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Abstract
Nucleocytoplasmic transport is dysregulated in sporadic and familial amyotrophic lateral sclerosis (ALS) and retinal gan-
glion neurons (RGNs) are purportedly involved in ALS. The Ran-binding protein 2 (Ranbp2) controls rate-limiting steps 
of nucleocytoplasmic transport. Mice with Ranbp2 loss in Thy1+-motoneurons develop cardinal ALS-like motor traits, but 
the impairments in RGNs and the degree of dysfunctional consonance between RGNs and motoneurons caused by Ranbp2 
loss are unknown. This will help to understand the role of nucleocytoplasmic transport in the differential vulnerability of 
neuronal cell types to ALS and to uncover non-motor endophenotypes with pathognomonic signs of ALS. Here, we ascertain 
Ranbp2’s function and endophenotypes in RGNs of an ALS-like mouse model lacking Ranbp2 in motoneurons and RGNs. 
Thy1+-RGNs lacking Ranbp2 shared with motoneurons the dysregulation of nucleocytoplasmic transport. RGN abnormali-
ties were comprised morphologically by soma hypertrophy and optic nerve axonopathy and physiologically by a delay of 
the visual pathway’s evoked potentials. Whole-transcriptome analysis showed restricted transcriptional changes in optic 
nerves that were distinct from those found in sciatic nerves. Specifically, the level and nucleocytoplasmic partition of the 
anti-apoptotic and novel substrate of Ranbp2, Pttg1/securin, were dysregulated. Further, acetyl-CoA carboxylase 1, which 
modulates de novo synthesis of fatty acids and T-cell immunity, showed the highest up-regulation (35-fold). This effect 
was reflected by the activation of ramified CD11b+ and CD45+-microglia, increase of F4\80+-microglia and a shift from 
pseudopodial/lamellipodial to amoeboidal F4\80+-microglia intermingled between RGNs of naive mice. Further, there was 
the intracellular sequestration in RGNs of metalloproteinase-28, which regulates macrophage recruitment and polarization 
in inflammation. Hence, Ranbp2 genetic insults in RGNs and motoneurons trigger distinct paracrine signaling likely by 
the dysregulation of nucleocytoplasmic transport of neuronal-type selective substrates. Immune-modulators underpinning 
RGN-to-microglial signaling are regulated by Ranbp2, and this neuronal-glial system manifests endophenotypes that are 
likely useful in the prognosis and diagnosis of motoneuron diseases, such as ALS.
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Introduction

Mounting evidence supports that heterogeneous forms of 
sporadic and familial ALS share impairments of nucleo-
cytoplasmic transport [1–10] and that these impairments 
also drive the pathogenesis of other neurodegenerative dis-
eases [10–14]. Changes in nuclear-cytoplasmic distribu-
tion of nuclear shuttling substrates are thought to promote 
proteotoxicity in ALS [7, 8, 10, 15–17]. Parenthetically, 
substrates of the Ran GTPase cycle act as strong genetic 
modifiers of the toxicity of ALS substrates [7, 8, 16, 17]. 
Ran GTPase is a master regulator of nucleocytoplasmic 
transport by imparting a Ran-GTP to Ran-GDP gradient 
between the nucleus and cytoplasm. Ran-GTP associ-
ates to nuclear export receptors (e.g., exportin-1/CRM1) 
with their cargoes and to nuclear import receptors (e.g., 
importin-β) in the nuclear compartment. After exiting the 
nuclear pore complex (NPC), the disassembly of nuclear 
export ensembles is achieved by the destabilization and 
hydrolysis of Ran-GTP from these ensembles [10]. The 
Ran-binding protein 2 (Ranbp2; also called Nup358) is a 
unique vertebrate and peripheral nucleoporin, which com-
prises the cytoplasmic filaments emanating from NPCs 
[18, 19]. Ranbp2 plays a central role in terminal steps of 
nuclear export [10]. This is achieved by the docking of 
exportin-1 ensembles to the zinc-finger cluster domain 
of Ranbp2 [20–22], by the destabilization of Ran-GTP 
from nuclear export ensembles that is mediated by the 
Ran-GTP-binding domains (RBDs) of Ranbp2 [18, 23, 
24] and by the recruitment of SUMOylated-Ran GTPase-
activating protein-1 (SUMO1-RanGAP1) to Ranbp2 [10, 
25–28]. Impairments in Ranbp2 and modular activities 
thereof promote the dysregulation of nucleocytoplasmic 
transport of nuclear import and export receptors and the 
nucleocytoplasmic mislocalization of cell-type selective 
substrates of Ranbp2 [10, 21, 29–34].

We have shown that conditional loss of Ranbp2 in 
Thy1+-motoneurons of SLICK-H::Ranbp2flox/flox mice 
causes ALS-like motor traits. These traits consist of rapid 
declines of motor performance and conduction velocity of 
sciatic nerve that lead to hind limb paralysis. The motor 
deficits are followed by respiratory distress and ultimately, 
death of mice [34]. The changes in motor behaviors are 
accompanied by the nucleocytoplasmic delocalization in 
motoneurons of Ran GTPase, exportin-1, importin-β and 
nuclear shuttling of substrates, such as histone deacetylase 
4 (HDAC4) [34]. In addition, differential transcriptome 
and expression analysis of sciatic nerves and cell bod-
ies of spinal motoneurons between mice with and without 
Ranbp2 in motoneurons revealed that loss of Ranbp2 trig-
gers the dysregulation of neuronal-glial and chemokine 
signaling without apparent gliosis [34].

Growing evidence indicate that ALS and Ranbp2 affect 
retinal ganglion neurons (RGNs; a.k.a., retinal ganglion 
cells). Like in motoneurons, the nuclear envelopes of 
RGNs are highly enriched in nuclear pores and Ranbp2 
[10, 35]. This phenotype appears related to the long-dis-
tance burden of transport of cargoes from the nucleus to 
axons and synapses, a burden which is shared by RGNs 
and motoneurons [10]. In the inner retina, the peptidyl cis-
trans prolyl isomerase activity of the cyclophilin domain 
of Ranbp2 also controls the levels of hnRNPA2B1 [15, 
33], a substrate in which mutations cause ALS [36]. Fur-
ther, motoneurons and RGNs share disease-causing sub-
strates, such as optineurin. Mutations in optineurin cause 
either ALS [37, 38] or glaucoma, which is the leading 
blindness disorder caused by the dysfunction and degen-
eration of RGNs [39, 40]. Parenthetically, a glaucoma-
causing mutation in optineurin disrupts its nucleocytoplas-
mic trafficking [41].

Sporadic and familial forms of ALS (sALS and fALS) 
appear to produce non-motor syndromic phenotypes in 
humans. These include changes in the visual evoked poten-
tial of the visual pathway from the RGNs to the brain and 
the thinning of the nerve fiber (axonal) layer of the retina 
[6, 42–45]. Notably, some of these changes may occur 
even before clinical motor symptoms ensue. Regardless, 
the pathogenic drivers shared by motoneurons and RGNs 
in motoneuron diseases, such as ALS, and the reason(s) for 
the vulnerability of motoneurons to dysfunction by muta-
tions in ubiquitously expressed genes, are obscure [10, 46]. 
These barriers also hinder the potential of using RGNs as 
diagnostic and prognostic tools of motoneuron diseases, 
such as ALS.

To further the discovery of non-motor and pathogno-
monic signs of motoneuron disease, such as ALS, herein 
we ascertain the neuronal-type selective roles of Ranbp2 
in Thy1+-RGNs in SLICK-H::Ranbp2flox/flox mice with 
ALS-like motor behaviors [34] and that present genetic 
ablation of Ranbp2 in both Thy1+-motoneurons [34] 
and RGNs (this study). Loss of Ranbp2 in Thy1+-RGNs 
promotes axonopathy in the optic nerve, impairment of 
transmission of visual stimuli from RGNs to the brain 
and limited changes in the transcriptome of the optic 
nerve that are distinct from those uncovered in the sciatic 
nerve [34]. Among these changes, acetyl-CoA carboxy-
lase 1 (Acc1) was the most up-regulated mRNA. Acc1 is 
reported to be at the crux of metabolic shifts and T-cell 
immunomodulation. In this respect, we found that loss 
of Ranbp2 in RGNs caused microglial activation and the 
intracellular sequestration in somata of RGNs of metal-
loproteinase 28 (Mmp28), which is also implicated in the 
control of inflammatory responses. Taken together, these 
results support that Ranbp2 loss in RGNs promotes the 
non-cell autonomous activation of microglia, possibly by 
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regulating Acc1 expression and biogenesis and proteostasis 
of Mmp28.

Materials and methods

Mice

The generation of SLICK-H::Ranbp2flox/flox with the con-
ditional deletion of Ranbp2 in motoneurons and RGNs 
has been described [34]. Briefly, Thy1-cre/ERT2-EYFP 
(SLICK-H) mice with expression of Cre and YFP in 
Thy1+-motoneurons and RGNs [47] were crossed with Ran-
bp2flox/flox [32, 48, 49] to produce SLICK-H::Ranbp2flox/flox. 
The generation of transgenic mice expressing wild-type 
Ranbp2 tagged with hemagglutinin (HA) in a constitutive 
null Ranbp2 background, Tg-Ranbp2HA::Ranbp2−/−, and 
of Tg-Ranbp2RBD2/3*-HA mice with mutations in RBD2 and 
RBD3 of Ranbp2, were previously described [32, 33]. All 
transgenic lines were on a mixed genetic background and 
were screened for the lack of rd1 and rd8 alleles. Tamox-
ifen (T5648; Sigma-Aldrich) was administered by oral gav-
age for 5 consecutive days (0.25 mg/g of body weight) to 
4–6-week-old mice as described previously [34]. Mice were 
reared at < 70 lux and in a pathogen-free transgenic barrier 
facility at Duke University with 12-h light–dark cycles 
(6:00 A.M.–6:00 P.M.) under humidity- and temperature-
controlled conditions. Mice were given ad libitum access to 
water and chow diet 5LJ5 (Purina, Saint Louis, MO, USA). 
Mice of either sex were examined by this study. The Institu-
tional Animal Care and Use Committee of Duke University 
(A003-14-01) and Cleveland Clinic (2011-0580) approved 
the mouse protocols and the experiments were performed 
in accordance with NIH guidelines for the care and use of 
laboratory animals.

Fluorescein fundoscopy

Eyes of mice were dilated with a drop of atropine sulfate 
ophthalmic solution (1%; Alcon Laboratories, Inc., Fort 
Worth, TX, USA) and then after 5 min with phenylephrine 
hydrochloride (10%; HUB Pharmaceuticals, LLC, Rancho 
Cucamonga, CA, USA). To capture images of YFP-labeled 
RGNs in vivo in mice, non-invasive fundus images were 
taken with Micron III imaging system (Phoenix Research 
Laboratories, Pleasanton, CA, USA) in which a Xenon 
light source is coupled to a CCD-camera coupled micro-
scope with an image resolution of 4 μm in a field of view 
of 1.8 mm. The pictures were captured in recording mode 
for 60 s and then the best-focused frames were selected 
and extracted.

Visual evoked potential

After overnight dark adaptation mice were anesthetized with 
ketamine (80 mg/kg) and xylazine (16 mg/kg), and placed on 
a temperature-regulated heating pad. The pupils were dilated 
with eyedrops (2.5% phenylephrine HCl, 1% cyclopentolate, 
1% tropicamide). VEPs were recorded using an active elec-
trode positioned subcutaneously along the midline of the 
visual cortex and referenced to a needle electrode placed 
in the cheek while a third needle electrode was inserted in 
the tail to serve as the ground lead [33, 50]. VEPs were 
recorded to achromatic strobe flash stimuli presented in the 
LKC (Gaithersburg, MD) ganzfeld under dark-adapted con-
ditions. The interstimulus interval ranged from 1.1 to 6 s, 
increasing with stimulus luminance from − 2.4 to 2.1 log 
cd s/m2. The amplifier band-pass was set at 1–100 Hz and up 
to 60 successive responses were averaged to obtain a single 
VEP waveform. The mouse VEP is dominated by a negative 
component, N1. The implicit time of the N1 component was 
measured at the negative peak. The amplitude of the VEP 
was measured to N1 from the preceding baseline or positive 
peak (P1).

Transmission electron microscopy

Mice were anesthetized with ketamine/xylazine (100 mg/kg 
and 10 mg/kg of body weight, respectively) and then cardia-
cally perfused with 2.5% glutaraldehyde and 4% paraformal-
dehyde in 0.1 M sodium cacodylate buffer, pH 7.4. Eyeballs 
and optic nerves were fixed for 2 h at room temperature 
followed by 18 h at 4 °C in the same fixative, post-fixed in 
OsO4, and embedded in Araldite. Ultrathin sections were 
stained with uranyl acetate and lead citrate. Specimens were 
examined on a Phillips BioTwin CM120 electron microscope 
equipped with Gatan Orius and Olympus Morada digital 
cameras.

Antibodies

The following and previously characterized antibodies were 
used for immunofluorescence (IF) or immunoblots (IB): rab-
bit anti-Ranbp2 (8 μg/ml (IF), Ab-W1W2#10) [33, 34], rab-
bit anti-hsc70 (1:3000 (IB), ENZO Life Science, Farming-
dale, NY, cat# ADI-SPA-816) [34]; mouse mAb414 against 
nuclear pore complex proteins Nup62, Nup153, and Ranbp2/
Nup358 (10 μg/ml (IF), Covance, Emeryville, CA, cat# 
MMS-120P) [34, 49]; rabbit anti-Ran-GTP (1:100 (IF), gift 
from Dr. Ian Macara) [34, 51]; rabbit anti-CRM1 (1:50, (IF), 
Santa Cruz Biotechnology, Santa Cruz, CA, cat# sc-5595) 
[34]; mouse Ran GTPase (1:100 (IF), BD Biosciences, 
San Jose, CA, cat# 610341) [34]; mouse anti-importin β 
(Mab3E9, 1:100, (IF), gift from Dr. Steve Adams) [34, 52]; 
rabbit anti-HDAC4 (1:500 (IF), Santa Cruz Biotechnology, 
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cat# sc11418) [34]; rabbit anti-Mmp28 (1:100, (IF), 1:1000 
(IB), Proteintech, Rosemont, IL; Cat: 18237-1-AP) [34]; 
rabbit anti-GFAP (1:200, (IF), DAKO, Carpinteria, CA, 
cat# z0334) [34, 53]; rat anti- CD11b (1:100, (IF), AbD 
Serotec, Raleigh, NC, cat# MCA275G) [34, 53]; rat anti-
CD45 (1:100, (IF), BD Biosciences (BD Pharmingen), cat# 
550239) [53]; rat anti-F4/80 (1:100, (IF), AbD Serotec, cat# 
MCA9976A); mouse anti-α synuclein (1:100, (IF), Milli-
pore, cat# 36-008-C); goat anti-Brn3 (1:50 (IF), Santa Cruz 
Biotechnology, cat# sc6026); rabbit anti-Pttg1 (1:100, (IF), 
1:1000 (IB), Proteintech, cat# 18040-1-AP); rabbit anti-
NR2F2 (1:100 (IF), Abcam) [54]; Alexa Fluor-conjugated 
secondary antibodies and Hoechst 33 342 were from Invit-
rogen (Carlsbad, CA).

TUNEL and EthD‑III‑cell death assays

Retinal flat mounts were screened for necrosis and apoptosis 
by incubation of retinal explants with 5 μM EthD-III in Neu-
robasal2A Medium/B-27 Supplement (Invitrogen) followed 
by paraformaldehyde (2%) fixation and treatment with the 
DeadEnd Fluorometric TUNEL System (Promega, Madison) 
as described [48, 55].

Immunohistochemistry

Mice were anesthetized with ketamine/xylazine (100 mg/
kg and 10 mg/kg of body weight, respectively) followed by 
cardiac perfusion with 2% paraformaldehyde in 1 × PBS. 
Eye balls were dissected and incubated with 2% paraform-
aldehyde in 1 × PBS for 4 h at room temperature. Retinae 
were dissected and processed for flat mount. Specimens were 
permeabilized and blocked in 0.5% Triton X-100/5% normal 
goat serum for 12 h at 4 °C before incubation with primary 
antibodies for 36–48 h followed by multiple washes with 
1 × PBS and incubation for 2 h with anti-goat, anti-rabbit 
or anti-mouse AlexaFluor-488, AlexaFluor-594 or Cy5-
conjugated secondary antibodies. Hoechst (Invitrogen, CA) 
was used to counter-stain nuclei. Retinal wholemounts were 
placed on glass slides with retinal ganglion cell layer side 
up and with Fluoromount-G (Southern Biotech, Birming-
ham, AL, USA). Images were acquired with a Nikon C1+ 
laser-scanning confocal microscope coupled with a LU4A4 
launching base of four solid state diode lasers (407 nm/100 
mW, 488 nm/50 mW, 561 nm/50 mW, and 640 nm/40 mW) 
and controlled by Nikon EZC1.3.10 software (version 6.4). 
Pan views of YFP+-RGNs from the marginal to optic nerve 
head regions of the retina were generated by stitching over-
lapping field of views of these neurons with Photoshop CS4 
or Nikon Elements.

Morphometric analyses

Quantitation of the numbers of YFP+Thy1+ and 
Brn3+-RGNs of control (+/+) and −/− mice was performed 
on images taken from retinal flat mounts (4 image fields 
of 127 µm2 for both central and peripheral region, 3 mice/
genotype). Axon diameters and g-ratios were measured and 
calculated from transmission electron microscopic images of 
cross-sections of optic nerves. The g-ratio of was calculated 
by the ratio between the averages of the maximal and mini-
mal diameters of the axon and the myelinated fiber using 
NIKON Elements software AR (ver. 4.0). A minimum of 
100 randomly chosen axons per image field from at least 3 
non-overlapping images per mouse were used. Quantitative 
analysis of the number and size of F4/80+-microglia in the 
ganglion cell layer of the retina was performed by count-
ing and measuring positive immune fluorescence signals in 
the total image fields of 3 mm2 (approximately a quarter 
of whole retina was scanned, 3–4 mice/genotype). Surface 
areas of collapsed confocal stacks of microglia from retinal 
flat mounts were determined by image thresholding (image 
segmentation) of calibrated regions of interest (ROI) with 
Metamorph v7.0 (Molecular Devices).

Immunoblotting

After mice were killed by cervical dislocation and decapita-
tion, the retinae were carefully dissected and the optic nerves 
were cut out just before optic chiasma (~ 5 mm). Tissues 
were snap frozen and placed on dry ice upon collection 
and stored at − 80 °C. Tissue homogenates were prepared 
as described previously with minor modifications [33, 48]. 
Briefly, retinae were homogenized in radioimmune precipi-
tation assay (RIPA) buffer with zirconium oxide beads (Next 
Advance, Averill Park, NY, USA, ZROB05) and a Bullet 
blender (Next Advance, BBX24) at 8000 rpm for 3 min, 
whereas optic nerves were homogenized with stainless beads 
(Next Advance, SSB02) at 9000 rpm for 2 min with a Bullet 
blender® (Next Advance, BBX24). Protein concentrations 
of tissue homogenates were measured by the BCA method 
using BSA as the standard (Pierce). Equal amounts of 
homogenates (60 μg of retina homogenates or 30 μg of optic 
nerve homogenates) were loaded and resolved in 7.5% SDS-
PAGE Hoefer or 4–15% gradient Criterion gels (BioRad, 
Hercules, CA, USA). Blots were also reprobed for hsc70, 
whose protein levels were unchanged between genotypes, 
for normalization and quantification of proteins. Unsaturated 
band intensities were quantified by densitometry with Meta-
morph v7.0 (Molecular Devices, San Jose, CA, USA), and 
integrated density values (idv) of bands were normalized to 
the background and idv of hsc70 as described previously 
[33, 48].
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Biochemical assays

Retinae and optic nerves were collected immediately after 
the mice were euthanized, snap frozen and placed on dry 
ice, and stored at − 80 °C in a freezer. NP-40 extracts were 
prepared with Bullet blender (Next Advance, BBX24). Free 
fatty acids (FFA) were measured with the FFA Quantifi-
cation kit as described [34, 55] and as per manufacturer’s 
instructions (Biovision, Mountain View, CA, USA). A 
colorimetric assay kit for acetylcholinesterase activity was 
used as directed per manufacturer (Biovision) and previ-
ously described [34]. Data were normalized against protein 
amounts in NP40-solubilized tissue extracts used for each 
assay. Protein concentrations of NP40-solubilized extracts 
were determined by the Bradford assay (BioRad).

Immunoprecipitation assays

Fresh retinal extracts were solubilized in Nonidet P-40 buffer 
using Bullet Blender BBX24 (Next Advance Inc.) in the 
presence of 0.5 mm zirconium oxide beads (Next Advance 
Inc., Averill Park, NY, USA). 1.2 mg of retinal extracts were 
pre-cleared with 2 µg of non-immunized IgG (Stressgen, San 
Diego, CA, USA) and incubated with 50 µl of 50% protein 
A/G bead slurry (Santa Cruz Biotechnology) at 4 °C for 
1 h. The supernatants were incubated with 2 µg of mouse 
anti-HA antibody (Abcam, Cambridge, MA, USA) at 4 °C 
for 12 h. Co-immunoprecipitate complexes were resolved by 
SDS-PAGE in 4–15% gradient Criterion gels (BioRad) and 
immunoblotted with mouse anti-Pttg1 antibody (Abcam) as 
described [33, 48].

Total RNA isolation and RT‑qPCR

Total RNA was isolated using TRIzol® (Invitrogen) fol-
lowing manufacturers’ guide. RNA was reverse transcribed 
using SuperScript II First-Strand Synthesis System (Inv-
itrogen). Quantitation of mRNA level with gene-specific 
primers was carried out with cDNA equivalent to 10 ng of 
total RNA, SYBR Green PCR Master Mix and ECO Real-
Time PCR System (Illumina Inc., San Diego, CA, USA). 
The data were analyzed using Eco Real-Time PCR System 
Software version 4.0 (Illumina Inc.). The relative amount 
of transcripts was calculated by the ΔΔCT method. Data 
were normalized to GAPDH (n = 3–4). Data were analyzed 
by Student’s t test and a p value ≤ 0.05 was considered 
significant.

Deep RNA sequencing by RNA‑Seq

The dissections of optic and sciatic nerves were carried out 
concurrently from the same mice as described [34]. In this 
study, total RNA from optic nerves was isolated and subjected 

to deep RNA sequencing exactly as previously described [34]. 
Briefly, optic nerves were collected and incubated in RNAl-
ater (Ambion/Thermo Fisher Scientific, Waltham, MA, USA) 
and snap frozen in liquid nitrogen. Samples were submitted to 
Otogenetics Corporation (Norcross, GA USA) for RNA-Seq. 
The Agilent Bioanalyzer or Tapestation and OD260/280 was 
used to assess the purity and integrity of total RNA. 1–2 μg 
of cDNA was generated with the Clontech SMARTer cDNA 
kit (catalog# 634925; Clontech Laboratories, Inc., Mountain 
View, CA, USA), fragmented with Covaris (Covaris, Inc., 
Woburn, MA) or Bioruptor (Diagenode, Inc., Denville, NJ, 
USA), profiled with Agilent Bioanalyzer or Tapestation, and 
submitted to Illumina library preparation using NEBNext rea-
gents (catalog# E6040; New England Biolabs, Ipswich, MA, 
USA). The Agilent Bioanalyzer or Tapestation was used to 
determine the quality, quantity and the size distribution of the 
Illumina libraries and the libraries were submitted for Illumina 
HiSeq 2000 or HiSeq 2500 sequencing. Paired-end 100 nucle-
otide reads were generated from RNA-seq with a sequence 
depth between 45 and 70 million seq reads and checked for 
data quality using FASTQC (Babraham Institute, Cambridge, 
UK). Data were analyzed with DNAnexus (DNAnexus, Inc, 
Mountain View, CA) or the platform provided by the Center 
for Biotechnology and Computational Biology (University of 
Maryland, College Park, MD, USA) [56]. Levels of individual 
transcripts were expressed as fragments per kilobase of exon 
per million fragments mapped (FPKM) and were obtained 
using Cufflinks. A q value less than 0.05 was considered as 
statistically significant.

Statistics

Mice were randomly assorted and experiments were per-
formed blind until data analysis. Samples sizes/independent 
biological replicates were collected (power > 0.8) and these 
were comparable with other studies using the same mouse 
lines and genotypes [32, 34, 48]. Two-way repeated measure 
analyses of variance were used to analyze luminance-response 
functions for measures of VEP amplitude and timing. g-ratios 
and axonal diameters between groups were assessed with a t 
test of difference between means using generalized estimating 
equations (GEE) to account for multiple nerves per mouse. 
The difference between groups adjusting for axonal diameter 
was assessed using generalized estimating equations with 
terms for group, axonal diameter and their interaction (SAS, 
Cary, NC, USA). The Mann–Whitney test rank-sum test was 
used to examine areas of perikarya of RGNs. For all other 
assays, Student’s t test for two group comparisons was used. 
Data are reported as average values ± SD, except otherwise 
specified. Differences among the groups were considered sta-
tistically significant when p value ≤ 0.05.
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Results

Mice with targeted Ranbp2 in Thy1+‑retinal 
ganglion neurons (RGNs)

We used the mouse line, single-neuron labeling with induc-
ible Cre-mediated knock-out H transgenic line (SLICK-H), 
which expresses the yellow fluorescent protein (YFP) and 
tamoxifen-inducible Cre recombinase (CreERT2) under the 
control of neuronal Thy1 promoter in Thy1+-motoneurons 
and RGNs [47, 57–59], to cross with another line harboring 
a Ranbp2 floxed gene (Ranbp2flox/flox) [34, 49]. This cross 
generated the mouse line, SLICK-H::Ranbp2flox/flox, which 
lacks Ranbp2 in motoneurons and RGNs after tamoxifen 
administration [34] (Fig. 1A) (unless otherwise noted, here-
after SLICK-H::Ranbp2flox/flox (−/−) are mice that under-
went tamoxifen treatment). We have previously shown 
that SLICK-H::Ranbp2flox/flox mice with loss of Ranbp2 in 
Thy1+-motoneurons develop ALS-like motor traits that 

culminate with the death of mice 10.5 days after a 5-day 
regimen of tamoxifen [34]. However, the effects of loss of 
Ranbp2 in Thy1+-RGNs are unknown and this was the focus 
of this study. Like in spinal motoneurons [34], the retina of 
SLICK-H::Ranbp2flox/flox produce a recombinant transcript 
with a deletion of exon 2, fusion of exons 1 and 3, and pre-
mature stop codon in exon 3 as soon as day 0 after a 5-day 
regimen of tamoxifen (Fig. 1B). The recombinant Ranbp2 
transcript has the translation potential of only the first 31 
residues of the 3053 residues that comprise Ranbp2. Fundus 
fluorescence imaging of eyes of live wild-type and SLICK-
H::Ranbp2flox/flox mice treated with tamoxifen showed no 
overt fundoscopic differences of YFP+-RGNs and fascicula-
tion of their axons throughout the retina between genotypes 
on day 10 after the last dose of tamoxifen (d10) (Fig. 1C). 
In contrast to wild-type mice, confocal microscopy of retinal 
flat mounts showed that YFP+-RGNs lacked Ranbp2 at the 
nuclear rim at d0 (Fig. 1D). Akin to spinal motoneurons 
and other studies of other cell types [34, 49], the absence of 
Ranbp2 did not affect the localization of other nucleoporins 
at the nuclear rim of YFP+-RGNs (e.g., Nup153 and Nup62) 
(Fig. 1E). Like with motoneurons [34], loss of Ranbp2 did 
not cause the loss of somata of YFP+- and Brn3+-RGNs 
across the retina (Fig. 1F, G). The lack of change in the 
number of RGNs between genotypes was also confirmed by 
the complete absence of apoptotic and necrotic RGNs (and 
other cells) with TUNEL and EthD-III staining of retinal 
flat mounts.

SLICK‑H::Ranbp2flox/flox mice have a delay of implicit 
times of visual evoked potential (VEP)

We previously found that the sciatic nerves of SLICK-
H::Ranbp2flox/flox present lower nerve conduction velocity 
and hind limb paralysis on day 9 after the last dose of tamox-
ifen [34]. Electrophysiological disturbances in the visual 
pathway from the RGNs to the primary visual cortex, such 
as visual evoked potential (VEP) abnormalities, as well as 
the thinning of the nerve fiber (axonal) layer projected from 
RGNs were reported in ALS patients [42–45]. To ascertain 
how loss of Ranbp2 in YFP+-RGNs affected the transmis-
sion of luminance stimuli to the visual cortex, we meas-
ured the amplitude and latency (implicit times) of VEPs as 
a function of increasing flash luminance in wild-type and 
SLICK-H::Ranbp2flox/flox mice before and after treatment 
with tamoxifen [50, 60, 61]. The VEP amplitude reflects the 
sum input of RGN responses to the visual cortex, whereas 
the VEP latency reflects the integrity of the transmission 
of the action potentials by the axons of the optic nerve to 
the visual cortex [60–62]. As shown in Fig. 2A, there were 
no overt differences in VEP waveforms between untreated 
and tamoxifen-treated wild type mice, whereas there were 

Fig. 1   Genetic ablation of Ranbp2 in YFP +Thy1+-retinal ganglion 
neurons (RGNs). A The single-neuron labeling with inducible Cre-
mediated knock-out H transgenic line (SLICK-H) harbors two oppo-
sitely oriented Thy1 promoters that control the co-expression of the 
yellow fluorescent protein (YFP) and tamoxifen-inducible Cre recom-
binase (CreERT2). This line was used to excise exon 2 (ΔEx2) from a 
floxed Ranbp2 gene in mice and generate an out-of-frame exon 3 after 
splicing of exons 1 and 3. P1 is a hybrid primer against the junction 
produced by the splicing (fusion) of exons 1 and 3 of the recombinant 
transcript. P2 is a primer specific for exon 5. B Expression of Ranbp2 
mRNA without exon 2 is detected in the retina by RT-PCR with P1 
and P2 primers at the end of a daily 5-day regimen of tamoxifen 
administration, day 0 (d0), and 10 days (d10) after the last dose of 
tamoxifen. C Live fluorescence retinal fundoscopy of dilated pupils 
of mice showed no overt differences between +/+ and −/− mice at 
10 days (d10) after the last dose of tamoxifen. Arrows denote optic 
nerve head. D Confocal images of retinal flat mounts (RGNs facing 
up) show that compared to +/+ mice (a–d), YFP+-RGNs of −/− mice 
lack Ranbp2 at the nuclear envelope at d10 (e–h). Inset picture is an 
enlarged view of dashed-line box. E Confocal images of retinal flat 
mounts (ganglion neurons facing up) show that the nucleoporins 
153 and 62 (Nup153/Nup62) at the nuclear envelope and detected 
by mAb414 are not affected in YFP+-RGNs between +/+ (a–d) and 
−/− mice (e–h) at d10. F Low-power confocal images from the optic 
nerve head (ONH) to the marginal border of the retina (left) and mor-
phometric analyses (right) of retinal flat mounts (ganglion neurons 
facing up) show that there are no differences of YFP+-RGNs between 
+/+ and −/− mice at d10. Student’s t test, n = 4 mice/genotype; data 
are expressed as mean ± SD. G Confocal images (right) and morpho-
metric analyses (left) of retinal flat mounts (ganglion neurons fac-
ing up) show that there are no differences in Brn3+-RGNs between 
+/+ and −/− mice at d10. There are also no apparent differences in 
α-Syn+-RGNs between +/+ and −/− mice at d10. Student’s t test, 
n = 4 mice/genotype; data are expressed as mean ± SD. +/+, SLICK-
H::Ranbp2+/+; −/−, SLICK-H::Ranbp2flox/flox; mAb414, monoclonal 
Ab414 against Ranbp2(Nup358)/Nup153/Nup62; scale bars 25  µm 
(D), 10 µm (E), and 50 µm (G); d0 and d10 are days 0 and 10 after 
the last dose of a daily 5-day regimen of tamoxifen administration, 
respectively. α-syn α-synuclein, Brn3 Brn3a/b/c POU-domain tran-
scription factors, OPN optic nerve head, Ex exon, n.s. not significant

◂
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noticeable changes in the implicit time of the dominant 
negative wave component (N1) of the VEP waveforms to 
strobe flash stimuli between untreated and tamoxifen-treated 
SLICK-H::Ranbp2flox/flox mice on day 5 (d5) after the last 
dose of tamoxifen. Luminance-response functions for the 
N1 implicit time and amplitude of VEPs showed that there 
was a significant delay in the N1 implicit time of tamoxifen-
treated SLICK-H::Ranbp2flox/flox compared to wild-type mice 
(p < 0.001; Fig. 2B), while the amplitudes of VEPs did not 
differ between genotypes (Fig. 2C).

RGNs and optic nerves of SLICK‑H::Ranbp2flox/flox 
mice develop morphometric abnormalities

To gain further insights into the bases of the impairment 
of VEPs in SLICK-H::Ranbp2flox/flox mice, we compared 
morphometric analyses of myelinated axons and cell bodies 
of RGNs between genotypes. Examination of transmission 
electron microscopy images of RGNs between untreated and 
tamoxifen-treated SLICK-H::Ranbp2flox/flox mice found no 
overt differences in the ultrastructural morphology of the 
somata of these neurons at d10 (Fig. 3A). However, morpho-
metric analyses showed a significant increase of the mean 
perikarya area (hypertrophy) of YFP+-RGNs of SLICK-
H::Ranbp2flox/flox mice compared to SLICK-H::Ranbp2+/+ 
by d10 (p = 0.00005) (Fig. 3B). Next, we examined ultrathin 
sections of the optic nerve at d10 and found that there were 

also no overt differences in morphology of myelinated axons 
of the optic nerve between genotypes (Fig. 3C).

To uncover potential changes in myelination and axonal 
diameters of the fibers of the optic nerve, we measured 
the g-ratio and axonal diameters. The g-ratio quantifies 
changes in the ratio between the diameter of the inner 
axon alone and that of the axon with myelin sheath. We 
found that by d10 the g-ratio were slightly but significantly 
diminished between SLICK-H::Ranbp2flox/flox and SLICK-
H::Ranbp2+/+ (p = 0.001), whereas the diameters of axons 
of the optic nerve were strongly decreased by ~ 40% in 
SLICK-H::Ranbp2flox/flox compared SLICK-H::Ranbp2+/+ 
(p = 0.001) (Fig. 3D). A decrease in g-ratio typically indi-
cates hypermyelination, but a decrease of axonal caliber 
alone also contributes to a decline in g-ratio [63]. Hence, 
we built scatter plots of g-ratios of axons of optic nerve as a 
function of the axonal diameter to examine further relation-
ships between g-ratio and axon caliber of the optic nerve 
(Fig. 3E). This analysis showed that compared to SLICK-
H::Ranbp2+/+, there was a significant leftward shift in the 
scatter plot of SLICK-H::Ranbp2flox/flox mice indicating that 
large caliber axons were affected by a strong decrease in 
axon diameter (Fig. 3E). This observation was also sup-
ported by the examination of the slopes of the regression 
lines (0.0269 ± 0.033 vs 0.0385 ± 0.0006) that diverged with 
the increase of axon caliber and that were significantly dif-
ferent between genotypes (p = 0.0006) (Fig. 3E). Likewise, 
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Fig. 2   Electrophysiological deficits in the visual pathway of SLICK-
H::Ranbp2flox/flox mice. A Visual-evoked potentials (VEPs) recorded 
to a series of strobe flash stimuli from representative tamoxifen (Tx) 
untreated (black and baseline tracings) and treated (blue tracings) 
+/+ (top panel) and flox/flox mice (bottom panel). N1, the major 
negative component of the mouse VEP, is indicated by arrows in 
the tracings. In comparison to baseline, the VEP obtained following 
tamoxifen is slower in −/− than +/+ and flox/flox mice. The verti-
cal dashed lines indicate the strobe flash stimulus presentation. B 
Average (± sem) difference of VEP implicit times measured at base-
line and 5 days (d5) following a daily 5-day regimen of tamoxifen 

administration for +/+ and −/− mice. In comparison to +/+ controls, 
two-way repeated measures ANOVAs indicate that VEP implicit 
times were significantly delayed in −/− mice (p < 0.001). C Average 
(± sem) difference of VEP amplitude measured at baseline and 5 days 
(d5) following a daily 5-day regimen of tamoxifen administration for 
+/+ and −/− mice. Two-way repeated measures ANOVAs indicate 
that VEP amplitude was not significantly affected between geno-
types (p > 0.05). n = 6 mice/genotype. +/+ SLICK-H::Ranbp2+/+, 
−/− SLICK-H::Ranbp2flox/flox, flox/flox tamoxifen-untreated SLICK-
H::Ranbp2flox/flox
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Fig. 3   Morphometric and lipid profile changes of retinal ganglion 
neurons (RGNs) of SLICK-H::Ranbp2flox/flox mice. A Representa-
tive low (left) and high power (right) transmission electron micro-
graphs of RGNs of the retina of flox/flox (without tamoxifen treat-
ment) and −/− mice at day 10 (d10) post-tamoxifen administration. 
No overt ultrastructural changes in somata of RGNs were observed 
between tamoxifen-treated and untreated mice. B Dot-box plots of 
non-parametric analyses of perikarya (soma) area of YFP+-RGNs. 
The perikarya of YFP+-RGNs of −/− mice develop hypertrophy. 
Box-plot edges denote the 25th and 75th percentiles of the data, and 
the centerline denotes the median value. n = 291(+/+, d0), 340 (+/+, 
d10), 332 (−/−, d0), 335 (−/−, d10); *p ≤ 0.00005, Mann–Whitney 
test, n = 4 mice/genotype. C Representative cross-sections of trans-
mission electron micrographs of myelinated optic nerves of +/+ and 
−/− mice at d10. D Measurements of g-ratios and axonal diameters 

of optic nerves showed significant decreases between genotypes. Data 
are expressed as mean ± SD, *p < 0.001, t tests with GEE, n = 4 mice/
genotype. E Scatter plots between g-ratios and axonal diameter of fib-
ers of optic nerves. Slopes of +/+ and −/− mice are 0.0269 ± 0.033 
and 0.0385 ± 0.0006, respectively; *p < 0.0006 (interaction term), t 
tests with GEE, n = 4 mice/genotype. Slope values are expressed as 
mean ± s.e.m. Slopes diverged with the increase of axon caliber. F 
The levels of free fatty acids are unchanged between gentotypes in 
the optic nerve at d9 (Student’s t test, n = 4 mice/genotype). Data are 
expressed as mean ± SD. G Acetylcholinesterase activity is unaltered 
between genotypes in the visual cortex at d9 (Student’s t test, n = 4 
mice/genotype). Scale bars 2  µm (A, C). n.s. non-significant, −/− 
SLICK-H::Ranbp2flox/flox, +/+ SLICK-H::Ranbp2+/+, d0, d9 and d10 
days 0, 9 and 10 post-tamoxifen administration, respectively
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the slope for each genotype and optic nerve was significant 
(p < 0.0001). Collectively, these data indicate that large 
caliber axons of SLICK-H::Ranbp2flox/flox mice exhibit an 
increased vulnerability to degeneration as reflected by a 
selective and major decrease of axonal diameter of high 
caliber fibers and that these effects were accompanied 
by the hypertrophy of somata of YFP+-RGNs of SLICK-
H::Ranbp2flox/flox mice.

We have previously found that the levels of free fatty 
acids (FFA) were decreased in the sciatic nerve of SLICK-
H::Ranbp2flox/flox mice [34]. Hence, we also examined the 
levels of free fatty acids in the optic nerve between gen-
otypes. We found that the levels of FFA (octanoate and 
longer fatty acids) remained unchanged between genotypes 
(Fig. 3F). Finally, we examined the levels of acetylcholinest-
erase (AChE) activity in the visual cortex, since cholinergic 
synapses of motoneurons may be affected during the course 
of some forms of ALS and acetylcholine (ACh) modulates 
the processing of visual information in the visual cortex 
(V1) [64]. However, and like in spinal motoneurons [34], the 
activity of AChE was similar in the visual cortex between 
genotypes at d9 (Fig. 3G).

RGNs of SLICK‑H::Ranbp2flox/flox mice present 
impairments in the nuclear‑cytoplasmic distribution 
of direct and accessory partners of Ranbp2

Ranbp2 is a large modular protein, whose domains inter-
act with specific partners that mediate nucleocytoplasmic 
transport (Fig. 4A) [10]. In particular, the Ran-binding 
domains (RBDs) of Ranbp2 associate with Ran-GTP and 
the accessory nuclear import receptor, importin-β [10, 23, 
24], whereas the zinc-finger (ZnF)-cluster domain is a dock-
ing site for the nuclear export receptor, exportin-1 (Fig. 4A) 
[10, 20]. Hence, loss of Ranbp2 was shown to promote the 
nucleocytoplasmic mislocalization of these receptors, Ran 
GTPase and accessory substrates in spinal motoneurons 
and other cell types [10, 32–34]. Further, we have shown 
that the orphan nuclear receptor, NR2F2, interacts with 
Ranbp2 in the retina [54]. In addition, HDAC4 is a sub-
strate of Ranbp2 [65] and Ranbp2 controls the nucleocyto-
plasmic distribution of HDAC4 in spinal motoneurons [34] 
and its proteostasis via the ubiquitin proteasome system 
(UPS) [66]. Akin to these findings, we also found that the 
nucleocytoplasmic localizations of these direct and acces-
sory partners of Ranbp2 were affected by loss of Ranbp2 in 
RGNs (Fig. 4B–D). We found that importin-β and expor-
tin-1 were localized at the nuclear rim and intranuclear 
compartment of YFP+-RGNs of wild-type mice, whereas 
there was strong accumulation of importin-β and expor-
tin-1 in the cytoplasmic compartment of YFP+- RGNs of 
SLICK-H::Ranbp2flox/flox (Fig. 4B). These effects were also 

accompanied by the general decrease of NR2F2+-nuclei 
of YFP+-RGNs of SLICK-H::Ranbp2flox/flox compared to 
wild type mice (Fig. 4C). Like in spinal motoneurons [34], 
HDAC4 was largely excluded from the nuclear compart-
ment of YFP+-RGNs of wild type mice, but this subcellular 
compartmentalization was lost in SLICK-H::Ranbp2flox/flox 
(Fig.  4C). Ran GTPase and its nucleotide-bound form, 
Ran-GTP, were found diffusely dispersed throughout the 
perikarya and nuclei of YFP+-RGNs of wild type mice 
(Fig. 4D), but Ran-GTP was also found at the nuclear rim 
of YFP+-RGNs (Fig. 4D, a”’). In contrast, Ran GTPase 
localization appeared redistributed mostly to the cytosolic 
compartment, and Ran-GTP localization in the nucleus and 
at the nuclear rim was largely lost in YFP+-RGNs of SLICK-
H::Ranbp2flox/flox (Fig. 4D).

Differential transcriptomics and gene expression 
analysis of optic nerves between wild‑type 
and SLICK‑H::Ranbp2flox/flox

Our prior differential transcriptome and gene expression 
studies of sciatic nerves between wild-type and SLICK-
H::Ranbp2flox/flox mice uncovered the regulation of 25 tran-
scripts by Ranbp2 including a set of chemokine ligands [34]. 
To gain insights into transcriptome changes that underpin 
the pathobiological phenotypes shared by or unique to sci-
atic and optic nerves after nucleocytoplasmic impairment 
caused by loss of Ranbp2, we performed differential and 
whole transcriptome analysis between genotypes of optic 
nerves that are comprised largely of axons of RGNs and 
oligodendrocytes (myelin sheaths). Transcriptome analy-
sis was carried out by deep RNA sequencing (RNA-seq) 
of 45–70 million total seq reads of SLICK-H::Ranbp2+/+, 
SLICK-H::Ranbp2flox/flox and Tg-Ranbp2RBD2/3*-HA::SLICK-
H::Ranbp2flox/f lox (Fig.  5A). The Tg-Ranbp2RBD2/3*-

HA::SLICK-H::Ranbp2flox/flox expresses a BAC transgene with 
mutations in RBD2 and RBD3 of Ranbp2 in a null Ranbp2 
background and that abolish their association to Ran-GTP 
and importin-β [32, 34]. This line served as an additional 
control, because expression of Tg-Ranbp2RBD2/3*-HA rescues 
the lethality and motor behaviors of SLICK-H::Ranbp2flox/flox 
and thereby serves to filter out compensatory transcriptional 
responses lacking pathophysiological relevance [32, 34].

To identify transcripts differentially modulated between 
genotypes at d10, we applied a cut-off with a log2 fold-
change (FC) ≥ │4│ and a false discovery rate (FDR) < 0.05 
(q < 0.05) for the whole transcriptome analysis. As shown 
in Fig. 5A, the differential transcriptome analysis identified 
50 and 13 transcripts that were differentially up-regulated 
and down-regulated, respectively, between optic nerves of 
wild-type and SLICK-H::Ranbp2flox/flox (Fig. 5A). Then, we 
independently validated the relative magnitude, direction 
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Fig. 5   Differential transcriptome and gene expression analyses of 
optic nerve of retinal ganglion neurons (RGNs) upon loss of Ranbp2. 
A Differential RNA-Seq-based whole-transcriptome analysis of optic 
nerves between SLICK-H::Ranbp2flox/flox (−/−), SLICK-H::Ranbp2+/+ 
(+/+) and TgRBD2/3*-HA::SLICK-H::Ranbp2flox/flox at day 10 post-
tamoxifen administration. Fifty transcripts were up-regulated (red) 
and thirteen transcripts were down-regulated in −/− mice at d10. 
B Validation of ranked RNA-Seq dataset by RT-qPCR and tempo-
ral and directional changes of expression levels of mRNAs between 
−/− and +/+ mice. Thirteen transcripts were validated to be up-reg-
ulated and Pttg1 was validated to be down-regulated by RT-qPCR in 
−/− mice at d0, d10 or both. Acaca (acetyl-CoA carboxylase alpha; 
also known as Acc1) and cdkn1 (cyclin-dependent kinase inhibitor 
1) had the strongest up-regulation (~ 35 and 15-fold, respectively) at 
d10, whereas Pttg1 was down-regulated by ~ 25-fold at d0. Data are 
expressed as mean ± SD. Student’s t test, n = 3–4 mice/genotype. C 
Temporal and directional changes of expression of mRNAs in the 
optic nerve between -/- and +/+ mice and whose levels are known to 

be changed in the sciatic nerve by loss of Ranbp2. Five genes (Ccl6, 
Cdk1, HMGCR​, erbb2, Saa1 and Top2a) were found also to be dys-
regulated in the optic nerve on d0, d10, or both. Ccl6 had the strong-
est change of expression (~ 11-fold increase). Data are expressed 
as mean ± SD. Student’s t test, n = 3–4 mice/genotype. D Confocal 
images of retinal flat mounts (ganglion neurons facing up) co-immu-
nostained for Ranbp2 (Nup358)/Nup153/Nup62 (mAb414) and Pttg1. 
Pttg1 localizes at the nuclear rim with Ranbp2 (Nup358)/Nup153/
Nup62 in YFP+-RGNs of +/+ mice, while Pttg1 localization is lost at 
the nuclear rim of YFP+-RGNs (nuclei labeled with *) of −/− mice. 
Scale bar 5  μm. E HA-tagged Ranbp2 (Tg-Ranbp2HA) expressed in 
transgenic mice with a null Ranbp2 background (−/−) co-immu-
noprecipitates Pttg1 from retinal extracts. Pttg1 is not detected in 
an overloaded aliquot of input extracts (first lane) owing to its very 
low abundance in retinal extracts. −/− SLICK-H::Ranbp2flox/flox, +/+ 
SLICK-H::Ranbp2+/+, Tg-Ranbp2HA:: −/− Tg-Ranbp2HA::Ranbp2−/−, 
d0 and d10 days 0 and 10 post-tamoxifen administration, respectively
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and temporal changes of the RNA-seq transcripts in optic 
nerves between genotypes at d0 and d10 by quantitative 
reverse transcription PCR (RT-qPCR) (Fig. 5B). Among 
these transcripts, RT-qPCR analysis validated 13 transcripts 
that were differentially modulated between genotypes on d0, 
d10 or both (Fig. 5B). We found that the transcripts with the 
highest up-regulation by d10 were acetyl-CoA carboxylase 
1 (Acc1; ~ 35-fold, p value < 0.05), cyclin-dependent kinase 
inhibitor 1A (Cdkn1a; ~ 15-fold, p value < 0.05) and Fam-
ily with sequence similarity 107/Down-regulated in renal 
cell carcinoma 1 (Fam107a/Drr1; ~ 6-fold, p value < 0.05). 
Among the transcripts with the highest down-regulation 
were the mammalian-specific myelin and paranodal pro-
tein, opalin (~ 0.14-fold at d10, p value < 0.05), the pitui-
tary tumor-transforming gene I/securin (Pttg1; ~ 0.04-fold 
at d0, p value < 0.05) and lymphocyte antigen 6 family 
member G6F (Ly6g6f; ~ 0.10-fold at d10, p value < 0.05) 
(Fig. 5B). Notably, none of the transcripts differently regu-
lated by Ranbp2 in the optic nerve overlapped with those 
that we previously reported by the same exact parameters in 
the sciatic nerve of the same mice [34]. To confirm further 
the cell-type specific effects of Ranbp2 between RGNs and 
motoneurons, we rescreened by RT-qPCR the optic nerve for 
transcriptional changes found to be modulated by Ranbp2 
in the sciatic nerve [34]. We found only 6 transcripts with 
significant transcriptional changes between sciatic and optic 
nerves. However, and with the exception of chemokine (C–C 
motif) ligand 6 on d10 (Ccl6; ~ 11-fold, p value < 0.05), the 
magnitude of the transcriptional changes were minor and 
below the cut-off used for differential analysis (< twofold) 
(Fig. 5C).

Given that the anti-apoptotic protein, Pttg1/securin, is a 
nuclear shuttling factor [67], we used the transcriptome find-
ings to pursue the validation of this protein as a substrate of 
Ranbp2. We examined first its subcellular localization with 
the nucleoporins, Ranbp2/Nup358, Nup153 and Nup62, at 
the nuclear pore complexes (NPCs) of YFP+-RGNs of wild 
type and SLICK-H::Ranbp2flox/flox. As shown in Fig. 5D, the 
YFP+-RGNs of wild-type mice showed prominent locali-
zation of Pttg1/securin with NPCs at the nuclear rim. In 
comparison, the nuclear rims of YFP+-RGNs of SLICK-
H::Ranbp2flox/flox mice lacked any immunostaining of 
Pttg1/securin. Then, to examine the association of Pttg1/
securin with Ranbp2, we performed co-immunoprecipita-
tion assays with a transgenic line expressing a wild-type 
Ranbp2 transgene tagged with HA in a null background [33] 
(Fig. 5E). We found that Ranbp2 co-immunoprecipitated 
Pttg1/securin even though the abundance of Pttg1/securin 
was extremely low and could not be detected in immunoblots 
overloaded with aliquots of retinal extracts (Fig. 5E). This 
outcome likely reflects the low abundance of Pttg1/securin 
in RGNs and the very low representation of RGNs in the 
retinal neurome.

Loss of Ranbp2 in YFP+‑RGNs causes the paracrine 
activation of microglia

As described, the differential expression analyses between 
genotypes uncovered that acetyl-CoA carboxylase 1 
(Acc1) had the strongest up-regulation (~ 35-fold) in optic 
nerves of YFP+-RGNs of SLICK-H::Ranbp2flox/flox mice. 
Acc1 is a critical fatty acid biosynthetic, rate-limiting 
and cytosolic isozyme, which mediates the conversion of 
acetyl-CoA to malonyl-CoA, a critical carbon donor for 
the synthesis of long-chain fatty acids [68, 69]. Acc1 is 
under tight post-translational and allosteric regulation and 
represents a critical metabolic switch in response to micro-
environmental cues [69]. In particular, Acc1 was found 
recently to control T cell immunity [70, 71]. For example, 
suppression of Acc1 impairs the proliferation of CD8+ T 
cells [70] and the formation of interleukin-17-secreting T 
cells of T-helper 17 (TH17), while promoting the differen-
tiation of anti-inflammatory and regulatory T cells (Treg) 
[71]. In the central nervous system, Treg harbor alternative 
regenerative capacity by promoting remyelination and oli-
godendrocyte differentiation [72].

We examined the effects of loss of Ranbp2 in 
YFP+-RGNs in neuroimmunity by analyzing the parac-
rine stimulation of resident macrophages of the CNS, the 
microglia. In this respect, we used retinal whole mounts 
immunostained with steady-state markers of microglia, 
such as CD11b and CD45, to examine the expression of 
these markers and morphological changes in microglia 
caused by loss of Ranbp2 in YFP+-RGNs. The expres-
sion levels of CD11b and CD45 have been used to dif-
ferentiate resting from activated parenchymal microglia 
[73]. Comparisons of retinae of wild type and SLICK-
H::Ranbp2flox/flox mice by en face confocal microscopy 
showed that the retinal ganglion cell layer of SLICK-
H::Ranbp2flox/flox mice had stronger CD11b+ (Fig. 6A) and 
CD45+-immunostaining (Fig. 6B) of ramified microglia 
than wild type mice (see also Supplementary Fig. 1).

The transformation of microglia from resting to active 
states is also known to be accompanied by changes in mor-
phological phenotypes that is characterized by activated 
microglia losing their ramified or pseudopodial processes 
and gaining amoeboid appearances [73–75]. Hence, we used 
another marker for activated microglia, F4/80, to investi-
gate morphological transformations in microglia caused by 
loss of Ranbp2 in YFP+-RGNs. As shown in Fig. 7A, we 
observed that the RGN layer of wild type mice had inter-
mingled F4/80+-cell bodies of various sizes, whereas scan-
ning of the RGN layer of SLICK-H::Ranbp2flox/flox mice 
indicated that there was a higher abundance of F4/80+-
cell bodies and that some of these cells had developed an 
amoeboid morphology. In light of the apparent non-uniform 
morphology of F4/80+-microglia between wild type and 



3420	 K. Cho et al.

1 3

+/
+

-/
-

A a b c d 

a’ b’ c’ d’ 

e f g h 

e’ f’ g’ h’ 

Hoechst

Hoechst

YFP

YFP

CD11b

CD11b

+/
+

-/
-

B
a b c d 

a’ b’ c’ d’ 

e f g h 

e’ f’ g’ h’ 

Hoechst

Hoechst

YFP

YFP

CD45

CD45

Fig. 6   Activation of CD11b+ and CD45+-microglia in the gan-
glion cell layer of the retina by loss of Ranbp2 in RGNs. Confo-
cal images of retinal flat mounts (ganglion neurons facing up) of 
+/+ and −/− mice immunostained for CD11b (A) and CD45 (B) 
on d10. Compared to +/+ (A, a–d), there is prominent activation of 
CD11b+-microglial cells, whose proliferative processes surround 
YFP+-RGNs of −/− mice (A, e–h). Compared to +/+ (B, a–d), there 

is also prominent activation of CD45+-microglial cells, whose prolif-
erative processes surround YFP+-RGNs of −/− mice (B, e–h). Fig-
ures a′–h′ in A and B represent lateral views of z-stacks of a–h and 
collapsed from a 25 µm thick-stack of 13 images captured 2 µm apart. 
Scale bars 50  µm. d10 day 10 post-tamoxifen administration, −/− 
SLICK-H::Ranbp2flox/flox, +/+ SLICK-H::Ranbp2+/+
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SLICK-H::Ranbp2flox/flox mice, we carried out morpho-
metric analysis of F4/80+-microglia between genotypes. 
We found that SLICK-H::Ranbp2flox/flox had a ~ twofold 
increase of F4/80+-microglia compared to wild type mice 
(Fig. 7B; p < 0.04). Then, we decomposed F4/80+-micro-
glia intermingled between YFP+-RGNs based on their 
size. We found changes in the size of a subset of F4/80+-
microglia between genotypes. In comparison to wild-type 
mice, SLICK-H::Ranbp2flox/flox mice had significant ~ 2 
(p < 0.02) and ~ 4-fold (p < 0.01) increases of amoeboid-
like F4/80+-microglia with sizes of ~ 50 and ~ 100  μm2 
and that these increases were accompanied by a signifi-
cant ~ 3-fold (p < 0.01) decrease of F4/80+-microglia with 
extended lamellipodial/pseudopodial-like processes and 
sizes of ~ 400 μm2 (Fig. 7C).

Loss of Ranbp2 causes the intracellular 
sequestration of Mmp‑28 in YFP+‑RGNs 
of SLICK‑H::Ranbp2flox/flox

Our studies have uncovered that Ranbp2 controls the pro-
teostasis and activities of Mmp11 and Mmp28 in a neuronal 
type-dependent manner and these effects culminate in non-
cell autonomous responses [32, 34, 48]. For example, loss of 
Ranbp2 in Thy1+-motoneurons promotes the down-regulation 
of Mmp28 in the sciatic nerve without affecting the secretion of 
Mmp28 from somata of Thy1+-motoneurons [34]. Mmp28 is 
a regulator of macrophage activation and myelination [76–79]. 
In light of the foregoing findings, including that Mmp28 likely 
mediates neuronal-type-selective paracrine responses upon 
loss of Ranbp2, we examined the effects of loss of Ranbp2 in 
YFP+-RGNs in the proteostasis and subcellular distribution of 
Mmp28. As shown in Fig. 8A, there was a significant decrease 
of the levels of a 90 kDa isoform (dimer) of Mmp28 in optic 
nerves of SLICK-H::Ranbp2flox/flox mice on d0 (p < 0.05) and 
d10 (p < 0.005), whereas this isoform of Mmp28 was tran-
siently decreased in the retina on d0 only (p < 0.05). By con-
trast, the levels of a 48 kDa isoform (monomer) of Mmp28 
was not significantly changed in optic nerves between geno-
types and this Mmp28 isoform was not detected in the retina. 
Then, we examined the subcellular distribution of Mmp28 in 
YFP+-RGNs between genotypes. Mmp28 was found promi-
nently in the interstitial space between YFP+-RGNs of wild-
type mice, whereas there was widespread sequestration of 
Mmp28 in the intracellular compartment of YFP+-RGNs of 
SLICK-H::Ranbp2flox/flox mice (Fig. 8B).

Discussion

Mounting evidence support that dysregulation of nucleo-
cytoplasmic trafficking is present in heterogeneous forms 
of sALS and fALS [1–10] and that the visual pathway, 

including RGNs, develop structural and functional impair-
ments that may precede the development of ALS motor syn-
dromes [6, 42–45]. Ranbp2 is a unique vertebrate nucleop-
orin, which controls rate-limiting steps of nucleocytoplasmic 
transport [10]. Ranbp2 is highly expressed in motoneurons 
and RGNs [10, 34, 35]. In the present study, a mouse model 
of ALS with rapid declines of motor performance that cul-
minate in hind paralysis, respiratory distress and death, and 
without expression of Ranbp2 in Thy1+-motoneurons and 
RGNs [34], was used to examine the roles of Ranbp2 in 
Thy1+-RGNs. This disease mouse model represents a valu-
able tool to discern shared and unique molecular, cellular 
and pathobiological effects and pathognomonic signs of 
motoneuron disease, such as ALS, in RGNs and motoneu-
rons [34].

The findings of this study support the following con-
cepts. (1) Akin to many other cell types [10], RGNs and 
motoneurons share the dysregulation of nucleocytoplasmic 
transport by loss of Ranbp2. This disruption is manifested 
by the impairment of nucleocytoplasmic partition of Ran 
GTPase and nuclear import (e.g., importin-β) and export 
receptors (e.g., CRM1/exportin-1) and auxiliary substrates 
(e.g., HDAC4). (2) Ranbp2 is critical to RGN homeostasis; 
the somas of Thy1+-RGNs develop hypertrophy and their 
myelinated axons undergo a decline of axonal caliber follow-
ing deletion of Ranbp2. These effects are accompanied by a 
functional delay of visual cortical responses to light stimuli. 
(3) With the exception of Ccl6, the optic nerve does not co-
opt transcriptome changes with the sciatic nerve after loss of 
Ranbp2 in RGNs and motoneurons [34]. Loss of Ranbp2 in 
RGNs induces the pronounced and significant increase of the 
mRNA level of a critical immunomodulator, acetyl-CoA car-
boxylase 1 (Acc1), which is known to control de novo fatty 
acid synthesis and immunity in T cells [70, 71]. In naive 
mice lacking Ranbp2 in RGNs, the up-regulation of Acc1 
was accompanied by activation of microglia. (4) RGNs and 
motoneurons share the dysregulation of the proteostasis of 
Mmp28, which is another modulator of immunity and pos-
sibly myelination [76–79], but this effect likely arises by dis-
tinct mechanisms between RGNs and spinal motoneurons.

Like in spinal motoneurons [34] and other cell types 
[10, 32], the nucleocytoplasmic partitioning of the driver 
of nucleocytoplasmic transport, Ran GTPase, and nuclear 
import (importin-β) and export receptors (e.g., CRM1/
exportin-1), were impaired in RGNs lacking Ranbp2 of 
SLICK-H::Ranbp2flox/flox. Comparable disruptions were also 
observed in auxiliary substrates of Ranbp2 (e.g., HDAC4 
and NR2F2). These observations are consistent with the 
regulation of rate-limiting steps of disassembly of nuclear 
export ensembles by Ranbp2 [10, 18, 20, 23–25]. Unex-
pectedly, loss of Ranbp2 in RGNs caused transcriptome 
changes in optic nerves that were distinct from those previ-
ously reported for the sciatic nerve of motoneurons lacking 
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Ranbp2 [34]. These findings support a combinatorial cod-
ing mechanism whereby Ranbp2 regulates the nucleocyto-
plasmic transport of neuronal-type selective substrates and 
whose nuclear export or import is dependent on exportin-1, 

importin-β or both. It is unlikely that the nuclear import 
pathway plays a determinant pathophysiological role in 
motoneurons and RGNs lacking Ranbp2, because genetic 
complementation studies support that mice with loss of 
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Ran-GTP and importin-β-binding to RBD2 and RBD3 of 
Ranbp2 (e.g.; Tg-Ranbp2RBD2/-HA::SLICK-H::Ranbp2flox/flox) 
rescue the motor behavior developed by mice with loss of 
Ranbp2 in motoneurons [34]. This is in contrast to the severe 
degeneration of other cell types caused by similar loss of 
function of RBD2 and RBD3 of Ranbp2 (e.g., retinal pig-
ment epithelium and developing cone photoreceptor neu-
rons) [32].

A possible scenario is that impairment of a Ranbp2-
mediated nuclear export pathway by uncoupling the docking 
of exportin-1 to the zinc-finger cluster domain of Ranbp2 
in RGNs and motoneurons lacking Ranbp2 precludes the 
bridging of nuclear export and axonal transport of selective 
ribonucleic protein cargoes (e.g., mRNPs) that are unique to 
RGNs and motoneurons [10, 20]. Motoneurons and RGNs 
are likely very vulnerable to impairments in the coupling of 
nuclear export with axonal transport because of the burden 
harbored by these neurons for the very long-distance trans-
port of cargoes between somata and synapses in axons, such 
as of the sciatic nerve and whose linear length can reach a 
meter in size [10, 80]. This concept is supported by several 
findings. First, haploinsufficiency or missense mutations in 
the nucleoporin, Gle1, which mediates nuclear export of 
mRNAs, cause fetal motoneuron disease or ALS [81]. Sec-
ond, the motor activities of the microtubule-based motor and 
kinesin-1 isoforms, KIF5B/KIF5C, which mediate the anter-
ograde transport of selective cargoes, are regulated directly 
by Ranbp2 [82–85]. Third, Ranbp2 via its ZnF-cluster 

domain and docking of exportin-1 to ZnF (Fig. 4A) potenti-
ates the nuclear export of selective mRNAs from the nucleus 
and their translations [20–22]. Finally, loss of Ranbp2 in 
motoneurons causes pronounced increases of the levels of 
selective mRNAs and decreases of their translation products. 
This outcome may result from the uncoupling of transport 
and translation of these mRNAs after loss of Ranbp2 at the 
nuclear pores and thereby promoting the hypertrophy of 
somata of motoneurons and axonopathy of the sciatic nerve 
[34]. These effects may also be shared by RGNs with pro-
nounced dysregulation of limited mRNAs, such as Acc1, in 
the optic nerve and that may contribute to hypertrophy of 
somata of RGNs and axonopathy of the optic nerve.

Contemporary and recent studies indicate RGN involve-
ment in ALS [6, 42–45]. Specifically, these studies have 
shown that ALS is associated with structural changes by the 
thinning of the nerve fiber layer (e.g., unmyelinated axons 
of RGNs before they exit the optic cup), histopathological 
changes in inner retinal neurons, and functional deficits in 
sensory processing of the visual pathway to the brain meas-
ured by pattern reversal or luminance-evoked VEPs [6, 
42–45]. Even though prior studies found that Ranbp2 plays 
critical physiological roles in the function and survival of 
photoreceptor neurons [48, 55], we have found that mice 
with decreased levels of hnRNPA2B1 in the inner retina 
caused by selective loss of peptidyl cis–trans prolyl isomer-
ase activity of Ranbp2 across all retinal neurons develop 
shorter latency of dark-adapted VEPs without changes in 
the electroretinograms generated from neurons of the outer 
retina (e.g., photoreceptor neurons) [33]. In this study, we 
found that loss of Ranbp2 in RGNs was accompanied struc-
turally by a decline of axonal diameter without loss of RGNs 
and functionally by a delay of the implicit times (latency) 
of VEPs before changes of motor behavior ensue [34], but 
without changes of VEP amplitudes. These results corrobo-
rate that the lack of untoward effects in VEP amplitudes 
of mice without Ranbp2 in RGNs reflect the generation of 
unperturbed and collective input responses to the visual cor-
tex by a normal number of RGNs [60–62]. In contrast, the 
VEP latency of mice without Ranbp2 in RGNs support a 
delay in optic nerve conduction and thus transmission of 
the action potentials by the axons of the optic nerve to the 
visual cortex [42, 60–62]. Our results suggest that axonopa-
thy and changes in g-ratios of the optic and sciatic nerves 
contribute to a decrease of nerve conduction [34]. Paren-
thetically, we have not found overt changes in the periodicity 
of nodes of Ranvier (e.g., Na+-channel) in nerves of mice 
lacking Ranbp2 in motoneurons and RGNs. Further, the 
myelin and paranodal protein, opalin, whose transcriptional 
level is strongly reduced in the optic nerve of mice lack-
ing Ranbp2 in RGNs, may also not contribute to the VEP 
latency, because mice lacking opalin expression do not pre-
sent abnormalities in myelination and motor behavior [86]. 

Fig. 7   Activation of F4/80+-microglial in the ganglion cell layer 
of the retina by loss of Ranbp2. A Confocal images of retinal flat 
mounts (ganglion neurons facing up) of +/+ and −/− mice immu-
nostained for GFAP and F4/80 on d10. F4/80+-microglia in the reti-
nae of +/+ mice present extended pseudopodial-like processes (a–e), 
whereas −/− have a significant increase of the number of activated 
and smaller F4/80+-microglia with an amoeboid morphology (f–j). 
Images a″–j″ are magnified images of inset boxes in images a–j. 
There is no apparent astrogliosis between −/− and +/+ as reflected 
by the lack of overt changes in immunolabeling of GFAP+-astrocytes 
between −/− (h–h″) and +/+ (c–c″). Images a′–j′ are lateral views of 
z-stacks of a–j and collapsed from a 25 µm thick-stack of 13 images 
captured 2 µm apart. F4/80+-microglia of −/− show a clear and typi-
cal amoeboid morphology of activation (inset box in i is magnified 
in i″), whereas resting F4/80+-microglia of +/+ show prominent 
morphological extended processes like lamellipodia/pseudopodia 
(inset box in d is magnified in d″). B Quantitative analyses of F4/80+-
microglia showing that there is a significant increase of the number 
of F4/80+-microglia in the ganglion cell layer of −/− compared to 
+/+ mice. Data are expressed as mean ± SD. Student’s t test, n = 3 
(+/+) and n = 4 (−/−) mice/genotype. C Quantitative analysis of the 
distribution of size (areas) of F4/80+-microglia between genotypes 
show that the ganglion cell layer of −/− mice have a significant shift 
from a pool of F4/80+-microglia with an average size of 400–450 µm2 
to a pool of F4/80+-microglia with an average size of 25–100  µm2. 
Data are expressed as mean ± SD. Student’s t test, n = 3 (+/+) and 
n = 4 (−/−) mice/genotype. Scale bars 50  µm (a–j), 10  µm (a″–j″). 
d10 day 10 post-tamoxifen administration, n.s. non-significant, −/− 
SLICK-H::Ranbp2flox/flox, +/+ SLICK-H::Ranbp2+/+

◂
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Although the exact molecular basis for the decline in nerve 
conduction by loss of Ranbp2 will need further investiga-
tion, loss of Ranbp2 in RGNs may also shed light to delays 
in VEP timing shared by other optic nerve diseases, such 

as glaucoma, which is also linked to ALS [87, 88], demy-
elinating diseases with optic nerve involvement and optic 
neuropathies [89–91].
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Recent studies have used transcriptome approaches to 
gain insights into the pathogenesis of ALS and the vulner-
ability of motoneurons to ALS [92]. In contrast to other 
ALS-causing RNA-binding proteins in which mutations 
purportedly promote broad transcriptome changes [93–95], 
knockdown of hnRNPA2B1 in the spinal cord led to the 
misregulation of a small number of transcripts (~ 20–30) 
[96]. Notably, little transcriptional overlap existed between 
the spinal cord and human iPSC-derived motor neurons 
[96]. Cultured spinal motoneurons expressing mutations in 
SOD1G93A and TDP43A315T showed few alterations in tran-
scriptional expression and an overlap of only 20 transcripts 
that encoded proteins mainly with predicted extracellular 
localization [97]. Lumbar spinal motor and oculomotor 
neurons, which control eye movement and are spared in 
ALS, showed differences in broad transcriptional profiles 
of over 1700 genes and some of these presumably indicate a 
reduced vulnerability of oculomotor neurons to excitotoxic-
ity by enhanced GABAergic transmission [98]. Finally, the 
transcriptome of microglia purified from spinal cord of ALS 
mice with SOD1G93A compared to wild-type mice showed 
that ~ 2000 transcripts are differential regulated by at least 
twofold at late stages of the disease [92]. Collectively, these 
studies support the notion that distinct genetic insults in ALS 
promote heterogeneous transcriptional responses; however, 
the pathobiological relevance and the extent to which experi-
mental and disease contexts contribute to apparent diver-
gences in transcriptional abnormalities remain unclear. In 
contrast, our study explored the effects of selective Ranbp2-
mediated disruption of nucleocytoplasmic transport, which 
is shared by heterogeneous forms of sALS and fALS [1–10], 
in the transcriptome of the optic nerve. Further, we com-
pared the transcriptome changes of the optic nerve with 
those previously reported for the sciatic nerve of the same 

mice with and without Ranbp2 in RGNs and motoneurons 
[34].

Notably, our analysis showed that apart from Ccl6, there 
was no overlap between the transcriptomes of optic and sci-
atic nerves subjected to concurrent loss of Ranbp2 in RGNs 
and motoneurons. The distinct ontologies between oligo-
dendrocytes (e.g., neural tube) and Schwann cells (e.g., neu-
ral crest) that ensheath with myelin the axons of optic and 
sciatic nerves, respectively, may contribute to the absence 
of overlap in transcriptome changes [99]. In this respect, 
several transcripts, such as opalin (Tmem10) and Fam107a/
Drr1, encode known glial markers of the CNS [100, 101], 
while others, such as Ly6g6f, are up-regulated in frontotem-
poral lobar degeneration (FTLD) and linked to atrophy of 
the superior frontal gyrus, neuroinflammation and immunity 
[102, 103]. Importantly, we found that the lipogenic enzyme, 
Acc1, was the target with the highest up-regulation in the 
optic nerve (~ 35-fold, p value < 0.05). Acc1 up-regulation 
is at the crux of a metabolic shift in the de novo fatty acid 
synthesis pathway by converting acetyl-CoA to malonyl-
CoA, which is the carbon donor for the synthesis of long-
chain fatty acids [68, 69]. The stimulation of this pathway 
is critical to release the dependence of tumor cell growth 
and survival from exogenous lipids [104]. In contrast, Acc1 
inhibition suppresses CD8+ T-cell expansion [70] and the 
genesis of TH17 cells with pathogenic roles in inflammatory 
and autoimmune diseases, but favors the differentiation of 
anti-inflammatory Treg cells, whose differentiation depends 
on exogenous fatty acids [71].

Our study found that in the CNS (retina) the pronounced 
up-regulation of Acc1 mRNA was associated to the activa-
tion of microglia as manifested by the activation of rami-
fied CD11b+ and CD45+-microglia, increase of F4/80+-
microglia and development of amoeboid F4/80+-microglia 
intermingled between RGNs lacking Ranbp2 of naive mice. 
It is possible that an increased shift in dynamics between 
pseudopodial/lamellipodial and amoeboid F4/80+-microglia 
contributes to the increase of amoeboid F4/80+-microglia 
[75]. Current studies indicate that native insults (e.g., genetic 
mutations) to the CNS, such as retina, promote the activation 
of resident microglia without involvement of perivascular 
and systemic macrophages [75, 105, 106]. In contrast, non-
native insults (e.g., irradiation, excitotoxicity, etc.) promote 
the infiltration of perivascular and systemic macrophages 
likely by disturbances or disruption of the blood-retinal/
brain barrier [107, 108]. Hence, these data suggest that 
the activation of microglia by the native insult comprised 
of loss of Ranbp2 in RGNs arises from resident microglia 
rather than from the infiltration of perivascular/systemic 
macrophages. Further, the infiltration of perivascular/sys-
temic macrophages to the retina triggered by non-native 
insults is delayed well beyond the time that it takes for 
microglial activation to occur in the retina of mice lacking 

Fig. 8   Suppression of proteostasis and biogenesis of Mmp-28 in the 
optic nerve and retinal ganglion neurons (RGNs) by loss of Ranbp2. 
A Immunoblots (left) and quantitative analysis (right) of expression 
of the 90 (dimer) and 48  kDa (monomer) isoforms of Mmp-28 in 
the optic nerve (OPN) and retina (RET) on d0 and d10. In the optic 
nerve, −/− mice present a decline of the 90 kDa of Mmp-28 [Mmp-
28(90)] on d0 and d10, whereas there are no changes in the levels of 
the 48 kDa of Mmp-28 [Mmp-28(48)] on d0 and d10. In the retina, 
there is no expression of the Mmp-28(48) isoform and −/− mice have 
decreased levels of Mmp-28(90) on d0 only. Hsc70 is a loading con-
trol. Data are expressed as mean ± SD. Student’s t test, n = 4 mice/
genotype. B Confocal images of retinal flat mounts (ganglion neu-
rons facing up) of +/+ (a–d, a′–d′) and −/− mice (e–h, e′–h′) immu-
nostained for Mmp-28 at d10. Mmp-28 is localized outside somata 
of YFP+-RGNs (extracellular space) of +/+ mice, whereas there is 
prominent and widespread intracellular sequestration of Mmp-28 in 
somata of YFP+-RGNs of −/− mice (arrows). a′–h′ are magnified 
images of inset regions of a–h. Scale bars 50 (a–h) and 20 µm (a′–
h′). −/− SLICK-H::Ranbp2flox/flox, +/+ SLICK-H::Ranbp2+/+, hsc70 
heat shock protein 70, d0 and d10 days 0 and 10 post-tamoxifen 
administration, respectively; n.s. non-significant, OPN optic nerve, 
RET retina

◂
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Ranbp2 in RGNs (< 10 days) [107, 108]. Hence, the Ranbp2 
mouse model herein described will provide another venue 
to investigate the origins and spatiotemporal mechanisms 
of microglial activation by native insults. Regardless, our 
results suggest the activation of a non-cell autonomous 
(paracrine) signaling mechanism between RGNs and quies-
cent microglia resident in the retina that is mediated by the 
Acc1 production of free-fatty acids in RGNs. An analogous 
chemokine-mediated paracrine signaling between axons of 
spinal motoneurons and surrounding Schwann cells appears 
also to be triggered by loss of Ranbp2 in motoneurons [34].

In contrast to our findings in the sciatic nerve [34] and 
other neurons [55] however, we did not find changes in the 
levels of free fatty acids (octanoate and longer fatty acids) 
in the optic nerve [34]. The reason for this outcome needs 
further investigation, but it is possible that distinct species of 
free fatty acids are produced by Acc1 in RGNs or oligoden-
drocytes, or between RGNs and motoneurons, and that these 
cell-type and/or insult-selective and elicited species medi-
ate distinct non-cell autonomous responses. In this regard, 
metabolomics studies found that brains of haploinsufficient 
Ranbp2 mice when challenged with the parkinsonian neuro-
toxin, MPTP, presented a decline of the medium-chain free 
fatty acids, pelargonate (9:0) and caprate (10:0), and of the 

long-chain free fatty acid, arachidate (20:0), and that these 
effects were associated with robust astrogliosis in the retina 
[53]. Alternatively, emerging studies indicate that suppres-
sion of Acc1 also plays a fatty acid synthesis-independent 
role by promoting acetyl-CoA-dependent acetylation of 
proteins that trigger selective cellular responses. It is note-
worthy that both motoneurons and RGNs share the nucleo-
cytoplasmic deregulation of HDAC4, which is a substrate 
of Ranbp2 [33, 34, 65]. Hence, an increase of Acc1 levels 
combined with dysregulation of HDAC4 may result in the 
dysregulation of acetylation of selective substrates that ulti-
mate contribute to the activation of microglia. This study 
will provide the foundation to elucidate between these mech-
anistic scenarios that are not mutually exclusive necessarily.

Recent studies support the notion that selective metal-
loproteinases act directly as strong modifiers of disease 
progression in ALS and cytokine-mediated pathology [109, 
110]. Our prior studies have shown that Ranbp2 controls the 
proteostasis of selective metalloproteinases (e.g., Mmp11 
and Mmp28) in a neuronal-type dependent manner and that 
these Mmps are prime candidates to exert non-cell autono-
mous effects in neighboring cells/tissues [32, 34, 48]. In 
motoneurons, Ranbp2 regulates Mmp28 proteostasis in the 
sciatic nerve but not in somata of motoneurons [34]. This 

Fig. 9   Mechanistic model of 
microglial activation by loss 
of Ranbp2 in Thy1-retinal 
ganglion neurons (RGNs). Loss 
of Ranbp2 in RGNs triggers the 
up-regulation of Acc1 and the 
stimulation of free fatty acids 
and/or Ccl6 in RGNs, microglia 
or both. There is also intracel-
lular sequestration of Mmp28 
in RGNs that relieves the sup-
pression of Ccl6 production and 
stimulates neuron-glia signaling 
and the multiphasic activation 
of microglia with CD11b+ and 
CD45+-ramified and F4/80+-
amoeboid morphologies. These 
effects are accompanied by 
changes in expression of cell-
cycle and surface antigen/cell 
migration regulators, such as the 
down-regulation of Pttg1 and 
Ly6g6f and the up-regulation of 
Cdkn1 and Fam107a in RGNs 
and/or microglia (see text for 
details)
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study in accord to other studies found that Mmp28 is con-
stitutively secreted to the interstitial space of the ganglion 
neuronal network of the retina. Mmp28 is a known regulator 
of peripheral immune responses involving M1 and M2 type 
macrophages by mechanisms that remain elusive [76, 77, 
111]. However, the physiological role(s) of Mmp28 in the 
CNS is unknown. Our studies suggest that the regulation of 
Mmp28 expression by Ranbp2 may control the proteosta-
sis of substrates that act as mediators in RGN-microglial 
signaling. In this regard, the up-regulation of Acc1 by loss 
of Ranbp2 in RGNs may contribute to the intracellular 
sequestration of Mmp28 by affecting the biogenesis of the 
endoplasmic reticulum and Golgi apparatus and membrane 
phospholipids [71, 112]. However, ultrastructural analysis 
of somata of RGNs did not find overt ER/Golgi pathologies. 
Alternatively, the dysregulation of Mmp28 proteostasis by 
loss of Ranbp2 in RGNs may alter the balance between anti-
inflammatory or pro-inflammatory cytokines in the intersti-
tial space and thereby promoting microglial activation. To 
this effect, Ccl6 is a chemokine whose production is strongly 
stimulated in inflammatory disorders [113, 114] and its up-
regulation is shared by motoneurons and RGNs upon loss 
of Ranbp2 [34]. Ccl6 acts as a macrophage chemoattractant 
[114] and Ccl6 is also expressed by microglia [115]. Since 
challenged macrophages lacking Mmp28 present enhanced 
chemotaxis and chemokine production [76, 77], suppres-
sion of Mmp28 biogenesis in RGNs may stimulate Ccl6 
and activate RGN-to-microglial signaling (microglial acti-
vation) and/or a signaling loop between microglia. The stud-
ies herein reported will provide a framework to investigate 
the independent contributions of Acc1 and Mmp28 toward 
the activation of microglia, and potential subtypes thereof, 
in the CNS by loss of Ranbp2 in RGNs.

In summary, mechanistically our results support a 
model in which loss of Ranbp2 in RGNs promotes immune 
responses in the CNS that apart from Ccl6 and Mmp28 are 
distinct from the peripheral responses caused by loss of 
Ranbp2 in spinal motoneurons [34]. Our model indicates 
that Ranbp2 is a major regulator of Acc1 and Mmp28 expres-
sions and that Acc1 and Mmp28 may play a central role in 
neuroimmunity by controlling non-autonomous (paracrine) 
cell signaling between RGNs and microglia upon loss of 
Ranbp2 in RGNs (Fig. 9). According to this model, up-
regulation of Acc1 by loss of Ranbp2 inhibits the biogen-
esis (e.g., secretion) of Mmp28 and stimulates the release 
of selective chemokines (e.g., Ccl6) and/or fatty acids that 
promote neuronal-glial signaling and microglial priming and 
activation. These effects are accompanied by the biphasic 
regulation of the cell cycle protein, Pttg1/securin, and its 
potential transcriptional target, Cdnk1 (p21) [67], and of 
stress-signaling, cell migration and cell surface membrane 
markers, such as, Ly6g6f and Fam107a [101, 103, 116–118]. 
Hence, these targets are strong candidates to modulate the 

proliferation and migration of microglia. Although micro-
glial dysfunction is linked to ALS [119], emerging and con-
tradictory data also suggest that there is a lack of conver-
gence in neuroinflammation between fALS and sALS [120]. 
Our data indicate that the disruption of nucleocytoplasmic 
transport shared by fALS and sALS, and between retinal 
ganglion and motor neurons, promotes unique endopheno-
types in RGNs and microglia and that the visual pathway 
may offer pathognomonic signs of ALS and other moto-
neuron diseases. These molecular and cellular mechanisms 
deserve heightened attention because nucleocytoplasmic 
transport is also disrupted in other neurodegenerative dis-
eases [11–14].
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