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Abstract
35 years since identification of HIV as the causative agent of AIDS, and 35 million deaths associated with this disease, 
significant effort is now directed towards the development of potential cures. Current anti-retroviral (ART) therapies for 
HIV/AIDS can suppress virus replication to undetectable levels, and infected individuals can live symptom free so long as 
treatment is maintained. However, removal of therapy allows rapid re-emergence of virus from a highly stable reservoir of 
latently infected cells that exist as a barrier to elimination of the infection with current ART. Prospects of a cure for HIV 
infection are significantly encouraged by two serendipitous cases where individuals have entered remission following stem 
cell transplantation from compatible HIV-resistant donors. However, development of a routine cure that could become avail-
able to millions of infected individuals will require a means of specifically purging cells harboring latent HIV, preventing 
replication of latent provirus, or destruction of provirus genomes by gene editing. Elimination of latently infected cells will 
require a means of exposing this population, which may involve identification of a natural specific biomarker or therapeutic 
intervention to force their exposure by reactivation of virus expression. Accordingly, the proposed “Shock and Kill” strategy 
involves treatment with latency-reversing agents (LRA) to induce HIV provirus expression thus exposing these cells to killing 
by cellular immunity or apoptosis. Current efforts to enable this strategy are directed at developing improved combinations 
of LRA to produce broad and robust induction of HIV provirus and enhancing the elimination of cells where replication has 
been reactivated by targeted immune modulation. Alternative strategies may involve preventing re-emergence virus from 
latently infected cells by “Lock and Block” intervention, where transcription of provirus is inhibited to prevent virus spread 
or disruption of the HIV provirus genome by genome editing.
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AAV	� Adeno-associated virus
ADC	� Antibody drug conjugates
AIDS	� Acquired immunodeficiency syndrome
ART​	� Anti-retroviral therapy
BET	� Bromodomain and extra terminal domain
bnAB	� Broadly neutralizing antibodies
BLT	� Bone marrow, liver, thymus humanized mice
CAR​	� Chimeric antigen receptor

CTIP2	� COUP-TF-interacting protein 2
CTL	� Cytotoxic T lymphocyte
CTLA-4	� Cytotoxic T-lymphocyte-associated protein 4
CRISPR	� Clustered regularly interspaced short palin-
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CTD	� C-terminal domain of RNA polymerase II
DART​	� Dual affinity retargeting antibodies
DNMT	� DNA methyltransferase
DRB	� 5,6-Dichloro-1-beta-d-ribofuranosylbenzimi-

dazole
DSIF	� DRB sensitivity inducing factor
ELL2	� Elongation factor for RNA polymerase II
HDAC	� Histone deacetylase
HIV	� Human immunodeficiency virus
HMT	� Histone methyltransferase
IL	� Interleukin
HSPC	� Hematopoietic stem and progenitor cell
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KRAB	� Kruppel associated box
LRA	� Latency reversing agent
LTR	� Long terminal repeat
NELF	� Negative elongation factor
NHEJ	� Non-homologous end joining
NIK	� NFκB-inducing kinase
NK	� Natural killer
PBMC	� Peripheral blood mononuclear cells
PKC	� Protein kinase C
PMA	� Phorbol 12-myristate 13-acetate
PTEN	� Phosphatase tension homolog
pTEFb	� Promoter of transcriptional elongation factor 

b
RNA PolII	� RNA polymerase II
siRNA	� Small interfering RNA
SMAC	� Second mitochondria-derived activator of 

caspases
TALE	� Transcription factor-like effector
TAR​	� TAT-responsive element
TAT​	� Transactivator
TCR​	� T cell receptor
TLR	� Toll-like receptor
TNF	� Tumor necrosis factor
WHO	� World Health Organization
XIAP	� X-linked inhibitor of apoptosis

Introduction

Over 37 million people are currently living with Human 
Immunodeficiency virus (HIV), and ~ 2.1 million new 
infections per year continues to fuel the HIV pandemic [1], 
for which there is no cure. HIV infection initially causes 
acute mild symptoms which, if left untreated, usually leads 
to a chronic disease characterized by gradual depletion of 
immune function such that infected individuals ultimately 
succumb to a variety of opportunistic secondary infections. 
Since HIV does not infect animals, elimination of this 
virus from the human population is scientifically plausible 
[2]. However, this will require concerted efforts that must 
address control of HIV spread within the population, as well 
as the elimination of persistent virus within infected indi-
viduals. Control of spread involves comprehensive global 
control measures to identify and treat infected people world-
wide, plus strategies to prevent transmission to the unin-
fected population. Moreover, the elimination of persistent 
HIV within infected patients will require effective treatments 
that eradicate cells harboring latent provirus genomes. To 
date, noteworthy HIV eradication programs such as UN/
AIDS 90-90-90, which utilize global epidemiological strat-
egies and mathematical models, have been implemented by 
the World Health Organization (WHO) with the goal of con-
trolling HIV disease among the global population, focusing 

on developing nations [3, 4]. Within infected individuals, 
despite the remarkable successes in reducing morbidity and 
mortality of people living with HIV, eradication of the virus 
is limited by persistent latently HIV-infected cellular reser-
voirs. This review focuses on the cellular and viral aspects of 
HIV latency and describes potential strategies for eliminat-
ing these latent reservoirs.

HIV is a retrovirus that represents one of the most tena-
cious challenges humans have encountered in recent his-
tory, but probably only the most recent confrontation with 
retroviruses throughout our evolution. The human genome 
is littered with remnants of retroviral sequences that exist as 
evidence of an ongoing co-existence of transposable genetic 
elements and their host eukaryotic organisms [5]. Conse-
quently, in several millennia, should humankind survive, 
it can be expected that fragments of HIV provirus might 
become recognizable as stable elements of human genome. 
HIV/AIDS became part of public consciousness in the early 
1980’s, and within 15 years it not only developed into a 
devastating global pandemic that meant inevitable death for 
most infected individuals but also exaggerated social divi-
sions because of the predominantly affected populations. 
Development of combination anti-retroviral therapies (ART) 
in the mid 1990’s significantly improved prognosis for most 
infected people, who can now live relatively normally, but 
are destined to remain on medication for the duration of their 
lives [6, 7]. HIV infection in most cases no longer represents 
a death sentence, and individuals have now been living with 
the virus for 20 or more years. Unfortunately, a consequence 
of these effective therapies is that public awareness of HIV/
AIDS has diminished, and infection rates are again increas-
ing, particularly in developing nations of Africa and Asia, 
but also marginalized communities in North America and 
Europe, including in many instances aboriginal populations 
[8, 9]. An increasing awareness that current therapies are a 
short-term solution, and growing health problems among the 
aging HIV-infected population [10], has led to a discussion 
of potential “cures” for HIV infection [11]. Given that ~ 35 
million people have died from HIV/AIDS-related disease, 
and currently nearly 40 million are living with HIV-infec-
tion, this represents the most significant infectious disease 
for which a pathogen has been identified but curative therapy 
has yet to be devised.

HIV infection and the development of latent 
provirus reservoirs

HIV infects a variety of immune cell types bearing the CD4 
and CXCR4/CCR5 co-receptors, including helper T cells, 
macrophages, and dendrocytes, and if untreated, microglial 
cells and astrocytes of the nervous system (Table 1). Latent 
provirus can presumably develop in all of these cells, but 
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the mechanisms for the establishment of latency is best 
understood in the CD4+ T cell population. These memory 
T helper cells become programmed with specific antigens 
from a naïve precursor state through the engagement of 
the T cell receptor with antigen presenting dendritic cells. 
Programmed T helper cells evoke a corresponding immune 
response, and ultimately revert to a resting latent state upon 
clearance of antigen [12]. The extremely long lifespan of 
infected resting memory T cells represents a barrier to the 
elimination of the infection by current antiretroviral thera-
pies [13]. However, since a variety of additional cell types 
can be infected by HIV (Table 1), it is recognized that 
the complete reservoir of cells harboring HIV provirus in 
infected patients has not been precisely determined [14, 15].

The mechanisms for the establishment of latent HIV 
provirus in T cells have been the subject of many recent 
excellent and detailed reviews [13–16]. Briefly, transcrip-
tion from the HIV-1 long terminal repeat (LTR) promoter 
(Fig. 1) is tightly linked to signaling pathways downstream 
of receptors involved in immune cell activation, including 
those involved in response to cytokines and antigen pres-
entation [17, 18]. The HIV-1 LTR enhancer region is inun-
dated with binding sites for factors responsive to these sign-
aling pathways, including AP1, TFII-I, GABP/Ets, NFAT, 
and NFκB (Figs. 1a, 2a), and importantly activity of these 
factors becomes down-regulated in un-stimulated cells or 
memory cells that have reverted to latency [18, 19]. Addi-
tionally, many of these cis-elements which are occupied by 
transactivators in stimulated cells, are replaced by factors 
that recruit repressive complexes in un-stimulated cells 

(Fig. 1b), including histone deacetylates and histone meth-
yltransferases [20]. Accordingly, mechanisms mediating epi-
genetic silencing of HIV transcription are well-documented 
(Fig. 2b), and evidence suggests that repressive chromatin 
can spread from the viral LTR onto adjacent chromatin 
[21–23] (Fig. 2d). Silencing of LTR-directed transcription 
eventually causes loss of the viral transactivator protein 
TAT, which is of significant consequence because this stabi-
lizes the provirus in a latent state by preventing viral mRNA 
elongation by RNA polymerase from the core promoter [19, 
24]. A variety of additional mechanisms contribute to, and 
reinforce, maintenance of the latent provirus by preventing 
the expression of viral transcripts, including the effects of 
cellular miRNAs [25], and anti-sense transcription from the 
3′ LTR of integrated HIV-1 which contributes to recruitment 
of repressive chromatin complexes [26].

There appear to be several pathways for the production 
of latent provirus. HIV predominately integrates within 
transcribed genes, due to interaction of the viral integrase 
with mRNA processing factors [27, 28]. However, inte-
gration at some specific chromosomal locations causes a 
greater tendency to produce latency. For example, transcrip-
tional interference produced by nearby promoters inhibits 
expression from the HIV-1 LTR [29]. Additionally, the 
use of dual-reporter HIV derivatives bearing internal con-
stitutively expressed reporters has indicated that ~ 50% of 
newly infected cells harbor transcriptionally silenced pro-
virus within 24 h post-infection [30–32]. Establishment 
of immediate latent infection was also observed in cells 
infected with unmodified HIV strains [33] and is influenced 

Table 1   HIV target cell types and tissue distribution

a Can maintain virus on surface without becoming infected
b May become infected by syncitia formation

Cell lineage Markers Tissue reservoirs Life span References

CD4+ T lymphocytes CD4, CD45, CXCR4, CCR5/CCR3 Peripheral blood, lymphatic tissue, gastroin-
testinal tract

1–3 years [36, 37]

Cytotoxic CD8+ T lymphocytes CD8 Peripheral blood, lymphatic tissue, gastroin-
testinal tract

1–3 years [36–38]

Monocytes CD4, CD14, CD16, CD52, CXCR4 Peripheral blood, lymphatic tissue 4–7 days [15]
Macrophages CD4, CD13, CD11b, FcγR Peripheral blood, lymphatic tissue 2–24 months [39]
Dendrocytes CD4, CD16, CD14, CD1c, CD141 Peripheral blood 2–14 days [14, 15]
Folicular Dendrocytesa CD4, CD14, CD1c, CD141 Lymphoid tissue 2–14 days [40]
Microglia CD4, CD45, CD11b, P2RY12 Central nervous system 3–10 years [41]
Astrocytesb CD44, GLAST, ACSA Central nervous system Months [39]
Perivascular macrophages CD4, CD45, CD206 Central nervous system Months [42]
Adipose macrophages CD4, CD206, CD14 Adipose tissue 2–24 months [15]
Kupfer cells CD4, CD68, CD11b Liver 3–4 days [39]
Epidermal Langerhans CD4, CD1a, CD207 Skin epidermis, genital tract Months [39]
HSPCs CD4, CD34, CD133 Bone marrow Years [43]
Epithelial cellsb CD146, CD326 Genital tract, mammary tissue Years [14]
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by levels of basal signaling from the T cell receptor [31] 
(Fig. 1c). Immediate latency is associated with the binding 
of YY1, indicating that the establishment of this mode of 
latency is regulated by specific factors bound to the LTR 
soon after HIV genome integration [34]. Interestingly, the 
mechanism(s) for establishment of immediate latency can 
apparently overcome positive regulation by Tat [21]. Addi-
tionally, and important to this review, recent observations 
indicate that the pathway for production of latency may 
influence the spectrum of agonists that promote HIV reac-
tivation [35].

The latent HIV reservoir in patients on ART​

HIV-1 infects cells through binding of HIV gp120env with 
the CD4 membrane glycoprotein, and therefore all cell types 
expressing this marker could potentially accommodate 
infection (Table 1). However, the spectrum of target cells is 
modified by interaction of gp41env with CD4 in combination 
with the co-receptors CXCR4, CCR5 and to a lesser extent 
CCR3 [44]. These chemokine receptors are expressed on the 
surface of T cells, macrophages, eosinophils and microglial 
cells (Table 1). Hematopoietic stem cells from human fetal 

liver also express CD4, but expression of the co-receptors 
appears to be heterogeneous, particularly for CXCR4 [45]. 
Human hematopoietic stem cells can be infected by HIV 
in vitro [18, 22, 32] and these cells may represent an impor-
tant reservoir of virus in a subset of patients on ART [46]. 
The success of therapeutic strategies towards a cure seem-
ingly will be strongly influenced by the spectrum of cells 
infected with latent provirus. Importantly, for example, the 
ability of HIV to infect the stem cell population may limit 
therapies involving specific depletion of only differentiated 
CD4+ populations, and overall, infected stem cells might 
represent an insurmountable obstacle towards a cure for 
some individuals, because these could presumably regener-
ate an infected T cell population upon differentiation. Addi-
tional cell types that lack CD4 receptors, including epithelial 
cells and astrocytes (Table 1) can become infected by syncy-
tial fusion with infected CD4+ cells, but the significance of 
these infections for long term stability of the viral reservoir 
in patients on ART has not been determined [14, 47].

An important consideration relating to target cell speci-
ficity involves the half-life of latently infected cells in vivo. 
Most attention has been focused on CD4+ memory T helper 
cells, which have a lifespan of up to several years (Table 1), 
and are presumed to represent a primary reservoir of virus 

Fig. 1   Transcription factors controlling activation and repression of 
the HIV-1 LTR. a Transcription factors mediating the activation of 
HIV-1 transcription. The enhancer region of the 5′ HIV-1 LTR binds 
multiple transcriptional activator proteins [AP1, NF-κB, SP1, NFAT, 
GABP/Ets, USF1/2/TFII-I (RBF-2)] that recruit general transcription 
factors and co-activator complexes to stimulate transcription by RNA 
Polymerase II (Pol II). Transcription of the HIV-1 5′ mRNA region 
produces the TAR (TAT-Responsive) RNA stem-loop structure that 
binds the viral TAT protein, which recruits elongation factor pTEFB 
to inhibit negative regulators of pausing, DSIF and NELF, and pro-
mote elongation by RNA Pol II. The 5′ LTR is associated with two 
strongly positioned nucleosomes, designated nuc-0 and nuc-1; tran-

scriptional activation from the LTR is causes dissociation of nuc-1 
near the core promoter. b Factors causing repression of HIV-1 tran-
scription in unstimulated cells. In unstimulated cells, activator pro-
teins are replaced by transcriptional repressors (NF-κB p50, CBF-1) 
that recruit histone deacetylase and histone methyltransferase com-
plexes. Several LTR-bound factors are converted from activators 
to repressors (SP1/3 (RBF-2)/TFII-I) that recruit HDAC enzymes 
(HDAC1/2/3). The multifunctional factor YY1 (Yin Yang 1) is asso-
ciated with the latent provirus 5′ LTR and also recruits HDACs. 
Several factors, including CTIP-2, recruit histone methyltransferases 
(Suv39H1) that promote transcriptional silencing and spreading of 
repressive chromatin
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in patients on ART [48]. Studies indicate that the resting 
T helper cell population in HIV patients on ART may har-
bor ~ 1 replication competent viral genome per 106 CD4+ 
cells [49]. This implies that, with a peripheral T cell popula-
tion estimated at ~ 1012, patients on ART may harbor roughly 
106 latently infected cells. Interestingly, recent analysis indi-
cates that the majority of HIV infected cells are derived from 
the proliferation of a limited number of clones in patients 
after 1 year on ART [50]. Considering that the estimated 
half-life of latently infected memory cells is about 4 years 
(Table 1), it has been predicted ~ 88 years of treatment would 
be required for this population to decay to a level that would 
be equivalent to a cure using current ART regimens [51]. 
These staggering estimates in part have contributed to the 
current push towards development of strategies to eliminate 
infected cells from patients, as current therapies are likely to 
become untenable over the long term with an aging patient 
population where side effects of treatment become evident, 
in addition to the inevitable occurrence of resistant HIV 
variants [10].

Infection of monocyte-derived macrophages and micro-
glial cells (Table 1) also plays a significant role in dis-
semination and maintenance of HIV in patients on ART. 
Accordingly, mature macrophages appear to serve as a 

primary reservoir of HIV-1 in the humanized BLT mouse 
model [52]. Monocytes migrate to a variety of tissue 
compartments where they differentiate into macrophages 
and dendritic cells and also cross the blood–brain bar-
rier as differentiated microglial cells. Although the life 
span of these cells may be shorter than T memory cells 
(Table 1), they can contribute to long-term persistence 
by their capacity to infiltrate a variety of tissue compart-
ments where concentrations of antiretroviral drugs may 
not be sufficient to completely suppress HIV replication, 
known as sanctuary sites [53], and where the infection 
can be disseminated through low level/stochastic viral 
replication [54, 55]. For example, and particularly impor-
tant, infiltration of latently infected microglial cells into 
the central nervous system may establish an isolated viral 
population that is impenetrable by current ART and may 
act both as a reservoir for viral maintenance, as well as 
contributing to neurological disorders in the ageing HIV-
infected population [56]. Additionally, infected monocytes 
and macrophages are relatively resistant to the cytopathic 
effects of HIV replication and consequently, despite their 
shorter life span these cells may slowly release virus, 
which may contribute to viral persistence in patients over 
a long period [47].

Fig. 2   Mechanisms for the establishment of HIV-1 provirus latency. 
a Productive infection; in productively infected cells, expression from 
integrated HIV-1 provirus is stimulated by signal-responsive (cell 
signaling) transcriptional activators (A) bound to the 5′HIV-LTR 
enhancer. The viral transactivator Tat produces strong positive feed-
back activation of LTR-directed transcriptional elongation by RNA 
Polymerase II (Pol II) to maintain productive infection. b Epigenetic 
establishment of latency; in cells where signaling is down-regulated 
(T cells that revert to latency) signal-responsive transcriptional acti-
vators are replaced with repressor proteins (R) that recruit histone 
modifying factors which cause the formation of repressive nucle-

osomes (RN) through histone deacetylation and histone methylation. 
Repressive chromatin inhibits transcriptional initiation and elongation 
from the 5′ LTR promoter. c Immediate latency; approximately 50% 
of newly infected cells produce integrated HIV provirus where LTR 
transcription is repressed within 24  h. Immediate latency is associ-
ated with low levels of cell signaling, and requires the interaction of 
YY1 with the 5′ LTR, but the mechanism(s) producing this mode of 
latency have yet to be determined (?). d Silenced Provirus; repres-
sor proteins (R) bound to the transcriptionally repressed 5′ HIV LTR 
recruit silencing complexes which promote spreading of silenced (S) 
heterochromatin onto adjacent viral and cellular chromosomal DNA
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Prospects for a cure for HIV/AIDS

Two infected individuals on ART have been effectively 
cured of HIV infection by a process involving immune 
depletive treatment for leukemia or lymphoma, followed 
by allogenic transplantation of hematopoietic stem cells 
from compatible donors expressing the naturally occurring 
CCR5Δ32 mutation, which prevents infection of CD4+ 
cells by HIV [57, 58]. These encouraging interventions 
demonstrate that a cure for HIV infection is possible if a 
sufficient fraction of latently infected CD4+ cells can be 
replaced with uninfected HIV-resistant stem cells. Unfor-
tunately, this strategy is not feasible for the vast majority 
of infected individuals who are unlikely to be matched 
with compatible CCR5Δ32 donors. Consequently, the 
development of a routine effective cure will inevitably 
require the elimination of latently infected reservoirs, 
preventing transcription of the latent provirus, or destruc-
tion of HIV provirus by gene editing [59]. A variety of 
approaches based these general strategies have been pro-
posed (Fig. 3).

A major limitation to the feasibility of most curative 
strategies for HIV/AIDS relates to identifying and tar-
geting the latently infected population. Latently infected 
cells, as defined by complete repression of HIV transcrip-
tion, theoretically would be devoid of viral proteins and 
therefore antigenically indistinguishable from non-infected 
cells. However, some evidence suggests that most latently 
infected cells produce sporadic occasional viral transcripts 
(Fig. 3A), through stochastic mechanisms that may main-
tain low levels of gene products that could produce a 
unique cellular identity, either directly, or indirectly by 
affecting the expression of host cell proteins [60]. Indeed, 
studies of HIV provirus in established cell lines indi-
cates ongoing low-level replication in otherwise latently 
infected cells [21, 61]. Furthermore, infection by HIV, and 
most viruses, perturbs numerous signaling events resulting 
in massive changes in post-translational modifications of 
proteins [62]. Consequently, it is possible that cells with 
repressed integrated provirus may retain a molecular sig-
nature that is distinctive of the HIV infection which per-
sists after viral gene products have disappeared. Whether 
markers produced by these potential mechanisms will be 
useful for the detection of the latently infected population 
in patients on ART remains to be determined.

Nevertheless, to enable specific targeting of the latent 
HIV infected population, there is considerable interest in 
identifying “biomarkers” of these cells that could serve as 
the focus for specific therapies. A useful biomarker would 
likely represent a cell surface molecule that could distin-
guish latently infected cells from their uninfected counter-
parts. One study reported that cells latently infected with 

HIV express significantly higher levels of CD2 than cor-
responding uninfected CD4+ T cells [63]. More recently, 
the low affinity FcγIIa immunoglobulin chain receptor, 
CD32a, was observed to be expressed in latently infected 
CD4+ T lymphocytes, but not uninfected T cells [64]. 
However, CD32a is only expressed in ~ 50% of latently 
infected T cells but is also expressed in cells of myeloid 
lineage. Additionally, recent analysis has disputed whether 
latently infected CD4+ cells specifically express this 
marker [65]. Altogether, because neither of these markers 
specifically delineate cells latently infected with HIV, their 
utility for the elimination of this population is question-
able. Although efforts to identify biomarkers are ongoing, 
it seems likely that a combination of surface molecules 
may be required for therapeutic purposes to specifically 
and effectively target this population.

Exposing and eliminating latently 
HIV‑infected cells: Shock and Kill

Viral infections are normally cleared because the immune 
system recognizes pathogen proteins expressed on the sur-
face of infected cells, which are eliminated by cell-mediated 
cytotoxicity [66]. In this respect, cells latently infected with 
HIV are essentially invisible to the immune system because 
they bear no virus-specific macromolecules that could 
distinguish them from uninfected cells. Consequently the 
“Shock and Kill” strategy for eliminating latently infected 
cells [67], and occasionally more recently termed “Kick and 
Kill” [68], is based on the premise that therapeutic interven-
tion to force reactivation of HIV provirus [69], and expres-
sion of viral proteins would expose these infected cells to 
elimination by an immune response or virus-induced apop-
tosis [70] (Fig. 3B). Multiple parameters will influence the 
feasibility of this approach. HIV-1 transcription is regulated 
by cell signaling pathways linked to T cell receptor (TCR) 
engagement and T cell activation responses [17] (Fig. 2a). 
Therefore a major challenge is to force induction of viral 
expression without promoting global T cell activation, which 
can have life-threatening toxic effects by causing a “cytokine 
storm” otherwise known as cytokine release syndrome [71]. 
Additionally, the success of “Shock and Kill” will depend 
upon a sufficiently broad and robust induction of viral tran-
scription, coupled with a corresponding competent immune 
response capable of purging the latently infected popula-
tion [72]. Various reports of initial clinical trials [73] have 
revealed that both the “Shock” and the “Kill” parameters 
currently have limitations that will require further devel-
opment [74], importantly considering that latently infected 
cells seem to be particularly resistant to killing by CD8+ 
cytotoxic T cells [75].
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Fig. 3   Potential strategies to eliminate cells latently infected with 
HIV-1. Combined Shock and enhanced Kill. Cells latently infected 
with HIV-1 provirus may produce sporadic transcripts (A), which 
mostly terminate shortly upon initiation because of RNA Polymerase 
II pausing factors (DSIF, NELF). Occasional transcripts may produce 
viral gene products, including the viral transactivator TAT. Combi-
nations of latency-reversing agents (LRA) may be employed to pro-
duce broad and robust reactivation of provirus mRNA expression and 
production of viral gene products (B) (g, gag; e, env; t, tat; v, vif; n, 
nef). Killing of cells with reactivated provirus could be encouraged 
by additional intervention, including: (i) enhanced cellular apopto-
sis induced by viral proteins; (ii) enhanced cellular and/or humoral 
immune responses towards HIV-infected cells; (iii) production of 
designer chimeric antigen receptor (CAR)-expressing CD8 T cells 
that target HIV env or gag gene products expressed on the surface 
of infected cells; (iv) antibody drug conjugates (ADC) using env- or 
gag-specific antibodies coupled to toxic effectors; (v) recombinant 

Dual Affinity Retargeting Antibodies (DART) may promote specific 
elimination of specific subsets of HIV-1 infected cells following 
reactivation of provirus through recognition of a cell surface marker 
(CD3) in combination with viral gene products (env). Lock and block. 
Therapeutic intervention that prevents the expression of HIV gene 
products could “lock down” sporadic expression in latently infected 
cells, to prevent re-emergence of virus when anti-retroviral therapy 
is removed. Such strategies may involve inhibiting factors that acti-
vate transcription from the HIV LTR (C), prevent elongation of RNA 
transcripts from the viral LTR promoter (D) or enhancing effects of 
repressor proteins bound to the LTR regulatory region (E). Genome 
Editing of HIV provirus. Recombinant TALEN or CRISPR/Cas9 
gene editing molecules delivered to latently infected cells designed 
to produce double-stranded cleavage at highly conserved regions of 
the provirus genome  (F). Double-stranded breaks repaired by non-
homologous end joining results in deletions of the HIV genome that 
prevents further replication (G)



3590	 I. Sadowski, F. B. Hashemi 

1 3

Development of an effective “Shock” to expose 
latently infected cells

One significant obstacle towards an effective “Shock” relates 
to differential responsiveness of proviruses integrated at 
various chromosomal locations. HIV-1 integrates into the 
chromosome predominately within transcribed regions [76]. 
Several studies indicate that responsiveness of HIV provi-
rus to T cell signaling and chromatin modifying agonists is 
strongly determined by the site of integration, and that regu-
lation of viral transcription becomes influenced by the flank-
ing chromatin environment [21]. Most integrated provirus 
is responsive to T cell signaling, which can be mimicked by 
treatment with phorbol 12-myristate 13-acetate (PMA), in 
combination with ionomycin, or cross-linking of the T cell 
receptor [77, 78]. However, in contrast, only a minor subset 
of provirus is induced, and only partially, by treatment with 
individual chromatin modifying agents, including HDAC, or 
histone methyltransferase (HMT) inhibitors [79]. Further-
more, in general, inhibitors that affect chromatin modifying 
enzymes mechanistically only produce an increase in basal 
transcription and thus cause a minor effect overall relative 
to induction that occurs as a consequence of T cell acti-
vation [79]. Additionally, signaling agonists on their own, 
including ionomycin, PMA, and its various analogs, as well 
as interleukin-2 (IL-2), interleukin-7 (IL-7), and Toll-like 
receptor 7 (TLR-7) agonists induce only a sub-population of 
provirus integrants, and in general induce transcription to a 
significantly lower level compared to T cell receptor stimu-
lation [79]. Therefore, exposing a significant proportion of 
the latently infected population is not likely with a single 
agonist. Consequently, there is a recent trend towards the 
development of combinations of reagents that affect multiple 
pathways to produce broader and synergistic transcriptional 
responses [79, 80].

Latency reversing agents (LRA) for shocking 
expression of HIV provirus

Regulation of HIV transcription is more complicated 
than for a typical signal-responsive host gene (Fig. 1). 
The latent HIV genome responds to multiple signaling 
pathways downstream of the T cell receptor (Fig. 2a), 
in addition to a variety of cytokines and innate immune 
stimuli [17, 81]. The enhancer of the HIV-1 LTR binds 
many transcriptional activator proteins (Fig. 1a), which 
mediate response to these signals, and overall, approxi-
mately 30 different factors have been found to interact 
with sequences within the 5′ LTR region [18]. Addition-
ally, the viral transactivator TAT promotes transcriptional 
elongation from the core promoter (Fig. 1a), by recruit-
ment of the pTEFb complex, phosphorylation of the RNA 
polymerase II C-terminal repeat domain, and inhibition of 

the pausing factors NELF and DSIF [82]. Consequently, 
considering the multitude of potential mechanistic oppor-
tunities for positive regulation, it might be expected that a 
large variety of chemical interventions would be capable 
of producing elevated expression from the LTR.

Initial studies to reactivate HIV provirus for the purpose 
of clearing the latently infected population involved the 
use of cytokines, including IL-2 and IL-7 [81] (Table 2). 
An early study showed that patients who received IL-2 
in combination with ART had lowered counts of resting 
memory CD4+ T cells than patients who received anti-
viral drugs alone [101], but this treatment was unable 
to eliminate latently infected cells. Additional signaling 
effectors used for latency reactivation in clinical trials have 
included agonists for TLR-2, TLR-7 and TLR-9 [102, 103] 
(Table 2).

The second class of “Shock” reagents are represented 
by inhibitors of epigenetic modifying enzymes (Table 2), 
namely histone deacetylases (HDAC), and histone methyl-
transferases (HMT); as mentioned above transcription of 
the HIV provirus is silenced by a combination of epigenetic 
mechanisms mediated by these enzymes [23] (Figs. 1b, 2d). 
Notably, many groups have demonstrated that chromatin 
modifying inhibitors are capable of inducing HIV provirus 
in a variety of cell line models, as well as cultured latently 
infected peripheral blood mononuclear cells (PBMCs). 
HDAC inhibitors, in particular had recently already been 
used in experimental trials for the treatment of various can-
cers, and consequently the earliest trials of shock and kill for 
patients on ART were performed with the HDAC inhibitors, 
valproic acid, vorinostat, and more recently panobinostat and 
romidepsin [81, 104]. Several of these studies were ongoing 
for at least 2 years, however, despite detectable induction of 
viral replication, in no case was a significant decrease in the 
overall latently infected population observed [68]. Although 
disappointing, in retrospect this outcome is not surprising 
given more recent results indicating that the site of chromo-
somal integration can affect HIV provirus response to vari-
ous agents in vitro [21]. Furthermore, the fact that HDAC 
inhibitors were capable of inducing viral replication in vivo, 
but did not affect the latent reservoir in these trials indicates 
that the “Kill” parameter was not effective in clearing cells 
where HIV replication had been induced [70]. This suggests 
that patients on ART do not produce an adequate anti-HIV 
response, and also that few of these cells are eliminated by 
apoptotic mechanisms [105]. Importantly, these initial trials 
revealed limitations of both the shock and kill parameters, 
and ultimately have led to new efforts towards improving the 
strategy. Most important was realization that combinations 
of LRAs that target separate pathways for viral induction 
will likely be required to produce a broad and synergistic 
response to expose a significant portion of the latent popu-
lation [70].
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A third class of LRA includes compounds that modu-
late protein kinases in signaling pathways upstream of 
transcription factors that bind the LTR (Fig. 1a), and are 
normally regulated by cytokine signaling or T cell receptor 
engagement (Fig. 2a) (Table 2). This class includes the PKC 
agonists byrostatin, ingenol-3-angelate (PEP005), prostra-
tin, and related molecules. Activation of PKC in T cells by 
these agonists cause induction of LTR transcription through 
activation of NFκB but produce a weaker response than 
molecules such as PMA [88]. Several of these compounds 
have been used in clinical trials [106]. NFκB can also be 
activated by a non-canonical pathway downstream of TNF 
receptors through NFκB-inducing kinase (NIK). An inhibi-
tor of apoptosis agonist (IAPa, Debio1143) was recently 
shown to activate this pathway by promoting degradation 
of the non-canonical NFκB pathway inhibitor BIRC2 [92]. 
Dibutyrl-cAMP also acts as an HIV latency reversing agent 
through stimulation of protein kinase A signaling in sev-
eral cell line models, alone and in conjunction with HDAC 
inhibitors [89, 90].

Productive transcription from the HIV-1 5′ LTR requires 
the expression of viral TAT protein, which binds the nas-
cent TAT-response element (TAR) of the 5′ mRNA stem 

loop associated with paused RNA PolII complexes [107] 
(Fig. 1a). Binding of TAT to TAR recruits the super elon-
gation complexes, represented by pTEFb and ELL2 [108]. 
Phosphorylation of the negative regulatory factors NELF 
and DSIF by Cdk9 of pTEFb relieves their inhibitory effect 
on transcriptional elongation, while phosphorylation of ser-
ine 2 of the RNA PolII CTD heptapeptide repeat promotes 
escape from the pre-initiation complex at the core promoter 
[109]. ELL2 functions to suppress transient pausing of RNA 
Pol II [110]. On the HIV-1 LTR the BET (bromodomain and 
extra terminal domain) protein, Brd4 interacts with pTEFb 
and inhibits binding of TAT, thereby inhibiting transcrip-
tional elongation [110]. A variety of compounds known as 
BET inhibitors, typified by JQ1, cause reactivation of HIV 
transcription by antagonizing the negative effect of Brd4 on 
TAT [111] (Table 2). JQ1 also promotes release of pTEFb 
from the 7SK snRNP, making it available for recruitment to 
the LTR by TAT [112]. Because the BET inhibitors promote 
TAT-induced HIV transcription, it wouldn’t be expected that 
these compounds should induce latent HIV transcription 
that had been silenced for significant lengths of time, pre-
sumably where TAT protein is not expressed. Accordingly, 
BET inhibitors typically produce a delayed response of 

Table 2   Classes of HIV-1 provirus latency reversing agents

a HIV LTR-associated transcription factor stimulated by the LRA

Examples Txn. target(s)a References

Cytokines/receptor agonists
 Interleukins IL-2, IL-7, IL-15 [83]
 TCR/Co-receptor activators Maraviroc. [84]
 Toll-like receptor (TLR) agonists TLR2, 3, 7, 8, 9 agonists [85]

Epigenetic modifiers
 HDAC inhibitors Vorinistat, panobinostat, AR-42, MS-275, chidamide HDAC1, 2, 3 [86]
 Histone methyltranserase inhibitors Chaetocin, AZ505 Suv39H1, SMYD2 [87]

Intracellular signaling modulators
 PKC agonists Ingenol EK-16A, gnidimacrin, bryostatin, SUW133, PEP005/Inge-

nol-3-angelate, Prostratin, Bryostatin-1
NFκB [88]

 AMPK activators Dibutyryl-cAMP [89]
[90]

 JAK/STAT agonists Benzotriazole, benzazole STAT3 [91]
 IAP agonists Debio1143 NFκB (non-canonical) [92]

Transcriptional elongation regulators
 BET inhibitors JQ1, MMQO (8-methoxy-6-32 methylquinolin-4-ol), UMB-136, 

RVX-208, PFI-1, OTX015
TAT/pTEFB [93]

 Cdk9 activators Chalcone, Amt-87 pTEFB [94]
Unclassified
 Anti-oxidant Auranofin (AF) NFκB [95]
 AKT modulators Disulfiram, 57704 [96]
 Sphingosine-1-phophate receptor 1 

(S1P1) agonist
SEW2871 NFκB [97]

 Protein phosphatase 1 SMAPP1 pTEFb [98, 99]
 SMAC mimetics SBI-0637142 NFκB [100]
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LTR-directed transcription, which is thought to be initially 
dependent upon stochastic basal expression [113]. Impor-
tantly, however, BET inhibitors produce a strong synergistic 
response with a variety of other latency-reversing agents 
[79]. In addition to its interaction with pTEFB, Brd4 also 
binds a variety of additional transcription and replication 
factors, and therefore it is possible that their effect on HIV 
LTR transcription may be modulated through other factors 
as well [114].

The final class of latency-reversing agents are referred to 
as “Unclassified” (Table 2) compounds since they typically 
were identified as previously utilized drugs, that were found 
to induce HIV provirus expression in vitro, but their precise 
mechanism of action towards this effect has not yet been pre-
cisely elucidated. For instance, disulfiram is an acetaldehyde 
dehydrogenase inhibitor and anti-alcoholism drug, which 
induces HIV-1 transcription in vitro [115], and is currently 
in clinical trials in combination with additional LRAs in 
infected patients on ART [104]. Disulfiram causes depletion 
of the phosphatase tension homolog, PTEN, which activates 
Akt signaling [91]. Although the precise mechanism for 
induction of HIV transcription by this pathway has not been 
determined, an additional Akt agonist (57,704) identified 
in a small molecule screen was also found reactivate virus 
expression in cell line models [96]. Similarly, auranofin, 
an organogold compound previously employed as an anti-
inflammatory/anti-rheumatic agent, induces heme oxygenase 
expression and decreases anti-oxidant response in T lympho-
cytes, which induces HIV provirus expression [95]. These 
effects correspond with activation of p38 MAPK, mitochon-
drial depolarization and release of peroxides, which may 
cause induction of HIV through activation of NFκB in T 
memory cells. Serendipitously, it was also that found that 
SMAC (second mitochondria-derived activator of caspases) 
mimetics are capable of reversing HIV latency by an unde-
fined mechanism. SMAC mimetics are small molecule com-
pounds which antagonize inhibitors of XIAP, cIAP1, and 
cIAP2, and are currently in clinical trials for the treatment 
of solid tumors [116]. Interestingly, the SMAC mimetic SBI-
0637142 produces synergistic induction of HIV expression 
in combination with HDAC inhibitors and causes apoptosis 
of latently infected CD4+ T cells in which replication has 
been reactivated [100]. Numerous additional small mol-
ecules that induce HIV expression in vitro have been iden-
tified from compound screens, but for most, mechanisms 
have not been determined [79]. Identification of additional 
novel agents that reverse HIV latency is expected to reveal 
further details of HIV provirus transcriptional regulation, 
which should lead to additional options for effective shock 
therapies. From initial clinical trials it has become appar-
ent that a single small molecule “shock” effector is likely 
not sufficient to expose a significant proportion of the latent 
population [117]. Thus, the focus for further development 

is typically directed at identifying combinations of latency-
reversing agents that synergistically induce broad and robust 
transcriptional responses [79, 118].

Recombinant biomolecules for reversing HIV 
latency

LRA cytokines and compounds (Table  2) may also be 
used in combination with recombinant macromolecules for 
reversing HIV latency. For example, recombinant HIV TAT 
delivered in exosomes causes strong activation of provirus 
expression when added to latently infected cells [119], and 
an attenuated TAT protein (Tat-R5M4) produces synergistic 
activation of provirus in combination with HDAC inhibitors 
[120]. Similarly, CRISPR/nuclease deficient Cas9 (dCas9) 
and designer zinc finger proteins have been developed to 
force induction of HIV provirus, where the general strat-
egy is to direct a transcriptional activation domain fusion 
to highly conserved elements on the 5′ LTR to cause con-
stitutive expression. The CRISPR/dCas9 system involves 
the expression of dCas9 fused to a strong transactivation 
domain in combination with a guide RNA that recognizes a 
conserved element on the HIV LTR [121]. Similarly, tran-
scriptional activator-like effector (TALE) zinc finger pro-
teins, directed to conserved elements on the LTR and fused 
to a strong transactivation domain, also cause induction of 
latent HIV provirus [122]. The potential advantage of these 
strategies is that recombinant constitutive activator fusions 
are likely not subject to chromosomal position effects or 
cell signaling pathways, and possibly could induce a larger 
proportion of the latent provirus population. Furthermore, 
studies in both yeast and mammalian cells have shown that a 
single potent transcriptional activation domain, such as that 
encoded by HSV-1 VP16 [123], can overcome repressive 
effects caused by epigenetic silencing [124]. Consequently, 
these strategies could provide an effective shock to the latent 
population, pending development of delivery and expres-
sion systems towards appropriate target cells. An additional 
approach related to these possibilities may involve delivery 
or expression of molecules that inhibit the function of micro 
RNAs (miRNA) that suppress translation of HIV-1 encoded 
proteins. For example, complementary antisense RNAs were 
shown to block the inhibitory effect of miRNAs in latently 
infected T cells to promote viral production in resting T cells 
[125].

Improving the “kill” of cells expressing reactivated 
provirus

While a variety of strategies are capable of forcing induction 
of provirus in latently infected cells, initial clinical trials with 
the shock and kill approach have shown that the immune 
system in ART patients is unable to produce a sufficient 
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anti-HIV cytotoxic CD8+ T cell response to eliminate a sig-
nificant proportion of cells in which replication has been 
reactivated [70]. Consequently, successful shock and kill 
will also require the development of complementary inter-
ventions that improve capacity to eliminate cells expressing 
viral antigens by enhancing cell-mediated immunity, or by 
facilitating apoptosis of HIV-infected cells (Fig. 3B). To this 
end, several strategies to improve HIV-1 specific cellular 
immune responses may prove effective when applied in com-
bination with the LRAs discussed above.

Early after infection, the HIV accessory proteins TAT, 
Nef and Vpr interfere with cellular apoptosis mechanisms to 
encourage viral replication, but later Env and Vpu in combi-
nation with TAT, Nef and Vpr promote apoptosis by a vari-
ety of mechanisms [70]. Accordingly, it may be possible to 
enhance killing of cells harboring reactivated HIV provirus 
by inhibiting anti-apoptotic activity of these viral proteins 
and/or driving their pro-apoptotic functions [126] (Fig. 3B 
i). Accordingly, one report described the development of 
an artificial phosphoinositide, designated L-HIPPO which 
binds HIV-1 Pr55gag and prevents translocation of virus to 
the plasma membrane thereby inhibiting virus release by 
budding. These “locked-in” virus particles were shown to 
cause apoptosis of the host cell [127]. Direct modulation of 
cellular apoptotic regulatory mechanisms can also be used to 
encourage the killing of infected cells. Bcl-2 was shown to 
have an anti-apoptotic effect on HIV infected cells through 
binding Casp8, which inhibits cleavage by HIV protease. 
A Bcl-2 antagonist, venetoclax prevents this binding and 
instead allows interaction with Bak to initiate apoptosis of 
infected cells [128]. Similarly, proteomic analysis of latently 
infected cells treated with LRA revealed that p38/JNK stress 
kinase pathways were altered, and furthermore that treat-
ment with the JNK inhibitor anisomycin caused enhanced 
cell death following HIV provirus reactivation [129]. Addi-
tionally, a subclass of protein kinase C agonists were shown 
to promote apoptosis of HIV-1 infected cells through cas-
pase 3 [130]. Recombinant macromolecules may also be 
employed to promote the killing of cells where viral gene 
products have been reactivated. For example, an inactive 
ricin A fusion protein which becomes activated upon cleav-
age by HIV-1 protease, delivered to cells in nanocapsules, 
was shown to sensitize cells to killing upon treatment with 
LRA [131].

Preventing HIV replication from the latent 
population, Lock and Block, or destroy

Diametrically opposing strategies from shock and kill 
include those that would involve disabling the capability 
of the provirus to re-emerge from latency altogether; such 
strategies are often referred to as “Lock & Block” (Fig. 3C, 

D). This could mean intervention to prevent the expression 
of viral RNA, even in cells that have been stimulated by 
activation signals. With this strategy, it may be possible to 
remove patients from the current ART and specifically target 
the latently infected population to “lock down” or prevent 
viral re-emergence and spreading of the infection to other 
cells [132]. Alternatively, a more aggressive approach would 
involve genome editing to impair the capacity of HIV pro-
virus to generate further productive infection or to delete 
provirus genomes altogether [133] (Fig. 3F, G).

Locking down HIV provirus replication

Small molecule compounds may be developed specifically 
to either block HIV reactivation or to enhance silencing and 
repression of the HIV provirus. For example, several com-
pounds developed for this purpose inhibit the basal or signal-
induced activity of NFκB [134]. The variety of LRA that can 
induce HIV expression (Table 2) reflects the fact that the 
LTR enhancer has binding sites for numerous transcription 
factors (Fig. 1a), which represents an advantage towards the 
shock aspect of shock and kill strategies. On the other hand, 
sensitivity of the HIV LTR to this variety of factors presents 
a challenge towards locking down expression by inhibition 
of a single activator, such as NFκB (Fig. 3C), which is not 
likely to prevent reactivation of the entire latent population. 
Consequently, a general strategy to “lock down” HIV pro-
virus expression might be more effective by encouraging 
transcriptional repression, through recruitment of HDACs, 
histone methyltransferases, DNA methyltransferases, or 
polycomb repressive complexes. In unstimulated cells, 
these complexes are recruited to the HIV LTR by sequence-
specific binding factors, including but not limited to CTIP2, 
SP1, NFκB p50, and TFII-I [18] (Fig. 1b). Possibilities for 
this strategy may involve the identification of molecules that 
either stimulate the function of these sequence-specific bind-
ing factors or antagonize their negative regulators (Fig. 3E). 
There are not currently any small molecule compounds or 
drugs with these properties, and consequently, this repre-
sents an important focus for future investigation.

Several reports have described possible intervention to 
cause constitutive repression of HIV-LTR transcription 
using recombinant fusion proteins and/or RNAs (Fig. 3E). 
For example, recombinant zinc finger DNA binding fusions 
that recognize highly conserved regions on the LTR (Fig. 1), 
fused to KRAB transcriptional repression domains, have 
been shown to repress transcription from the LTR and inhibit 
activation of LTR-directed transcription by T cell signaling 
[135]. A similar strategy was employed using the CRISPR/
Cas9 system, where dCas9 fused to a transcriptional repres-
sion domain was co-expressed with a guide RNA recogniz-
ing conserved elements on the LTR [136]. Several related 
strategies were designed to impair HIV transcription by 



3594	 I. Sadowski, F. B. Hashemi 

1 3

interference with the TAT/TAR interaction (Fig. 1a), inter-
fere with TAT transactivation function [137], disruption of 
the TAR RNA structure or folding [138], or to act as TAR 
RNA decoys to sequester TAT-pTEFb in complexes that are 
incapable of activating HIV transcription [139] (Fig. 3D). 
Transcriptional silencing of human genes can in some 
instances be caused using small interfering RNAs (siRNA) 
that target promoter regions. This was shown to be the case 
for the HIV-1 LTR using 21 nucleotide double-stranded 
siRNAs that target the enhancer region (Fig. 1a). Silencing 
established with this strategy was associated with accumula-
tion of repressive chromatin marks on the LTR and could be 
reversed with HDAC inhibitors [140].

Strategies involving recombinant proteins or RNAs will 
require a means to specifically target and deliver expres-
sion constructs or recombinant macromolecules to latently 
infected cells, and consequently, their success may depend 
upon identification of appropriate biomarkers. Neverthe-
less, implementation of one or more strategies described 
in this section may allow HIV-infected individuals to sub-
stitute ART with a “Lock Down” therapy, which may be 
advantageous in cases where patients have developed intol-
erance to the ART regimen, or where the virus has become 
resistant to current drugs [141]. Furthermore, because “lock 
down” strategies seek to suppress re-emergence of HIV from 
latency, this type of therapy would reveal if viral replica-
tion actually occurs at low levels in patients on the current 
ART. The expectation would be that locking down low lev-
els of replication in latently infected cells would prevent 
viral spread, in which case it may be possible to completely 
cease therapy after a sufficient length of time to allow natural 
depletion of the latently infected population.

Destruction of HIV provirus genomes

The potential application of genome editing strategies pro-
vides novel opportunities to treat previously incurable dis-
eases, and this is also true for HIV infection. CRISPR/Cas9 
and TALEN-based gene editing strategies have both been 
applied to delete HIV provirus genomes in cell culture [136, 
142]. These potential strategies have focused on highly con-
served sequences within the LTR [143]; presumably Cas9 
or TALEN-mediated endonuclease digestion within the 5′ 
and 3′ LTRs would promote deletion of the virus genome 
through repair by non-homologous end joining (NHEJ, 
Fig. 3F, G). CRISPR/Cas9 was shown to effectively delete 
HIV-1 provirus genomes in cell culture in vitro, and in vivo 
using mouse and rat model systems [144]. As with all gene 
editing strategies, for therapeutic purposes, to progress 
toward clinical trials, the technology must be optimized 
to minimize off-target effects. Importantly, because unin-
fected human cells do not possess HIV sequences it should 
be possible to develop highly specific editing reagents. 

Additionally, delivery vehicles must be developed, such as 
viral vectors, including lentivirus or adeno-associated virus 
(AAV), or non-viral vehicles, including ribonucleoprotein 
complexes or lipid-based nanoparticles. Another considera-
tion relates to specificity; to minimize side effects, limiting 
the delivery of gene editing reagents to the latently infected 
population would be preferable. Genome editing has also 
been proposed for HIV therapies that are directed at limit-
ing spread of virus in infected patients, for example by dis-
ruption of the co-receptor target genes in susceptible cells, 
which would limit the opportunity for virus spreading in 
patients on anti-retroviral therapy [133, 145, 146].

Immunotherapy of the latent HIV‑infected 
population

In conjunction with the strategies described above, a variety 
of immune-based therapies to facilitate the elimination of 
HIV-infected cells are possible. Most proposed strategies 
of this type are directed at enhancing killing or clearance of 
infected cells, in which viral replication has been induced 
with LRA, or stimulating natural immunity towards HIV-
infected cells [147] (Fig. 3A, B). Ideally, immunothera-
peutic intervention should enhance both the humoral and 
cell-mediated responses against HIV infected cells. This 
may involve a combination of boosting an already existing 
innate and adaptive immune response, inducing a response 
to novel HIV immunogens, and/or by passive immunization 
or boosting immune responses by co-treatment with modula-
tory cytokines and interleukins [148]. In this respect, IL-15 
treatment was shown to induce natural killer (NK) activ-
ity, which enhanced the elimination of cells treated with 
LRA [149] (Fig. 3B ii). Similarly, the protein kinase PLK1 
was shown to inhibit anti-HIV response of dendritic cells, 
and PLK1 inhibitors may, therefore, be useful to encourage 
endogenous HIV immunity patients treated with LRA [150].

One example of therapeutic vaccination currently under 
examination involves Vacc-4 × [151], which is comprised 
of four peptides representing highly conserved regions of 
HIV p24 viral core protein. Moreover, several recombinant 
humanized antibodies are currently in use for various thera-
peutic purposes, or under evaluation in clinical trials [152]. 
A minority of HIV-1 infected individuals develop antibod-
ies targeting vulnerable and conserved regions of the HIV-1 
Env gene product; these are designated broadly neutralizing 
antibodies (bnAB) and are capable of neutralizing infectivity 
of a wide range of HIV strains. These bnAB may be useful 
for a variety of strategies, including passive immunization, 
or in combination with other strategies to promote clearance 
of infected cells. For example, bnAB may be useful for rec-
ognition and clearance of cells where replication has been 
reactivated by LRA therapy, and viral protein synthesis has 
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resumed [153]. Accordingly, recent observations from a trial 
in rhesus macaques, have shown that prolonged treatment 
with AAV vectors encoding bnAB can reduce viral load to 
undetectable levels in otherwise untreated animals, provid-
ing proof of concept for a functional cure [154].

Antibody therapies may also be used to encourage apop-
tosis of cells with reactivated provirus by targeting surface 
markers such as B7-H1 [155] and the negative co-signaling 
programmed-death 1 (PD-1) molecules [156]. Since these 
immunoregulatory molecules play a role in HIV-mediated T 
cell exhaustion [157], antibodies that block signaling from 
these cell surface molecules could potentially also restore 
function to a large fraction of the exhausted HIV-specific 
CD8 T cell population and render them strongly responsive 
to HIV infected cells [105]. Additionally, antibodies recog-
nizing cytotoxic T-lymphocyte-associated protein 4 (CTLA-
4) could be used to block immune checkpoint pathways in 
reactivated cells [158].

Another interesting possibility for treatment of the latent 
HIV population may involve bispecific or dual affinity 
retargeting (DART) antibodies that could encourage inter-
action of activated effector CD8+ T cells recognizing the 
CD3 receptor, in combination with HIV-specific gag or env 
antigens expressed on reactivated CD4+ T cells [75, 159] 
(Fig. 3B v). Additionally, conjugates of antibodies with 
cytotoxic compounds or drugs can be used to target and kill 
specific cell types recognized by the antibody. Such antibody 
drug conjugates (ADCs) are currently in trials for the treat-
ment of various cancers and include conjugates of a wide 
range of previously employed anti-cancer drugs, such as 
doxorubicin, 5-fluorouracil, methotrexate, and many others 
[160]. Additional related strategies involve the use of conju-
gated or chelated short-lived alpha particle emitting isotopes 
[161]. Combined with LRA treatment, such ADCs employ-
ing antibodies that recognize HIV gag or env gene prod-
ucts, including the broadly neutralizing antibodies, when 
armed with their toxic cargo may provide an efficient killing 
response of the latently infected population (Fig. 3B iv).

Targeted cellular immune therapies directed against 
specific cancers are currently under investigation, with 
encouraging results [162]. Similarly, the cellular immune 
response towards cells expressing reactivated HIV pro-
virus may be encouraged by isolation of CD8+ T cells 
from patients and modifying their specificity towards an 
anti-HIV CTL response in vitro, and then reintroduced to 
the patient following expansion [163]. For this purpose, 
various strategies have been developed to activate CD8+ 
T cells in vitro by treatment with heterocylic peptides, or 
co-culture with dendrocytes [164]. A similar approach, but 
more technologically engaging, would involve designer 
immune responses, where chimeric antigen receptors 
(CAR) are produced as a fusion of the CD3 chain sign-
aling domain with the epitope single chain recognition 

motif identified from HIV-specific broadly neutralizing 
antibodies (Fig. 3B iii). This fusion could be expressed 
in autologous CD8+ T lymphocytes using lentivirus gene 
transfer, and the cells reinfused into patients treated with 
LRA [159, 165]. Similar strategies may involve transduc-
tion of CD8+ T cells with engineered T cell receptor genes 
with specificity redirected towards HIV antigens [74].

Conclusion and perspectives

The chief obstacles to eradication of HIV infection are the 
lack of an effective vaccine, the failure of ART to clear 
HIV from infected patients, and the restoration of immune 
responses capable of suppressing HIV replication after ces-
sation of treatment. During the past decade, there has been 
a major shift in focus of many HIV/AIDS research groups 
towards the development of potential cures for this disease. 
This focus has been directed at new technologies to quantify 
and identify the latently infected cells [166], and strategies 
to expose and eliminate this population from patients on 
anti-retroviral therapy. Despite some successes of global 
UN/AIDS programs in certain regions, the HIV/AIDS pan-
demic continues to grow at an alarming rate. Many of the 
proposed strategies described here rely on newly developed 
technologies, including genome editing, designer immune 
modulation and recombinant antibody therapy, as well as 
high throughput small molecule screens. Accordingly, 
research towards this goal has resulted in the identifica-
tion of an entirely novel class of drugs known as latency-
reversing agents (LRAs). Importantly, recent recognition 
that any one of these newly developed drugs and strategies 
are unlikely to be effective on their own, has led to a focus 
on devising therapies involving combinations of treatments 
that could identify and eliminate the latent HIV population. 
Considering the extensive variety of ingenious potential 
novel strategies presented here, we suggest that a cure may 
be within reach. However, it is important to recognize that 
broad implementation of successful new therapies developed 
that target latently infected reservoirs may be unavailable 
to the majority of infected individuals in impoverished and 
developing nations because of their reliance on high-tech 
strategies. Consequently, we submit that with the prospective 
of potential cures in sight, it is imperative that longer-term 
research goals be directed towards devising cost-effective 
means of implementing curative therapies on a global scale.
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