In the kinase-TF network, c-MYC, JUN and EP300 are
activated via phosphorylation by master energy and proliferation
sensors kinases (AMPK and MAPK). Notably, multiple metabolic
enzymes activated by these three TFs were reported to be critical
during proliferation and energy stress, such as adenine phos-
phoribosyltransferase (APRT), which regulates a nucleotide
salvage pathway to synthesize purines de novo49, and ornithine
decarboxylase (ODC1) for polyamine biosynthesis in response to
growth stimulation. In summary, our systems biology approaches
utilize multilayer information to prioritize central HGG TFs,
kinases, and their interplay in HGG tumors.

Cross-species omics integration may be an effective approach
to identify oncogenic events in human cancer50. Therefore, we
also mapped the most significantly altered omics datasets in
mouse HGGs back to human transcriptome data to search for
consistent alterations driven by NTRK and PDGFRA mutations
across species, resulting in a list of 20 convergent alterations in
mouse and human (Supplementary Fig. 9). The majority of these
genes were reported to be functional in cancer-related processes,
including the regulation of cancer cell stemness, angiogenesis,
tumor microenvironment, and invasion, together highlighting the
potential of inter-species analysis to prioritize cancer-relevant
candidates from massive multiomics datasets.

NTRK is a stronger oncogenic driver than PDGFRA in mouse
HGG. The bioinformatics analyses suggest stronger global cancer
network rewiring in NTRK HGG than PDGFRA HGG, indicating
higher oncogenic potency of NTRK than PDGFRA mutations. To
evaluate the oncogenic potency of the RTK cancer driver genes,
we modified the PAC algorithm that was initially designed for
gene expression analysis51, to compute the summed PI3K-AKT
signaling activity. The protein activity was derived from phos-
phosite with known functions that either promote or inhibit
tumorigenesis (see Methods). In both HGGs, the PI3K-AKT
pathway was clearly active and invoked similar downstream
pathways, such as protein synthesis (S6, 4EBP1 and EIF4B), cell
cycle progression (RB1, MYC and RBl2), cell proliferation and

Fig. 4 Kinase activity analysis reveals active kinases, kinase superfamilies, and AKT substrates in HGGs. a Hierarchical clustering analysis of reprogrammed
kinase activities, which were derived from substrate phosphorylation in the HGG tumors via the IKAP algorithm. The hierarchical clustering was performed
by WARD’s method. Activity patterns of protein clusters were compared with the phosphoproteome expression patterns in Fig. 3c. Patterns that match the
clusters in Fig. 3c were labeled on the right side of the panel. For instance, cluster on the most upper side shows an activity pattern of NTRK > PDGDFRA >
Cortex, similar to the phosphoproteome pattern 2 (PP-C2 pattern) in Fig. 3c. Color key represents the Z score of substrate-derived activities.
b Construction of a putative core kinase-to-kinase signaling network with consistent co-activation patterns across different samples. To construct a
putative kinase centered signaling network in HGG, we incorporated the relationships of kinase-substrate from PhosphoSitePlus, and manually accepted
kinase−kinase networks with consistent coactivation patterns across different samples. Solid black arrows represent direct activation through
phosphorylation and dotted black arrows represent indirect connection between upper kinase and downstream kinase. c Summarization of individual kinase
activity into kinase superfamily shows stronger rewiring of AGC and CMGC superfamilies in the NTRK HGG than the PDGFRA HGG. Kinome tree map
shows pairwise kinase activity comparisons, in which the kinase superfamilies with statistically significant difference are shown with p values determined
by chi-square. Kinase activity levels are represented by the length of bars outside of the kinome tree circle. d Putative substrates activated by AKT, the
central hub of PI3K-AKT cascades in HGGs. AKT-regulated substrates and their phosphosites are organized by annotated functions. Biological function
groups are presented by distinct colors. The distance between substrates and the AKT center is correlated with substrate phosphorylation level. e.g.
AMPKA1 is one of the AKT substrates with the highest phosphorylation level. HGG high-grade glioma
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angiogenesis (BRCA1, eNOS, ERK) (Fig. 6a). When comparing
27 regulatory phosphosites of these proteins that were statistically
different between NTRK and PDGFRA HGGs, the majority (n=
23) showed higher alteration in NTRK HGG than PDGFRA HGG
(Fig. 6b; Supplementary Data 4g). Consistently, the NTRK HGG
exhibited 1.45-fold greater PI3K-AKT signaling activity (P=
0.003, Supplementary Data 4h), suggesting that the TPM3-
NTRK1 fusion gene harbors stronger oncogenic potency than the
PDGFRA D842V.

To experimentally validate our predicted oncogenic potency of
TPM3-NTRK1 and PDGFRA D842V, we analyzed cellular
proliferative indexes and Kaplan−Meier survival curves of both
HGG mice. The proliferative index was defined by the proportion

of tumor cells that expressed the proliferation marker Ki67
(Fig. 6c). We quantified the proliferative indexes in four NTRK1-
driven HGGs and four PDGFRA-driven HGGs with enhanced
level of PI3K-AKT signaling, the proliferative index of NTRK
HGG (0.32 ± 0.04) was 1.45-fold higher than that of PDGFRA
HGG (0.22 ± 0.07), with a p value of 0.048 determined by
Student’s t test. Consistently, NTRK HGG mice developed with
much shorter latency than PDGFRA mice (median survival time
of 16 days and 30 days, respectively, Fig. 6d).

TPM3-NTRK1 and PDGFRA D842V both activated PI3K-AKT
signaling, but with different potency. Species-specific analysis of
PDGFRA protein identified a difference in RTK upregulation
between the two HGG models. MS measurements showed that
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HGGs driven by the human PDGFRA D842V gene expressed
lower levels of the mouse wild-type PDGFRA protein than the
NTRK HGGs (Fig. 7a). We quantified endogenous mouse
PDGFRA by mouse amino acid sequence-specific peptides, and
validated this finding by Western blotting (Fig. 7b). Many other
RTKs (EphA2, EGFR, FLT4, PTK7 and ROR2) also showed
higher protein expression in NTRK HGG than PDGFRA HGG
(Fig. 7c). Transcriptomic measurement consistently indicated the

upregulation of these RTKs. Western blotting further confirmed
EphA2 overexpression and activation reflected by concomitant
phosphorylation (Fig. 7d). To identify potential mechanisms
driving increased RTK expression, we searched ENCODE and
MsigDB databases to identify TFs that regulate the RTK
transcription and validated TF activities by their protein levels
or phosphorylation states (Fig. 7e). We used Western blotting to
confirm increased expression and phosphorylation of MYC as a
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representative TF (Fig. 7f). Together, these bioinformatics and
experimental findings demonstrate that the NTRK fusion gene
induced an enhanced overexpression and activation of other
RTKs, suggesting a forward feedback loop within PI3K-AKT
signaling, resulting in a more aggressive tumor than PDGFRA-
driven HGG (Fig. 7g).

CRISPR-Cas9 screening validates molecular targets in HGG.
To examine if master regulators prioritized by the multiomics
approaches are required for tumor survival, we first established
the in vitro culture of HGG primary cells collected from NTRK-
driven HGG mouse tumor tissues, and then designed a pooled
mini-gRNA library for targeting these master regulators in a
CRISPR-Cas9 analysis (Fig. 8a, Supplementary Fig. 10). We used
a TransEDIT-dual CRISPR-Cas9 system52, in which recombinant
lentiviruses expressed dual gRNAs designed by a machine-
learning approach to promote the functional ablation of genes
(Supplementary Fig. 10b). Six nontargeting gRNAs were included
as negative controls (Supplementary Data 4i). Systematic
experimental optimizations were performed (Supplementary
Fig. 10a), for example, stable expression of Cas9 in the HGG cells
was confirmed by immunoblotting (Supplementary Fig. 10d);
gRNA integration was validated by fluorescence detection of ZsG
(Supplementary Fig. 10e); relatively even distribution of each
gRNA in the pooled library was confirmed by deep-sequencing
before screening (Supplementary Fig. 10g), and screening was
performed in triplicate for reproducibility.

We targeted two types of master regulators (kinases and TFs)
during the CRISPR-Cas9 screening, including nine genes derived
from transcriptome and proteome data (Fig. 8b), and we also
targeted six genes identified by cross-species comparisons with
mouse and human tumors, each with six different gRNAs (i.e.
three different dual-gRNA constructs). Dropout analysis was

conducted to identify the essential regulators responsible for
tumor survival. If two out of the three dual-gRNA counts were
significantly decreased after selection for 15 days compared to
those in starting populations, the targeted gene was regarded to be
important for tumor viability. Under this cutoff, none of the
negative control gRNAs were enriched. On the other hand, 56%
(5 out of 9) of the prioritized master regulators were shown to be
critical for the HGG tumor growth. Strikingly, all three kinases
(i.e. PRKAA1, PRKAA2, and EEF2K) regulating cell metabolism
were found to contribute to HGG cell viability, providing a novel
tumor vulnerability. Moreover, two TFs (Jun and Myc) were
demonstrated to be positive hits in the screening. Given that
RTK-PI3K-AKT induces a broad spectrum of downstream
changes, pinpointing out Jun and Myc leads to valuable insights
on how RTK fusions induce HGG tumorigenesis. Thus, this
CRISPR-Cas9 screening unveils a novel tumor vulnerability of
energy metabolism, and the involvement of Jun and Myc in
NTRK fusion-induced tumorigenesis, together confirming the
validity of the multiomics integrative approach to discover master
regulators.

Discussion
Both transcriptomic and proteomic analyses play indispensable
roles for understanding the underlying central regulatory
mechanisms in cancer biology. As mRNA level is often only
moderately correlated with protein level29, there is a need to
profile both transcriptome and proteome to obtain a full picture
of gene expression in cancer biology. Here we demonstrate the
power of deep proteome coverage and integration of multiomics
datasets to probe molecular mechanisms underlying tumor-
igenicity. A pooled mini-gRNA library CRISPR-Cas9 functional
screening further validates the strength of the multiomics inte-
grative approaches and identifies multiple tumor vulnerabilities
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for designing targeted cancer therapy. Recent developments of
optimized long gradient LC-MS/MS system27, refined phospho-
peptide enrichment26, and advanced bioinformatics tools7,25

greatly improve the depth of proteomic profiling for cancer stu-
dies, facilitating detection of almost all of the expressed proteins.
Such high coverage allows the systematic analysis of proteins of
low abundance, as exemplified by TFs and kinases. In parallel, a
comprehensive phosphoproteome analysis offers complementary
information about pathway/network activities, because many
components in pathways are not changed at the protein level, but
altered in phosphorylation states during signaling transduction.
Although some known phosphosites are missed due to intrinsic
limitations of the unbiased proteomics approach, we have
detected nearly all NTRK and PDGFRA regulated pathways in
the KEGG database in this deep phosphoproteome dataset.

Isobaric labeling (e.g. TMT and iTRAQ) is a powerful quan-
titative strategy for multiplexed deep proteomic profiling with
high throughput and reproducibility1. Although quantitative ratio
compression often occurs with this method53,54, it also reduces
experimental variations, and therefore has almost no impact on
differential expression analysis after scale normalization1 (Sup-
plementary Fig. 11). Moreover, our strategies of extensive peptide
separation55 with biological replicates facilitate statistical infer-
ence and largely reduce the effect of ratio compression.

Recurrent mutations in the RTK/RAS/PI3K signaling axis
occur frequently in virtually all adult glioblastomas, more than
half of pediatric glioblastomas, and other diverse tumor
types11,12,14. While this implies that the PI3K pathway is an

important therapeutic target, the response to small molecule
inhibitors of the pathway is highly variable and often difficult to
predict, likely due to varied consequences of specific mutations
within the pathway, combinatorial effects with co-occurring
mutations, complex feedback regulation within the pathway and
cross-talk with other signaling pathways. In the present study, we
investigated the sensitivity of integrated analysis of multiomics
datasets to identify shared downstream pathways and differences
in signaling in HGGs driven by two different glioma-associated
RTK mutations in the same p53-null primary astrocyte
population.

We present a generic bioinformatics pipeline for prioritizing
core signaling networks and master regulators in cancer pro-
teomics studies. Massive reprogramming of molecular compo-
nents occurs during the evolution from mortal to immortal status
in cancer cells3. As improvement of profiling technologies allows
the identification of thousands of these changes, strategies for
prioritizing drivers and core regulators from the enormous
amount of passenger changes become urgently needed. Here, we
first performed weighted coexpression clustering analysis to
extract ten proteome and phosphoproteome clusters from 4703
differentially expressed proteins and 6768 differentially phos-
phorylated phosphosites, which dramatically reduced the data
complexity. This readily identified major pathways with well-
established roles in glioma growth as well as clear connections
with PI3K and mTOR signaling downstream of RTK
activation12,17. Subsequently, coregulated genes in each of the
clusters were summarized to pathways and networks using the
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network analysis method, which further narrowed down these
massive changes to 67 network modules. We also developed
systematic protein activity inference strategies for kinases and TFs
by integrating multiomics data and a variety of databases to
further prioritize 41 kinases, 23 TFs, and a core network con-
sisting of 9 master regulators from these gene clusters and net-
work modules.

Importantly, this integrated approach extended beyond simple
identification of pathways to illustrate differences between the
two oncogenes. Even within a similar cellular context in normal
tissues, unique aspects of signaling downstream of different RTKs
are required to transduce distinct functional consequences driven
by different ligands. Oncogenic NTRK fusion genes are found at
low frequencies across many different types of cancer56. In brain,
NTRK fusions may be found in adult or childhood HGGs car-
rying multiple other mutations, and they are also found in infant
HGGs and childhood low-grade gliomas in which very few
nonsynonymous mutations can be detected11,13,21,57,58. Differ-
ences in biological settings and concurrent mutations further
complicate the ability to directly compare downstream effects of
different RTK mutations in human tumors. Using model systems
to compare two different glioma-derived RTK mutations in a
more uniform setting revealed a higher amplitude of pathway
activation and a feed-forward upregulation of other RTKs in
NTRK-driven HGGs compared with PDGFRA-driven HGGs.
This is consistent with the higher proliferative index and shorter
tumor latency of the mouse HGGs, and the ability of NTRK
fusions to act as potent oncogenic drivers in primary human
tumors with minimal co-occurring mutations.

A CRISPR-Cas9 functional screen to validate essential down-
stream regulators showed a critical role for regulators of energy
metabolism. NTRK HGG cells showed dependencies on two
different isoforms of the catalytic alpha subunit of AMPK,
PRKAA1 and PRKAA2. AMPK, a key regulator of energy balance
and autophagy, is a heterotrimeric complex with diverse com-
position yielding 12 different potential complexes based on
multiple isoforms for each of the three subunits. The selective
difference between different AMPK complexes is not well
understood59. Dependencies on two different alpha subunits
show that there is insufficient AMPK redundancy in NTRK HGG
cells to tolerate loss of either of two AMPK complexes. Consistent
with this finding, during the revision of this manuscript, AMPK
inhibition was reported to reduce viability of HGG tumors,
supporting the potential of AMPK pharmacological inhibitors as
a novel therapeutic strategy for HGG60. Interestingly, NTRK
HGG cells were also dependent on EEF2K, a negative regulator of
elongation factor 2. EEF2K activity slows protein synthesis,
increasing the cellular pool of amino acids and energy, and
possibly favoring selective translation of specific proteins61.
AMPK and EE2FK play complex roles in cancer. They are
important therapeutic targets, as they help cancer cells overcome
cellular stresses such as nutrient deprivation and energy deple-
tion. However, activation of these pathways inhibits tumor
growth in some settings61,62. Therefore, an improved under-
standing of context-specific effects of AMPK and EE2FK is
essential to identify relevant settings for use of selective inhibitors
in cancer therapeutics. Dependency screens in diverse models
should provide increased clarity.

Considering the enormous complexity of genomic background
in patient samples, mapping the most significantly altered omics
changes in mouse models back to human data may be an effective
approach to pinpoint biological mechanisms driven by specific
oncogenes in patients. CRISPR-Cas9 screening was also designed
to target on six genes (i.e. Cd93, Cd74, Epha2, Spry1, Arhgap18,
and Dab2) prioritized through the cross-species omics data
integration. Cd93 was critical for the growth of NTRK-driven

HGG primary cells (Supplementary Fig. 10h). Other candidates
may have failed to be enriched from the screening because of low
cutting efficiency of all gRNAs against the same gene. However,
there were several limitations for our cross-species integration: (i)
highly limited patient sample availability (i.e. only eight patients
with PDGFRA mutations and three patients with NTRK1 fusions)
restricted the statistical power; (ii) large variations in the patients
(e.g. tumor cells of origin, tumor growth environment, patient age
and tumor grade) also confounded the data integration. Never-
theless, this approach would be useful for omics studies with large
numbers of human samples.

With rapid improvement in omics technologies and accumu-
lation of big datasets, this integrated bioinformatics pipeline
provides a general platform for prioritizing master genes and core
signaling networks in cancer omics study. Combining with
CRISPR-Cas9 functional screening, the pipeline will provide
enhanced mechanistic understanding of the oncogenic process
and illuminate potential therapeutic vulnerabilities.

Methods
Mutated RTK-driven HGG mouse models and tissue collection. Mouse
experiments were approved by Institutional Animal Care and Use Committee and
are in compliance with national and institutional guidelines. At passage one, a
pooled population of p53-deficient primary mouse astrocytes was transduced with
retrovirus expressing either human TPM3-NTRK1 fusion or PDGFRA D842V
mutation along with IRES-GFP, and then 2 × 106 cells per mouse were intracra-
nially implanted into athymic nude mice for tumorigenesis before six passages13,22.
Mice were anesthetized and perfused with PBS on the manifestation of brain tumor
symptoms. Dissection of the focal regions of GFP-labeled HGG tumors was aided
by visualizing with a fluorescence dissecting microscope to maximize tumor purity
and minimize contaminating normal mouse cells. Dissected tumor tissue was snap
frozen for proteome and transcriptome analyses. Reproducible intragroup pro-
teome, phosphoproteome, and transcriptome signatures showed that noise intro-
duced by low-level contamination of normal cells did not mask robust differential
signatures.

Antibodies and other reagents: Antibodies against the following proteins were
used for Western blotting at a concentration of 1:1000:p-c-Myc (Abcam, 32029);
Tubulin and PDGFRA (Santa Cruz, 23948, and 338); EphA2, pEphA2, and c-Myc
(Cell Signaling, 6997, 6347, and 9402). Other reagents included phosphatase
inhibitors (Roche); Lys-C (Wako); Trypsin (Promega); TiO2 beads (GL Sciences);
and C18 1.9 μm resin (Dr. Maisch GmbH). IHC was performed with anti-Ki67
antibody (Novocastra, NCL-L-Ki67-MM1), and quantified using a three-step
image processing method63; briefly, slides were scanned and processed, tissue was
classified, IHC marker was detected, and an IHC staining index was calculated.

RNAseq analysis. RNAs were extracted by Trizol (Invitrogen) from approximately
20 mg of tumor sample aliquots that were also used for proteomic profiling. The
mRNA samples were purified by poly(dT) beads, converted to cDNA followed by
fragmentation and ligation with paired end adaptors. RNAseq reads were aligned
to multiple databases encompass human genome (GRCh37), human transcriptome
(RefSeq and AceView), and all other possible combinations of RefSeq exons. The
reads mapped to the transcriptome were converted to genomic mapping and
merged in the final BAM files13.

To compare the expression levels of the human PDGFRA D842V and TPM3-
NTRK1 transgenes expressed in the mouse tumors with expression of PDGFRA or
NTRK1 in human tumors, mouse RNAseq data were remapped to a single
reference combined with human hg19 and mouse mm9 genome using
STAR_2.4.1d_modified. HTseq 2.7.2 was used to quantify reads unique to the
mouse and human genome. The human and mouse gene counts were then
normalized to FPKM. To normalize the FPKM expression between mouse and
human tumors, we identified orthologous genes and performed a quantile
normalization to ensure gene quantification for both species follow the same
distribution.

Deep proteomic profiling by reverse phase LC/LC-MS/MS. Whole proteome
and phosphoproteome analyses were processed using an established protocol5.
Tissue sample aliquots (10 mg each) were homogenized at 4 °C in 0.3 mL of lysis
buffer (50 mM HEPES, pH 8.5, 8 M urea, 0.5% sodium deoxycholate, 1× PhosStop
Phosphatase Inhibitors). Cell lysate including insoluble debris was digested with
Lys-C (a substrate-to-enzyme ratio of 100:1, w/w) followed by trypsin (a substrate-
to-enzyme ratio of 100:1, w/w) overnight at room temperature. Peptides of each
sample were labeled with TMT10-plex reagents and then equally pooled. The
pooled peptides were pre-fractionated with a 2 h gradient basic pH reverse phase
LC, resulting in a total of 30 whole proteome peptide fractions after concatenation,
and each fraction was further analyzed by long gradient (up to 9 h), acidic pH
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reverse phase LC-MS/MS (Q Exactive, Thermo Scientific). MS raw data were
processed using the reported JUMP software suites to improve sensitivity and
specificity, which combines the advantages of pattern matching with de novo
sequencing during database search7,25. Briefly, raw MS files were searched against
the mouse database downloaded from Uniprot (52,490 entries) with Met oxidation
as dynamic modification. Search parameters were precursor and product ion mass
tolerance (6 and 10 ppm, respectively), fully tryptic restriction, two maximal missed
cleavages, static TMT modification (+229.162932 Da on N-termini and Lys resi-
dues), dynamic Met oxidation (+15.99492 Da), three maximal dynamic mod-
ification sites, and the consideration of a, b, and y ions. Peptide-spectrum matches
(PSMs) were filtered by seven minimal peptide length, mass accuracy (~3ppm) and
matching scores (JUMP Jscores and dJn values) to achieve 1% protein FDR. During
the quantification, the percentage of precursor peak intensity was set to at least
70%; minimum and median TMT channel intensities were set to 2000 and 10,000,
respectively to guarantee only high-quality PSMs were used for quantification.

Phosphopeptide enrichment and LC/LC-MS/MS: The vast majority of TMT-
labeled peptides were used for phosphoproteome analysis with TiO2-based
phosphopeptide enrichment26. After the basic pH reverse phase LC separation,
fractions were first concatenated into a total of 20 phosphoproteome fractions, and
phosphopeptides in each concatenated fraction were then enriched by TiO2 beads
(a peptides-to-beads ratio of 1:4, w/w) with 0.5 mM KH2PO4 competitor, and then
subjected to acidic pH reverse phase LC-MS/MS. Data processing was essentially
the same as that of the whole proteome analysis, except the inclusion of dynamic
Ser/Thr/Tyr phosphorylation (+79.96633 Da). During the quantification, the
percentage of precursor peak intensity was set to at least 50%; minimum and
median TMT channel intensities were set to 1000 and 5000, respectively.

We determined phosphosite reliability by the localization score (Lscore) from
the JUMP software suite based on the concept of the phosphoRS algorithm64. We
first derived an Lscore (0−100%) for each phosphosite in every PSM, and then
aligned all phosphosites to protein sequences to produce a protein Lscore for each
phosphosite. When one site was identified by numerous PSMs, the highest PSM
Lscore was selected. As random assignment often occurred for ambiguous
phosphosites, inflating the number of protein phosphosites, we used multiple rules
to address this issue: (i) For ambiguous phosphosites in a PSM (e.g. the gap of the
first and second PSM Lscores < 10%), we searched the phosphosite information in
the corresponding protein to define the site, which enabled the PSMs of low quality
to borrow information from the PSMs of high quality. (ii) If neither the PSM
Lscore nor the protein Lscore was distinguishable, we used a heuristic order to
assign the phosphosite: SP-motif, S, T and Y. (iii) If none of the rules were
applicable, we sorted the PSMs by JUMP Jscores to select the phosphosite.
Principal component analyses and hierarchical clustering were performed using R
(version 3.0.1). All quantified proteins and phosphopeptides were applied for the
analyses. Missing values were filtered out during protein/phosphopeptide
quantification, and thus were not considered in PCA and hierarchical clustering
analyses.

The kinase activity should be a direct measure of the signal contributed by the
phosphorylation status; therefore, we performed the whole proteome
normalization. For the pathway analysis, we did not normalize to whole proteome
because the protein quantity is also an integral part of the measured pathway
activity. Regardless, we did not find significant differences between the normalized
vs. un-normalized phosphorylation result. Un-normalized were in Supplementary
Data 2-1; Normalized phosphorylation result is in Supplementary Data 2–2.

Evaluation of proteomic profiling depth: For whole proteome analysis, we
compared the identified peptides to all theoretically observable peptides, denoted as
proteotypic peptides. The proteotypic peptides were estimated by filtering in silico
tryptic peptides with three parameters, including the detection in transcriptome65,
compatible peptide mass range and hydrophobicity66. These cutoffs were selected
on the analysis of all identified peptides/proteins.

For phosphoproteome, we compared our data to all mouse phosphosites
collected in the PhosphoSitePlus database, in which phosphosites sequenced by at
least two independent MS analyses were accepted. Differential expression analyses
of whole proteome and phosphoproteome

The analysis was performed by one-way ANOVA-based comparison of cortex,
NTRK HGG, and PDGFRA HGG with p values estimated by permutation for 1000
times following the Storey’s procedure67 and then adjusted by the Benjamini
−Hochberg method. An initial p value cutoff of 0.05 was applied. Remaining
proteins were further filtered by a fold change of 1.5 in at least one comparison
among the three groups; a final FDR was estimated by permutation using the
resulted DE genes. DE phosphosites were identified by the same procedure except
that the fold change was set to 2.

Global pathway and network module analysis: The DE proteome and
phosphoproteome were analyzed by WGCNA30 coexpression clustering analysis.
Briefly, Pearson correlation matrix was calculated using all samples, allowing only
positive correlation. Hybrid dynamic tree-cutting method with a minimum height
for merging modules at 0.15 was applied to define coexpression clusters. The first
principal component (i.e. eigengene) was calculated as a consensus trend for each
coexpression cluster. DE proteins were assigned to each cluster based on Pearson r
values.

Pathway and network module analyses were carried out using ClueGO31, a
software package based on cytoscape, for DE proteins and phosphosites in each
coexpression cluster. In ClueGO, pathway analysis was performed using right-sided

hypergeometric test, with a BenjaminiHochberg corrected p value cutoff of 0.05.
Then Kappa statistics was applied to link deregulated pathways to construct
network, with a Kappa score cutoff of 0.5 to ensure stringency. The pathway
information was pooled from the KEGG, WikiPathways, and Reactome databases.

Kinase activity analysis by multiomics integration: Kinase activity analysis was
carried out using IKAP38, a heuristic machine learning algorithm to infer kinase
activities from the related substrate phosphorylation levels. Kinase−substrate
relationship was extracted from the PhosphoSitePlus database. The level of
substrate phosphorylation may be attributed to the related kinase activates and the
abundance of substrate itself. To eliminate the effect of substrate abundance, the
phosphoproteome data were normalized against the whole proteome level. In the
IKAP analysis, we repeated the simulation process for ten times to overcome
limitation of gradient descent optimization algorithm that could get stuck in a local
minimum. Then we applied a cutoff of 0.2 standard deviation to filter results that
failed to converge into a stable solution. Kinase activities derived from substrate
size <3 were filtered out except ones supported by upstream kinases with
coactivation patterns. Finally, we applied a cutoff of Benjamini−Hochberg-
corrected p value 0.05 to determine the list of kinases with altered activity.

TF activity analysis by multiomics integration: TF activity was derived from
target genes expression in transcriptome and whole proteome clusters and was
further validated by the measurements of TF whole protein and phosphorylation.
DE proteins from each coexpression cluster were first overlapped with TF targets to
derive differential TF activities, according to TF−target relationship in the
ENCODE database. ENCODE database contains only experimentally validated
data, and was therefore used in this study68. Fisher exact test was used to determine
the significance, followed by Benjamini−Hochberg correction. p value cutoff was
set to 0.05. Similarly, we overlapped DE genes in transcriptome with TF targets to
evaluate TF activities. We only accepted TFs that showed activity changes from
both whole proteome data and transcriptome data. The change of these TF
activities was further validated by the alteration in whole proteome and/or
phosphoproteome.

Finally, to construct a putative kinase-TF network in HGG, we incorporated the
relationships of kinase−substrate and TF−target from PhosphoSitePlus and
ENCODE databases, respectively, and manually accepted kinase-TF networks with
consistent coactivation patterns across different samples. For instance, AKT1
kinase showed different activity levels in three samples in an order of NTRK >
PDGFRA > Cortex. The AKT1 is known to phosphorylate Brca1 at S686 residue.
The phosphorylated level of S686 also followed an order of NTRK > PDGFRA >
Cortex. Furthermore, Brca1-depenent transcripts were also elevated in an order of
NTRK > PDGFRA > Cortex. Thus, we accepted the AKT1-Brca1 network.

Combination of mouse and human HGG data. Since we demonstrated the dis-
tinct oncogenic potency of the two RTK cancer drivers in mice, oncogene-
responsive changes were restricted to gene expression patterns that correlated with
the distinct oncogenic potency of the two RTKs. Thus, mouse genes with a tran-
script expression pattern (NTRK > PDGFRA > Cortex) was extracted with high
stringency (at least two-fold between NTRK HGG and PDGFRA HGG, p value was
determined by Student’s t test, and cutoff 0.05 was applied). Moreover, the genes
without the consistent change in neither whole proteome nor phosphoproteome in
mouse HGGs were further filtered out. Similarly, we extracted human genes that
had higher transcript levels in NTRK fusion cases than PDGFRA mutation cases.
Finally, the mouse and human gene lists were overlapped for convergent oncogene-
responsive changes.

Pathway activity measurement using functional phosphosites: Most of pathway
activity inference strategies rely on gene expression at transcript level or protein
level, which may not accurately indicate protein activity if highly regulated by
phosphorylation. We modified a pathway activity inference strategy51 to compute
PI3K-AKT pathway activity in different samples, termed as a(P), based on the
altered phosphoproteins with annotated functional phosphosites:

aðPÞ ¼
Xk

i¼1

Ci ´ Fi=
ffiffiffi
k

p
ð1Þ

in which K is the number of proteins with different activity relative to normal
cortex samples, only PI3K-AKT pathway proteins with annotated functional
phosphosites changes were accepted; Fi is the averaged Log2 fold change of DE
phosphosites in protein i; Ci is the functional annotation of the phosphorylation
events from PhosphoSitePlus database. If the phosphorylation at a specific residue is
reported to play a positive role in tumorigenesis, Ci is +1; if a negative role, Ci is −1,
phosphosites with conflict functional annotations in the database were not
considered in the analysis. Bootstrap was performed with 10,000 replications to
determine statistical significance69: 22 PI3K-AKT pathway Fi values were simulated
by drawing from the Fi values of all quantified phosphoryaltion events, Ci
annotations were fed to each of these simulated data points to calculate a (P). This
process was repeated 10,000 times. Finally, p value were calculated as the sum(a(P) >
1.45) /10,000.

Establishment of HGG tumorspheres from mouse HGG tissue: Tumors from
TPM3-NTRK1 implantations were dissected from the brain, mechanically
dissociated, filtered through a 40 µm filter (Fisher) and seeded in ultra-low
attachment flasks (Corning). Cells were grown in Neurobasal Medium (Gibco)
supplemented with B-27 (Gibco #12587010), N2 (Gibco #17502048), GlutaMax
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(Gibco #35050061), Heparin (2 µg/mL, Stem Cell Technologies #07980) human
FGF (20 ng/mL, Miltenyi Biotec #130093842) and human EGF (20 ng/mL, Miltenyi
Biotec #130097751). Cells were maintained as tumorspheres and grown at 37 °C,
5% O2, 5% CO2. Tumorspheres were passaged using accutase dissociation.

CRISPR library construction and screening. A set of 90 gRNA oligos that target
on 15 master regulator genes identified through the multiomics integrative analyses
and additional 6 nontargeting control gRNAs with no detectable match to mouse
genome were designed for array-based oligonucleotide synthesis followed with
library construction into pDUAL-vector-GFP52. Two individual gRNAs targeting
on each gene was cloned into each pDUAL-vector-ZsG and three different vectors
were designed for each gene. Unique binding of each gRNA was verified by
sequence blast in the whole mouse genome. Mini gRNA library was constructed at
transOMIC technologies. The mouse HGG cells were overexpressed with lentiviral
Cas9 followed with selection by blasticidin as described previously70. The Cas9-
expressing stable cells were re-infected with lentiviral-gRNA-library at M.O.I.=
0.1. The gRNA sequences were recovered by genomic PCR and deep-sequencing.
The gRNA sequences are described in Supplementary Data 4i. The raw FASTQ
data were de-barcoded, mapped to the original reference gRNA library. Counts for
each gRNA were extracted and used for differential presentation analysis.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Raw genomic and proteomic data that support the findings of this study have been
deposited in GEO with an accession number: GSE114331, and ProteomeXchange with an
accession number: PXD005360. Analyzed data are included in this published article and
its supplementary files. Source data underlying Figs. 1b, d, 2a−e, 3b−f, 4a−d, 5b, c, 6a
−d, 7a–f, and 8b are provided as a Source Data file.

Code availability
Code in this study was deposited on GitHub (https://github.com/hongwang198745/
HGG_Source_Code).
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