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Single cell transcriptome analysis of developing
arcuate nucleus neurons uncovers their key
developmental regulators
Christian Huisman1,6, Hyeyoung Cho1,6, Olivier Brock2, Su Jeong Lim 3, Sung Min Youn 3, Younjung Park1,

Sangsoo Kim3, Soo-Kyung Lee 1,4, Alessio Delogu2 & Jae W. Lee 1,5

Despite the crucial physiological processes governed by neurons in the hypothalamic arcuate

nucleus (ARC), such as growth, reproduction and energy homeostasis, the developmental

pathways and regulators for ARC neurons remain understudied. Our single cell RNA-seq

analyses of mouse embryonic ARC revealed many cell type-specific markers for developing

ARC neurons. These markers include transcription factors whose expression is enriched in

specific neuronal types and often depleted in other closely-related neuronal types, raising the

possibility that these transcription factors play important roles in the fate commitment or

differentiation of specific ARC neuronal types. We validated this idea with the two tran-

scription factors, Foxp2 enriched for Ghrh-neurons and Sox14 enriched for Kisspeptin-neu-

rons, using Foxp2- and Sox14-deficient mouse models. Taken together, our single cell

transcriptome analyses for the developing ARC uncovered a panel of transcription factors

that are likely to form a gene regulatory network to orchestrate fate specification and dif-

ferentiation of ARC neurons.
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The hypothalamus, consisting of multiple nuclei, centrally
regulate diverse homeostatic processes in the body. In
particular, the hypothalamic arcuate nucleus (ARC)

directly responds to peripheral cues due to its anatomic location
in proximity to the blood stream. This allows the ARC to serve as
a primary gatekeeper and processor for the peripheral signals in
directing the growth, energy balance, reproduction and other
behaviors in response to such cues1,2. Decades of studies sig-
nificantly enhanced our understanding of the physiological role of
the ARC neurons1,2. The highly interconnected actions among
the ARC neurons in orchestrating the body homeostasis raise the
intriguing possibility that the distinct ARC neuronal types are
generated in a coordinated manner during development. How-
ever, the gene regulatory network that governs the production of
ARC neurons remains poorly understood.

The ARC consists of many types of neurons expressing specific
sets of neuropeptides that elicit disparate physiological actions.
Agrp-neurons release the neuropeptides NPY and AgRP, which
enhance food intake and reduce energy expenditure, whereas
Pomc-neurons play the opposite roles by secreting the neuro-
peptides αMSH (cleaved from POMC) and CART3. Ghrh-
neurons release the neuropeptide GHRH, which triggers secre-
tion of the growth hormone (GH) from the pituitary gland2. GH,
in turn, induces the hepatic expression of insulin-like growth
factor 1 (IGF1) that controls bone epiphyses, muscle and adipose
tissue development, growth plates development, and glucose
homeostasis4. Kisspeptin-neurons (aka Kiss1-neurons) control
reproduction by releasing the Kiss1-encoded neuropeptide Kis-
speptin, which triggers the secretion of gonadotrophin-releasing
hormone (GnRH) from the hypothalamic Gnrh-neurons5. There
appear to be several distinct types of tyrosine hydroxylase (Th)+

neurons in the ARC. Th+ tuberoinfundibular dopamine (TIDA)-
neurons control prolactin secretion from the pituitary6. Another
type of Th+ neurons has been proposed to enhance feeding by
activating Agrp-neurons and simultaneously blocking Pomc-
neurons7. At least a subset of Ghrh-neurons was reported to
express Th8.

Using GFP reporter mice, cell type-specific transcriptomes of
adult Agrp-neurons and Pomc-neurons have been determined9.
Recent advances in single cell transcriptomics analyses provided a
new tool to catalog cell types in an unprecedented manner10.
Using a single cell RNA-sequencing (scRNA-seq) analysis, neu-
ronal composition of the adult hypothalamus has been ana-
lyzed11–14. Further, the recent scRNA-seq analysis of the adult
ARC revealed that ARC neuronal composition is more complex
than previously recognized15. This study identified 24 distinct
ARC neuronal types15, including three types of Pomc-neurons,
two types of Agrp-neurons (named Sst-expressing AgrpSst-neu-
rons, and Gm8773-expressing AgrpGm8773-neurons), and six
types of Th+ neurons (Ghrh-neurons and five additional types of
Th+ neurons).

Despite the progress in understanding the cellular configura-
tion of adult ARC, however, the developmental mechanisms by
which these ARC neuronal types gain their unique cellular
identities and the developmental relationships among distinct
ARC neuronal types whose physiological actions are closely
interconnected remain unclear. To address these important
issues, we performed scRNA-seq analysis of the developing ARC
and identified cell type-specific transcription factors and other
markers for ARC neurons, which control growth, metabolism and
reproduction, at the stage when they begin to emerge from the
progenitor zone and acquire their distinct neuronal identities. To
test if the transcription factors that are newly identified as mar-
kers of specific types of ARC neurons in the embryonic hypo-
thalamus are important for ARC development, we further
investigated and validated the vital role of the two transcription

factors Foxp2, specifically enriched in Ghrh-neurons, and Sox14,
enriched in Kisspeptin-neurons. Our results revealed that Foxp2
and Sox14 are important for the production of Ghrh-neurons and
Kisspeptin-neurons and the control of growth and reproduction,
respectively. Overall, our study identified comprehensive tran-
scriptome profiles for key ARC neurons under development and
provided a list of strong candidate transcription factors that are
likely to act as key determinants for the fate and differentiation
trajectory for these ARC neurons.

Results
scRNA-seq analysis of the developing ARC. In the pursuit of a
better understanding of the developmental principles for ARC
neurons, it is imperative to capture the gene expression profiles of
ARC neurons during the developmental stage when their fates are
being specified because developmental regulators are often tran-
siently expressed during cell fate specification or differentiation
but are not maintained in neurons of the mature brain16. In
developing ARC, Pomc begins to be expressed at E10.5 and marks
a subset of ARC neuronal progenitors, which gives rise to not
only Pomc-neurons but also Kisspeptin-neurons, a subset of
Agrp-neurons and Ghrh-neurons17–19. Notably, Npy, Ghrh, and
Kiss1 (fate marker genes of Agrp-neurons, Ghrh-neurons, and
Kisspeptin-neurons) mRNAs begin to be expressed in the ARC at
E13.5, E14.5, and E13.5, respectively, although a full complement
of neuropeptides for each ARC neuronal type emerges later16. For
instance, while presumptive Agrp-neurons express Npy and Otp,
the transcription factor critical for Agrp-neuronal fate17, at E15,
Agrp expression is not detected before E18.5 to P016,20. Likewise,
the induction of Kiss1 protein begins to be detected only beyond
E17.516. Therefore, for our scRNA-seq analysis, we chose E15 as
the developmental stage to observe multiple ARC neuronal types
that are still undergoing development. Notably, Pomc-eGfp
transgenic mice21, in which the ARC is clearly demarcated with
the expression of GFP, enabled us to dissect out only the ARC
from the embryonic brains (Fig. 1a). The cells from the pooled
ARCs were then dissociated and subjected to scRNA-seq ana-
lyses10. The unsupervised clustering of 5038 cells using Seurat22

identified 12 clusters c0 to c11 (Fig. 1b; Supplementary Data 1).
Our cellular identity data reveals that over 98% of cells in the
clusters c0-c3 (containing ~65.5% of cells that we analyzed), as
well as 24–78% of cells in the clusters c4–c10 (containing ~34% of
cells that we analyzed) express the neuronal marker Tubb3
(Supplementary Fig. 1). Also, 31–65% of cells in the clusters c0,
c1, c4, c6, and c9 express the ARC progenitor marker gene
Nkx2-1 (Supplementary Fig. 1). Only the cluster 11 (containing
~0.4% of cells that we analyzed) was clearly identifiable to contain
non-neuronal Aif1+ macrophages (Supplementary Fig. 1). Also,
unlike the scRNA-seq results for adult ARC neurons15, most of
our E15 scRNA-seq clusters do not express markers of differ-
entiated non-neuronal cells such as ependymal cells, oligoden-
drocytes and other cell types, consistent with the notion that these
non-neuronal cell types emerge at later developmental stages.
Therefore, our cellular identity dataset (Supplementary Fig. 1)
suggests that most cells in our E15 scRNA-seq analysis represent
developing neurons and neural progenitors and very little non-
neuronal cells.

To systematically investigate the cellular identity of the clusters
c0 to c11, we compared their transcriptome profiles to those of
the 24 adult ARC neuronal types15. We made a list of the genes
specifically and significantly enriched in each cluster (positive
value for log2 fold changes, FDR < 0.05), and then deduced
percentage of these genes that belong to the top 200 most specific
genes in each adult ARC neuronal type (Supplementary Fig. 2).
These analyses suggested that many clusters have the potential
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Fig. 1 scRNA analysis of E15 ARC. a Schematics for dissecting out the developing ARC region from E15 Pomc-eGfp embryos. b Spectral tSNE plot of 5038
cells from E15 ARC, colored according to gene expression, reveal 12 clusters of cells (the clusters c0 to c11). The number of cells (#) in each cluster and the
most specific gene in each cluster are as shown. c Spectral tSNE plot of 5038 cells from E15 ARC, colored for the expression of representative key marker
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Nhlh2 for Kisspeptin-neurons. d Overlap of three spectral tSNE plots of 5038 cells from E15 ARC, colored differently for Npy (blue), Ghrh (red) and Sox14
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relationship to multiple adult ARC neuronal types (Supplemen-
tary Fig. 2). In particular, closer examination of the transcrip-
tomes of the clusters c0 to c11 (Supplementary Data 1) revealed
that the cluster 0 expressed markers of multiple ARC neuronal
types, including Npy, Sst, and Otp17 (for Agrp-neurons), Ghrh
(for Ghrh-neurons), Dlx117 and Th (for Th+ neurons including
Ghrh-neurons), Pomc (for Pomc-neurons), and Nhlh2 (for Pomc-
neurons and Kisspeptin-neurons)23,24 (Fig. 1c). These results
raise the possibility that the cluster 0 represents a pool of multiple
types of developing ARC neurons, which share transcriptome
profiles to be identified as a single cluster among ARC cells at this
developmental stage.

Transcriptomes of developing neurons in the ARC. In support
of the idea that the cluster 0 is composed of multiple ARC neu-
ronal types that are taking differentiation steps, the cells in the
cluster 0 expressed markers of Agrp-neurons, Ghrh-neurons, Th-
neurons, Pomc-neurons, and Kisspeptin-neurons in a relatively
exclusively manner (Fig. 1c, d). To probe the heterogeneity of the
cluster 0, we performed an unsupervised subclustering of the cells
in the cluster c0 using Seurat22 and identified 7 subclusters c0-s0
to c0-s6 (Fig. 2a; Supplementary Data 2). To further define the
identity of cells in each subcluster, we determined what percen-
tage of the subcluster-specific genes (positive value for log2 fold
changes, FDR < 0.05) overlap with the top 200 most specific genes

in each adult ARC neuronal type (Fig. 2b). These analyses
revealed that all seven subclusters had over 20% matching score
to at least one adult ARC neuronal type.

The transcriptome of the subcluster c0-s0 highly resembled that
of the three adult ARC neuronal types, n4 SstNts-neurons, n12
AgrpSst-neurons and n23 SstUnc13c-neurons (Fig. 2b, c, Supple-
mentary Data 2). All of these three ARC neurons express Agrp, and
both n4 SstNts-neurons and n23 SstUnc13c-neurons also express the
other key Agrp-neuronal markers Npy, Sst, and Otp15, indicating a
close relationship among these three Agrp+ neuronal types. To test
if the subcluster c0-s0 represents a pool of these three Agrp+

neuronal types, we subjected the subcluster c0-s0 to yet another
round of an unsupervised subclustering using Seurat22 and
identified 4 subclusters c0-s0-s0 to c0-s0-s3 (Supplementary Fig. 3).
Importantly, markers of the three Agrp+ neuronal types in the
subcluster c0–s0 were still co-expressed in the subcluster c0-s0-s0
(Supplementary Fig. 3), suggesting that the cells in the c0–s0 at E15
may represent the common precursors to the three Agrp+ neuronal
types n4 SstNts-, n12 AgrpSst-, and n23 SstUnc13c in adult ARC. Of
note, none of the clusters or their subclusters in our dataset showed
a high similarity to another adult Agrp-neuronal type n13
AgrpGm8773-neurons, but the six subclusters c2-s0, c4-s0, c5-s1,
c6-s1, c7-s0, and c8-s0 show a limited similarity to these neurons
(Supplementary Fig. 4–9). Some cells in these subclusters in
embryonic ARC may develop to become n13 AgrpGm8773-neuronal
type at a later stage.
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The subcluster c0-s1 exhibited the matching scores over 20% to
the three types of adult ARC neurons, n7 ArxNr5a2-, n8 ThNfib-
neurons and n9 ThSlc6a3-neurons (Fig. 2b, c). In the adult ARC,
n8 ThNfib-neurons, and n9 ThSlc6a3-neurons represent the two
out of six Th+ neuronal types, and n7 ArxNr5a2-neuron share
many molecular markers with n8 ThNfib-neurons and n9
ThSlc6a3-neurons, although they do not express a high level of
Th15. Given the potential presence of other non-ARC neuronal
types in the subcluster c0-s1 (Fig. 2b), we further reclustered the
subcluster c0-s1 using Seurat22 and identified 3 subclusters c0-s1-
s0, c0-s1-s1, and c0-s1-s2, and found that the subcluster c0-s1-s2
co-expresses markers of n7 ArxNr5a2-, n8 ThNfib-neurons and n9
ThSlc6a3-neurons (Supplementary Fig. 10). Our data raise the
possibility that the cells in c0-s1-s2 may eventually segregate to n7
ArxNr5a2-neuronal, n8 ThNfib-neuronal, and n9 ThSlc6a3-neuronal
types in adult ARC.

The high matching scores suggested that the subcluster c0-s4
represents a pool of cells that differentiate to n14Ttr, n15Anxa2 and
n21Glipr1 Pomc-neurons in adult ARC (Fig. 2b, c). Since this
subcluster appears to contain at least one non-ARC neuronal type
(Fig. 2b), it was further subclustered using Seurat22 to the
subclusters c0-s4-s0 and c0s4-s1 (Supplementary Fig. 11). Inter-
estingly, the subcluster c0-s4-s1 was similar to n14Ttr Pomc-
neurons in the adult ARC (Supplementary Fig. 11). Our
subclusterings also revealed that the subcluster c1-s3 shows a
limited similarity to Pomc-neurons (Supplementary Fig. 12),
raising the possibility that some cells in this subcluster in
embryonic ARC may develop to become Pomc-neuronal type(s)
at a later stage. In addition, the subcluster c5-s2 was similar to
n15 PomcAnxa2-neurons in the adult ARC (Supplementary Fig. 6).
Our data suggest that the cells in c5-s2 may develop to become
n15 PomcAnxa2-neuronal type in adult ARC.

The transcriptome profiles of subclusters c0-s5 and c0-s6 at
E15 decisively resembled those of Ghrh-neurons and Kisspeptin-
neurons in adults, respectively (Fig. 2b, c, Supplementary Data 2).
Our analyses also indicated the relationship between the
embryonic subclusters c0-s2 and c0-s3 and the adult n27
Tbx19-neurons and n22 Tmem215-neurons15, respectively (Sup-
plementary Fig. 13, Fig. 2b). The physiological roles of n27
Tbx19-neurons and n22 Tmem215-neurons remain to be
determined.

Together, our unsupervised clustering analyses (Fig. 2b,
Supplementary Fig. 2–13), combined with the expression pattern
of the known fate markers (Fig. 2c, Supplementary Data 2,
Supplementary Data 3), identified the gene expression profiles of
the embryonic neuronal groups that are likely to differentiate to
AgrpSst-neurons, n8Nfib/n9Slc6a3 Th-neurons, n22 Tmem215-
neurons, Pomc-neurons, Ghrh-neurons, and Kisspeptin-neurons
in the mature ARC (Fig. 3).

Identification of new markers for developing ARC neurons. A
limited number of markers available for assessing the developing
ARC neuronal types remains a major challenge in studying the
gene regulatory network governing production of diverse ARC
neuronal types. Our scRNA-seq database for the subclusters c0-
s0, c0-s1-s2, c0-s3, c0-s4-s1, c0-s5, c0-s6, and others (Fig. 3,
Supplementary Data 2, 3) provide new markers required for
systematically defining the developmental trajectory of ARC
neurons in wild-type and mutant mouse models, as well as an
invaluable and much needed toolkit to identify the transcriptional
regulators, which play important roles in the ARC development
(Supplementary Data 2, 3).

To identify the key transcriptional regulators for the fate
determination and differentiation of ARC neurons, we analyzed
the differential transcriptome profiles that divided the cells in the

cluster 0 into 7 subclusters (Fig. 2a). The cells in the cluster
0 shared the overall gene expression profile to be identified as a
single cluster when a total pool of E15 ARC cells was analyzed, but
the distinguishing features among the cluster 0 cells were strong
and consistent enough to divide them into 7 subcluster groups,
whose properties resemble the traits of adult ARC neuronal types.
Thus, we reasoned that the transcription factors that are strongly
enriched in a specific subcluster while being depleted in other
subclusters are strong transcriptional regulator candidates that
determine the identity of each neuronal type and control the
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Fig. 3 Developing ARC neurons from our scRNA-seq analysis of E15 ARC.
Progenitors labeled by the transcription factor gene Nkx2-1 eventually give
rise to different neuronal types in the adult ARC. Relative to the 24 ARC
neuronal types defined by a recent RNA-seq analysis of adult ARC15, our
scRNA-seq analysis of E15 ARC reveals several developing ARC neuronal
types. Interestingly, cells in the subclusters c0-s0, c0-s1-s2, and c1-s3
appear to serve as common progenitors to multiple neuronal types in the
adult ARC. Cells in the subcluster c0-s0 may represent developing neurons
that later segregate to n4 SstNts-neurons, n12 AgrpSst-neurons, and n23
SstPthlh-neurons. Cells in the subcluster c0-s1-s2 may become n7 ArxNr5a2-
neurons, n8 ThNfib-neurons, and n9 ThSlc6a3-neurons, while cells in the
subcluster c1-s3 may segregate to n14 PomcTtr-neurons, n15 PomcAnxa2-
neurons n21 PomcGlipr1-neurons. Cells in the subclusters c0-s3, c0-s4-s1,
c0-s5, and c0-s6 may also give rise to n22 Tmem215-neurons, n14
PomcTtr-neurons, n10 Ghrh-neurons, and n20 Kisspeptin-neurons,
respectively
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ensuing developmental steps. Our bioinformatics analyses identi-
fied the transcripts for 38 transcription factors that are specifically
enriched in the subclusters c0-s0, c0-s1-s2, c0-s3, c0-s4-s1, c0-s5,
and c0-s6 (Fig. 4). Supporting our rationale for this screen, the list
included transcripts for the nine transcription factors that have
been reported to regulate the development of specific ARC
neuronal types (indicated with #, Fig. 4); Isl1 and Otp for Agrp-
neurons17,20, Dlx2 for Th-neurons25, Gsx1 and Dlx1/2 for Ghrh-
neurons17,26, Isl1 and Tbx3 for Pomc-neurons20,27,28 and Nr5a2
and the two sex hormone receptors Ar/Esr1 for Kisspeptin-
neurons29,30. In addition, many of these transcription factor
transcripts are highly enriched in one cell type while their
expressions are depleted from other cell types (indicated with $,
Fig. 4). For instance, Otp is enriched in c0-s0, related to n12-
AgrpSst, and depleted in other subclusters c0-s3 and c0-s5, related
to n22-Tmem215 and n10-Ghrh neurons, respectively (Fig. 4),
leading us to predict that Otp promotes Agrp-neuronal fate and
possibly represses Tmem215-neuronal and Ghrh-neuronal iden-
tity. This prediction is consistent with our previous finding that
Otp is required for the production of Agrp-neurons and the
aberrant induction of Otp in prospective Ghrh-neurons switch the
cells to Agrp-neuronal types17. In addition, we found transcripts
for the four transcription factors that are specifically enriched in
the subcluster c5-s2 (Fig. 4). Notably, the cluster c5 is rather
distant from the cluster c0 in the spectral tSNE plot (Fig. 1b),
suggesting that the cells in the clusters c5 and c0 may take separate
developmental lineages. Consistent with this prediction, the four
transcription factor transcripts in the subcluster c5-s2 were not
depleted from the c0-derived subclusters c0-s0, c0-s1-s2, c0-s3, c0-
s4-s1, c0-s5, and c0-s6.

In addition, we confirmed cell type-specific expression pattern
of many markers that our scRNA-seq identified using in situ
hybridization (ISH), combined with immunohistochemistry
(IHC), and dual/triple IHC analyses (e.g., Supplementray Fig. 14,
Supplementray Fig. 15, Fig. 5a, b, Fig. 6a, Supplementray Fig. 16c),
verifying the quality of our datasets.

Together, our unbiased single cell transcriptome analyses
revealed a list of cell type-specific markers, including 42
transcription factors that are likely to play crucial roles in the
fate determination and differentiation of key ARC neuronal types
in the developing hypothalamus.

Foxp2 is critical for Ghrh-neuronal development. To further
validate if our newly identified transcription factors in developing
ARC neurons are indeed important for ARC neuronal develop-
ment, we investigated the role of Foxp2 that our bioinformatics
analyses determined to be highly enriched in the subcluster c0-s5,
representing developing Ghrh-neurons (Fig. 4). Consistent with
our scRNA-seq analyses, the dual IHC assays revealed that Foxp2
is co-expressed with Dlx1, which marks both Th-neurons and
Ghrh-neurons17, in the lateral zone of the ARC where Ghrh
neurons reside at E15.5 (Fig. 5a). Similar co-expression of Foxp2
and Gsx1, the Ghrh-neuronal marker26, was also observed at
E17.5 (Fig. 5a). Moreover, Foxp2 is expressed in Ghrh-neurons at
P0 (Fig. 5b), indicating that Foxp2 expression is maintained
specifically in Ghrh-neurons at P0. Next, by crossing Foxp2f/f

mice31 to Nkx2-1-Cre mice32, we created conditional knockout
(cKO) mice in which Foxp2 is deleted in developing hypothala-
mus. Foxp2-cKO mice showed a significantly lower number of
Ghrh+ cells than control mice at both E17.5 and P100 (Fig. 5c). In
contrast, Npy+ cells in Foxp2-cKO mice did not reduce relative to
control mice (Supplementary Fig. 16a). These results suggest that
Foxp2 is critical for the development of Ghrh-neurons but not
Agrp-neurons. Consistent with the reduced number of Ghrh-
neurons, Foxp2-cKO mice showed deficits in GH signaling,
including significant decreases in body weight, linear length
(height) and the hepatic IGF1 levels (Fig. 5d). Taken together,
these results strongly support critical roles of Foxp2 in the
development of Ghrh-neurons and validate our finding of Foxp2
in the transcriptome of developing Ghrh-neurons (Fig. 4).

Sox14 is crucial for Kisspeptin-neuronal development. Given
our finding that Sox14 transcript is specifically expressed in
developing Kisspeptin-neurons (Fig. 4), we examined if Sox14 is
important for the development of Kisspeptin-neurons. Our dual
IHC assays using the previously reported Sox14 antibody33 (also
see Supplementary Fig. 16b) found that Sox14 is co-expressed
with the Kisspeptin-neuronal marker Esr130 in a subset of cells at
E15.5 (Supplementary Fig. 16c). Further validating that this
subset of cells represents Kisspeptin-neurons, dual IHC assays
using antibodies against Sox14 and Kiss1 (Kiss1 proteins begin to
be detected as early as E17.5) revealed that Sox14 and Kiss1 are
co-expressed in a similar subset of cells at E17.5 (Supplementary
Fig. 16c). Similar co-expression of Sox14 and Kiss1 was also
confirmed in our IHC assays (for Sox14) in combination with
ISH (for Kiss1) at both E15.5 and E17.5 (Fig. 6a). Consistent with
this expression pattern, Sox14-KO mice showed a markedly lower
level of Kiss1 mRNA and Kiss1 protein at both E15.5 and P100,
respectively (Fig. 6b). Moreover, Sox14-KO mice showed a sig-
nificant decrease in gonad weight, as well as anogenital distance
(AGD) in both males and females (Fig. 6c, Supplementary
Fig. 16d). Unexpectedly, both male and female Sox14-KO mice
also showed a significant reduction in body weight (Fig. 6c,
Supplementary Fig. 16d). Even when normalized to body weight,
gonadal weight was still significantly reduced (Fig. 6c, Supple-
mentary Fig. 16d). Moreover, the vaginal opening was clearly
delayed in female Sox14-KO mice (Fig. 6c). Consistent with these
results, Sox14-KO mice were completely sterile despite our
extensive breeding efforts. Taken together, our results suggest that
Sox14 is critical for Kisspeptin-neuronal development, which
likely underlies the infertility of Sox14-KO mice.
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Discussion
In comparison to the reported scRNA-seq analysis of the adult
ARC neurons15, our scRNA-seq analysis of developing ARC
neurons at E15 provides several important insights into the
development of ARC neurons (Fig. 3). First of all, while the
developing ARC at E15 contains the seven subclusters that are
nicely related to the adult counterpart ARC neurons15 (c0-s0, c0-
s1-s2, c0-s3, c0-s4-s1, c0-s5, c0-s6, and c5-s2, Fig. 3), the majority
of cells at this stage are distantly related to the adult ARC neu-
rons. Together with our cellular identity analysis indicating that

most cells represent developing neurons and progenitors (Sup-
plementary Fig. 1), these results suggest that cells in the devel-
oping ARC at E15 are mostly at an early stage of development
before manifesting clear adult neuronal cell type identities. Sec-
ondly, it is noted that the cluster c0 from our first unsupervised
clustering represents a pool of a few neuronal types, including
AgrpSst-neurons and Kisspeptin-neurons, as well as a subset of
Pomc+ and Th+ neurons (including Ghrh-neurons) (Fig. 3).
These results demonstrate that these cell types are closely related
to each other in developmental lineages, consistent with the
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previous results showing that Pomc+ progenitor cells produce not
only Pomc-neurons but also Kisspeptin-neurons and a sub-
population of Agrp-neurons18,19. Our recent report also
demonstrated an unexpected plasticity between Agrp-neuronal
and Ghrh-/Th-neuronal fates17, and these results are validated by
the co-clustering of developing Agrp-neurons and Ghrh-/Th-
neurons in the cluster c0 (Fig. 3). Thirdly, some subclusters
appear to be a pool of multiple neuronal types (Fig. 3). Overall,
our results suggest that the development of many ARC neuronal
types and segregation of the embryonic hybrid subclusters (e.g.,
c0-s0, c0-s1-s2, and c1-s3, Fig. 3) to individual cell types occur at
later developmental stages. Based on these observations, we
believe that additional scRNA-seq analyses of developing ARC
neurons at stages later than E15 are needed for a more com-
prehensive understanding of the developmental processes of ARC
neurons. Finally, it is interesting to note that the clusters c0 and
c5 are rather separated from each other in the tSNE plot (Fig. 1b).
The notion that the cells in the subclusters c0-s4-s1 and c5-s2
may develop to become n14 PomcTtr-neurons and n15 Pom-
cAnxa2-neurons in adult ARC, respectively, combined with our
finding that the cells in the cluster c0 yield AgrpSst-neurons, n8/
n9 Th-neurons, n22 Tmem215, n10 Ghrh-neurons, and n20
Kisspeptin-neurons (Fig. 3), raises an interesting possibility that
Pomc+ progenitors giving rise to n14 PomcTtr-neurons (i.e., c0-
s4-s1), but not n15 PomcAnxa2-neurons (i.e., c5-s2), may even-
tually develop to become AgrpSst-neurons, n8/n9 Th-neurons,
n22 Tmem215, n10 Ghrh-neurons, and n20 Kisspeptin-neurons
in adult ARC. These results also suggest that n15 PomcAnxa2-
neurons may be quite distinct from n14 PomcTtr-neurons in
developmental lineages.

Our finding of 38 transcription factors whose transcripts are
specifically enriched in the subclusters c0-s0, c0-s1-s2, c0-s3, c0-
s4-s1, c0-s5, and c0-s6, as well as 4 transcription factor transcripts
in the subcluster c5-s2 (Fig. 4) is believed to be a major con-
tribution to our efforts to understand the developmental processes
of ARC neurons, as we reason that they likely play critical roles in
the development of specific ARC neuronal types. Firstly, we were
able to further segregate cells in the cluster c0 (which share the
overall gene expression profile to be collectively identified as a
single cluster) to 7 different subcluster groups, suggesting that
transcription factors enriched in each subcluster may represent the
distinguishing features among the cluster c0 cells that determine
the identity of neuronal type for each subcluster and control the
ensuing developmental steps. Secondly and consistent with this
idea, the list included nine transcription factors that have been
already reported to regulate the development of specific ARC
neuronal types (indicated with #, Fig. 4)17,20,25–30. These include
the recent finding for the transcription factor Tbx3 in the devel-
opment of Pomc-neurons28. Notably, Tbx3 is highly enriched in
both developing AgrpSst-neurons and PomcTtr-neurons in our
E15 scRNAseq dataset (Fig. 4), and therefore Tbx3 may also
control the development of AgrpSst-neurons. Sox21-deficine mice
showed enhanced energy expenditure34, and it will be interesting
to investigate whether this phenotype involves the specific
enrichment of the transcription factor Sox21 in our scRNA-seq
dataset for developing Agrp-neurons and Pomc-neurons (Fig. 4),
both of which control energy expenditure. Hypothalamic Atf3,
found in our developing PomcAnxa2-neurons, has also been
implicated in regulating glucose and energy metabolism35, and it
will be an interesting future study to investigate whether Atf3 is
involved in the development of PomcAnxa2-neurons. Thirdly,
many of these transcription factors are highly enriched in specific
cell types while their expressions are depleted from other cell types
(indicated with $ symbol, Fig. 4). Notably, many of these tran-
scription factors in the list also show similar expression pattern in
the adult ARC, being enriched in specific adult ARC neuronal

types while being depleted in other adult ARC neuronal types15.
For instance, the transcription factor Prox1, enriched in devel-
oping Ghrh-neurons (i.e., c0-s5) and PomcTtr-neurons (i.e., c0-s4-
s1), is also highly enriched in adult Ghrh-and PomcTtr-neurons
while it is depleted in the remaining 22 adult neuronal types in the
ARC15. These results raise an interesting possibility that all our
transcription factors may have manifested similar expression
patterns in E15 ARC if our scRNA-seq experiments achieved
deeper sequencing depth. Indeed, most of our transcription factors
were found to be depleted in other subclusters when we adjusted
the FDR to more than 0.05. Finally, in further functional valida-
tion of our list of 42 transcription factors (Fig. 4), we demon-
strated that the two transcription factors Foxp2 and Sox14 are
critical for the development of Ghrh-neurons and Kisspeptin-
neurons, respectively (Fig. 5, Fig. 6, Supplementary Fig. 16).
Notably, we made unexpected observation for body weight
reduction in Sox14-KO mice (Fig. 6c, Supplementary Fig. 16d).
This reduction in body weight can be due to the action of Sox14 in
other cell types, and future experiments with Kisspeptin-neuron
specific cKO model for Sox14 will clarify this issue. Overall, our
results strongly suggest that our newly discovered transcription
factors are likely the key fate determinants of developing ARC
neurons and therefore their further dissection will greatly advance
our understanding of how ARC neurons develop during
embryogenesis.

In summary, this report describes the first single cell tran-
scriptomes of several developing ARC neuronal types. Moreover,
these datasets include key fate-determining transcription factors,
and further dissection of their roles in developing ARC will
greatly advance our understanding of how ARC neurons develop
during embryogenesis. Finally, the regulatory elements associated
with our new marker genes (Supplementary Data 2, 3) can be
developed to construct new transgenic mouse lines, in which the
expression of Cre recombinase can be directed to individual
developing ARC neuronal types. Notably, highly cell type-specific
mouse Cre lines will expedite our efforts to understand the
development of ARC neurons.

Methods
Animals. All mouse works were performed under approved protocols by the
Institutional Animal Care and Use Committee of the Oregon Health and Science
University and King’s College London. Foxp2f/f, Nkx2.1-Cre, Pomc-eGfp, Sox14-KO
(Sox14Gfp/+ and Sox14Cre/+) mice21,31,32,36,37 were maintained in standard cages
with free access to normal chow and water on a 12:12 light:dark cycle. Body weight
and linear length were measured17. Phenotypic characterization of sexual
maturation was performed on virgin animals from both sexes between P53 and
P100. After anesthesia, mice were weighed and measured for their AGD before
proceeding with transcardial perfusion fixation with 4% paraformaldehyde in PBS.
Gonads were isolated and postfixed for 24 h, washed in PBS and weighed. The day
of vaginal opening was established by daily visual inspection.

scRNA-seq. Pregnant Pomc-eGfp mice were euthanized 15 days after detection of
vaginal plugs. The ventral sides of the hypothalamus of the embryos (n= 6) were
collected, and the GFP positive regions, which are indicative for the location of the
ARC, were precisely dissected out under a dissection fluorescence microscope. All
samples were combined and dissociated using standard Papain digestion15. The
resulting cells were counted using an automated cell counter and subjected to the
generation of a scRNA-seq library and sequencing10.

Data processing and alignment. Raw sequencing cell barcodes were filtered to
distinguish between valid cell barcodes from empty cell barcodes using an algo-
rithm in Cellranger count v2.1.1., an analysis pipeline for Chromium single cell 3′
RNA-seq results10. Total unique molecular identifier (UMI) counts across all
detected barcodes were rank-sorted, and the 99th percentile of the UMI counts
among the top n barcodes (where n is provided with an expected recovered cell
parameter; expect-cells set to 5300 in our case) were selected. The barcodes with
total UMI counts larger than or equal to 10% of the 99th percentile values were
classified as valid barcodes. Using STAR v2.4.0 with a default setting38, the filtered
reads were aligned to mm10 (refdata-cellranger-mm10-1.2.0). Only confidently
mapped (MAPQ= 255), non-PCR duplicates with valid barcodes and UMIs were
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employed to generate gene-barcode matrix. Among the 394,067,025 reads,
333,380,703 (84.60%) of reads were mapped.

Filtering and normalization. Gene-barcode count matrix was read using a func-
tion Read10X in an R package Seurat v2.0 for downstream analysis39. We initi-
alized the object with the raw data and kept all genes expressed in >3 cells and all
cells with at least 200 detected genes. To further remove possible doublets and
poor-quality cells, we filtered out outlier cells that have unique gene counts over
4500 or less than 200 (determined based on visual inspection over gene count
distribution). Also cells with a high proportion of mitochondrial genes (>10%)
were filtered out based on a report showing that if a cell is lysed, cytoplasmic RNA
will be lost apart from the RNA enclosed in the mitochondria, which will be
retained and sequenced as a quality control metric40. Further, we filtered out cells
having a high level of hemoglobin gene expression (Hba-a1 > 10) given it likely
derived from blood cells. Out of 6465 cells, 5038 cell barcodes met quality control
criteria and were utilized for downstream analysis. After removing unwanted cells
from the dataset, the gene-barcode matrix was normalized using a global-scaling
normalization method LogNormalize22, in which gene expression for each cell was
normalized by the total expression, multiplied by a scale factor 10,000, and then
log-transformed.

Dimensionality reduction, clustering, and data visualization. For downstream
analysis, we identified a set of highly variable genes in terms of expression level
across the entire data set and focused on those rather than all genes. The average
expression and dispersion (variance/mean) for each gene across all cells were
calculated using FindVariableGenes function22 and placed into bins based on their
average expression. Each z-score was then calculated for dispersion within each
bin. To mitigate the effect of confounding factors, we built linear model to regress
out the number of detected molecules per cell and mitochondrial gene expression.
After scaling and centering the data along each variable gene, we identified 1664
highly variable genes. The scaled z-scored residuals of these models were used for
dimensionality reduction and clustering. We performed principal component
analysis on the scaled matrix to further reduce the dimensions of the data. To select
a set of principal components (PC) for downstream clustering analysis, we used a
statistical resampling procedure jackStraw in Seurat package22. It constructs a null
distribution for PC scores and then estimates its p-value for each PC. For data
visualization, using 14 PCs chosen as described above, we performed t-distributed
stochastic neighbor embedding (tSNE) technique41 with the perplexity para-
meter42, an expected number of neighbors, set to the default value 30. Graph-based
clustering approach in Seurat22 was used in which distances between the cells are
calculated based on the identified PCs. To cluster the cells, a modularity optimi-
zation techniques for detecting communities in a network was used with an ori-
ginal Louvain algorithm within a function FindClusters43 to group cells together
with a resolution parameter 0.6, which returns good results for around 6000 cells.
Overall, we assigned 5038 cells into 12 different cell clusters. Subclustering was
further performed using 11PCs. Cells in each initial cluster were extracted and
reclustered in the same procedure with perplexity parameter set to 0.6. Violin plots
were utilized to visualize the distribution of gene expression among clusters. Fea-
ture plots were drawn to color single cells according to their gene expression on a
two-dimensional tSNE space.

Cluster identity determination. We took the following steps to determine a match
between our embryonic ARC clusters and the 24 adult ARC neuronal clusters15.
First, we identified the top 50 or 200 genes that are specifically enriched in each of

the adult ARC neuronal clusters n1 to n34 (by sorting the genes based on
enrichment fold)15. Next, we made a list of the genes specifically and significantly
enriched in each of our E15 clusters (positive value for log2 fold changes, FDR <
0.05), and then deduced percentage of these genes that belong to the above top 200
or the top 50 adult ARC genes. The top 50 genes represent the most specifically
expressed genes in each adult neuronal type relative to other adult neuronal types,
many of which are terminally differentiated neuronal markers. Relative to the top
50 genes, the top 51–200 genes are less specifically expressed in each adult neuronal
type. Therefore, a cluster showing a match to both the top 200 genes and the top 50
genes of a specific adult ARC neuronal type represents a more terminally differ-
entiated neuronal type relative to a cluster which shows a match to the top 200
genes but not the top 50 genes. The latter cluster consists of the cells that are
undergoing differentiation to become the specific adult ARC neuronal type but yet
to gain a battery of terminal differentiation markers.

ISH and IHC. Brains were removed from the embryos (up to P0) and fixed in 4%
PFA overnight, cryoprotected with sucrose, and frozen in OCT blocks, which
were then sectioned using a microtome with a thickness of 12 µm per section.
P50 or P100 mice were intraperitoneally injected with Avertin before performing
standard perfusion with PBS and 4% PFA, followed by overnight fixation in 4%
PFA. ISH was performed at 68 °C overnight with indicated RNA probes. After
hybridization, slices where incubated in washing buffer (50% formamide, 1× SSC
solution and 0.1% Tween20) for 1 h, blocked in MABT buffer+ 4% BSA for 1 h
and subsequently incubated with an anti-digoxigenin-AP antibody
(11093274910 Roche, 1:5000) in MABT buffer+ 2% BSA. Next day the color
reaction was performed with NBT/BCIP after washing with MABT buffer. For
subsequent co-staining of visualized RNA probes, hybridized sections were
incubated with our homemade antibodies against Dlx1/Otp (1:1000)17 or Sox14
(1:1500)33. Next day, Vectastain ABC Elite kit (PK-6101, Vector labs) was used
for the color reaction. In addition to our previously described ISH probes against
Ghrh, Npy and Kiss117,20, we also generated new RNA probes by converting
hypothalamic RNA of P0 mice to cDNA using the primers in Table 1. PCR
products were then digested with the indicated enzymes and ligated into
pBluescript. Digoxigenin-labeled riboprobes probes were generated using T7
RNA polymerase followed by purification over a column.

IHC was performed by incubating brain sections with antibodies against Kiss1
(Millipore AB9754, 1:500), Esr1 (Millipore 04–227, 1:500), Foxp2 (Abcam 16046,
1:2000), and Sox14 (home-made, 1:1500)33 overnight at 4 °C. Next day, slices were
washed with PBST and incubated with secondary fluorescence antibodies followed
by washing and counter staining with DAPI. For Kiss1 IHC, mice were
transcardially perfused with 4% paraformaldehyde in PBS and the brains were
postfixed at 4 °C for 2 h. Brains were equilibrated in 30% Sucrose/PBS, embedded
in OCT freezing compound, cut on a cryotome at 30 µm and collected in ice-cold
PBS. Endogenous peroxidase activity was quenched by 1% H2O2/PBS incubation
for 30 min at room temperature, rinsed in PBS then blocked for 2 h at room
temperature in 7% normal goat serum with 0.3%Triton X-100 in PBS, then
incubated with anti-Kiss1 rabbit antiserum AC566 (kindly provided by INRA,
France, 1:10,000) diluted in blocking solution for 72 h at 4 °C. All wash steps were
carried out in PBS alone. Secondary biotinylated goat anti-rabbit antibody (1:500)
was added for 2 h at room temperature. Sections were incubated with horseradish
peroxidase avidin-biotin complex (Vectastain ABC Elite kit, PK-6101, Vector labs)
diluted in 0.3% Triton X-100 in PBS for 1 h at room temperature. Colorimetric
reaction was carried out in presence of diaminobenzidine substrate (Sigma) for
10 min. Sections were then dehydrated and mounted in non-aqueous medium.

Table 1 Primers used in this study

Cited1-ECORI-forward (FW)-ISH
Cited1-XHOI-reverese (RV)-ISH

GGAATTCCTGGGGACTCTGAAGCGAG
TATACTCGAGCAGCCAGAGGGAAAATCTGC

Pik3r1-HINDIII-FW-ISH
Pik3r1-XHOI-RV-ISH

TATAAGCTTGGCGTGACATGTAGGCTCTCAG
TATCTCGAGAAAGGTCCCATCAGCAGTGTC

Peg10-ECORI-FW-ISH
Peg10- HINDIII-RV-ISH

ATGAATTCCAAGTGAAAAGAGGGTGGAAAC
TATAAG CTTACTTCCTTTTCAAGCTGAGGTG

Calcr-HINDIII-FW-ISH
Calcr-XHOI-RV-ISH

GATAAG CTTATCTCGGAGCGAGCAGC
TATACTCGAGAAGTACAGGAATGGCTCCTG

Cbln4-BAMH1-FW-ISH
Cbln4-HINDIII-RV-ISH

CAGGGATCCTGCTGGTGATAAAGATGTG
CCCAAGCTTAGTCAGAACTTCCAAGTTTTCTAC

Gal- ECORI-FW-ISH
Gal- HINDIII-RV-ISH

TAGAATTCTCCTGCACTGACCAGCCAC
ATTAAGCTTGATTGGCTTGAGGAGTTGGC

Asb4-ECORI-FW-ISH
Asb4-HINDIII-RV-ISH

GGAATTCGCAAAGTGCTACCCCAAAAGG
TATAAGCTTGCAGGGGTGTCTCTTCATCC

Resp18-ECORI-FW-ISH
Resp18-HINDIII-RV-ISH

GAGAATTCCGCTAGAGGGTGAAAAGTGAC
TATAAGCTTGGCCTTTGGGATTACTTTGGTG

IGF1 FW
IGF1 RV

TCATGTCGTCTTCACACCTCT
TCCACAATGCCTGTCTGAGG
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Quantification. For IGF1 quantification, small pieces of liver of avertin treated
mice were collected and dissolved in Trizol using a tissue grinder. Total RNA was
than extracted, converted into cDNA and IGF1 cDNA was quantified using qPCR
with the primers listed in Table 117. Quantification of ISH sections for Ghrh, Npy,
and Kiss1 was performed by counting the number of cells in comparable sections of
control and mutant mice. For quantification of the Kiss1-positive area, ARC-
containing sections from control and Sox14-KO brains were processed for Kiss1
immunodetection by the DAB method in parallel. Digital images were acquired
under identical magnification, lighting and exposure. Digital images were con-
verted to 8-bit and quantified using the “threshold” function in ImageJ. The same
threshold value was applied across all samples.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
scRNA-seq data that support the findings of this study have been deposited in the
National Center for Biotechnology Information Gene Expression Omnibus (GEO) and
are accessible through the GEO Series accession number GSE126480. All other relevant
data are available from the corresponding author on request.
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