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Abstract

BACKGROUND: The hypothesis that dopamine plays an important role in the pathophysiology 

of pathological gambling is pervasive. However, there is little to no direct evidence for a 

categorical difference between pathological gamblers and healthy control subjects in terms of 

dopamine transmission in a drug-free state. Here we provide evidence for this hypothesis by 

comparing dopamine synthesis capacity in the dorsal and ventral parts of the striatum in 13 

pathological gamblers and 15 healthy control subjects.

METHODS: This was achieved using [18F]fluoro-levo-dihydroxyphenylalanine dynamic positron 

emission tomography scans and striatal regions of interest that were hand-drawn based on visual 

inspection of individual structural magnetic resonance imaging scans.

RESULTS: Our results show that dopamine synthesis capacity was increased in pathological 

gamblers compared with healthy control subjects. Dopamine synthesis was 16% higher in the 

caudate body, 17% higher in the dorsal putamen, and 17% higher in the ventral striatum in 

pathological gamblers compared with control subjects. Moreover, dopamine synthesis capacity in 

the dorsal putamen and caudate head was positively correlated with gambling distortions in 

pathological gamblers.

CONCLUSIONS: Taken together, these results provide empirical evidence for increased striatal 

dopamine synthesis in pathological gambling.
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Behavioral, cognitive, and neurobiological profiles of individuals with pathological 

gambling resemble those of individuals with substance use disorder, especially stimulant 

addiction (1–5). As a consequence, pathological gambling was recently reclassified as an 

addiction disorder in the DSM-5 (6). However, it is still unclear whether some of the 

dopamine abnormalities that characterize substance use disorder are also present in 

pathological gambling. The current study examined the role of dopamine synthesis capacity 

in pathological gambling. Below, we highlight central fi ndings linking altered dopamine 

function with substance addiction before reviewing existing evidence of altered dopamine 

function in pathological gambling.

Converging evidence from various lines of research indicates that substance use disorder is 

characterized by a decrease in striatal dopamine D2/D3 receptor availability (7,8), even 

though this reduction is more consistently observed among stimulant users than in 

individuals with opiate, nicotine, or cannabis dependence (7). In humans, this has been 

evidenced by cross-sectional studies using [11C]raclopride positron emission tomography 

(PET) and single-photon emission computed tomography imaging techniques (7–17). In 

addition, human studies focusing on dopamine synthesis capacity, measured with 

[18F]fluoro-levo-dihydroxyphenylalanine ([18F]DOPA) PET, have revealed either low or 

unaltered dopamine synthesis capacity across various substance use disorders (16,18–21).

Whether observed differences in D2/D3 receptor availability are a cause or consequence of 

drug addiction, and how it interacts with presynaptic dopamine function, is an area of active 

research. Longitudinal studies in animals have revealed that diminished baseline availability 

of striatal dopamine D2/D3 receptors is both a predictor and a consequence of continued 

drug use. For example, lower baseline availability of striatal dopamine D2/D3 receptors in 

drug-naive monkeys predicts high rates of subsequent cocaine self-administration (22). 

Longitudinal scanning further reveals reduced D2/D3 receptor ligand binding following 

repeated drug exposure (23,24). Micro-PET studies in rats have confirmed and extended 

these findings by showing that high impulsivity traits are associated with low dopamine 

D2/D3 receptor availability and predispose to the development of drug addiction (25–29). 

These findings concur with human studies showing that trait impulsivity is a vulnerability 

marker for addiction (30), although—in contrast to animal research—the direction of the 

association with dopamine D2/D3 receptors is less clear. Indeed, whereas some studies have 

reported positive correlations in healthy control subjects (HCs) (31,32), other studies have 

reported negative correlations in HCs and methamphetamine-dependent users (9,33).

Studies focusing on targets of dopamine functioning have so far led to different results in 

pathological gambling compared with stimulant dependence. In fact, all PET studies in 

pathological gambling have failed to reveal abnormal dopamine D2/D3 receptor availability 

in pathological gamblers (PGs) relative to HCs (34–38). Despite this lack of group 

differences, two studies found a negative correlation between baseline dopamine D2/D3 

receptor binding in the ventral striatum and trait impulsivity in PGs (35,36). Similarly, PET 

studies investigating gambling-induced dopamine release have failed to reveal overall group 

differences but have shown correlations with relevant measures related to gambling severity, 

excitement, and performance (36,38,39). Currently, direct evidence for abnormal dopamine 

functioning in pathological gambling comes exclusively from studies showing altered 
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responsiveness to dopaminergic drugs (40,41). In particular, PGs were shown to display 

greater amphetamine-induced dopamine release in the dorsal striatum, as measured with 

PET imaging using the D3 receptor-preferring radioligand [11C]-(+)-4-Propyl-9-

hydroxynaphthoxazine, compared with HCs (40). This increased dopaminergic response 

echoes a recurrent clinical observation in Parkinson’s disease: following dopaminergic 

treatment aimed at compensating for dopamine cell loss, a subset of patients with 

Parkinson’s disease develop gambling disorder symptoms (42). These observations suggest 

that enhanced dopaminergic transmission may represent a biological substrate of gambling 

disorder.

Thus, so far nearly all dopamine PET studies on pathological gambling have focused on 

dopamine D2/D3 receptors, investigating either receptor availability or the effects of 

dopaminergic drugs and gambling tasks. To date, there has been a paucity of research 

investigating dopamine synthesis capacity in PGs, with only one recent study reporting no 

difference with HCs (43). Yet, increased dopamine synthesis capacity has been associated 

with increased behavioral disinhibition and financial extravagance in healthy subjects and 

patients with Parkinson’s disease (44,45). Here we used dynamic [18F]DOPA PET imaging 

to investigate striatal dopamine synthesis capacity in male PGs and HCs matched for age, 

education, and an estimate of verbal IQ.

METHODS AND MATERIALS

Subjects

In total, 15 PGs and 15 HCs were recruited. All HCs and 13 PGs had also participated in a 

previous pharmaco-functional magnetic resonance imaging (fMRI) study (41,46). The other 

2 PGs were newly recruited. PGs were recruited through advertisement and addiction 

treatment centers, and they reported not to be medicated or in treatment for their gambling at 

the time of the PET study. HCs were recruited through advertisement.

All subjects who had participated in the pharmaco-fMRI study underwent a structured 

psychiatric interview [MiniInternational Neuropsychiatric Interview-Plus, (47)] administered 

by a medical doctor prior to the fMRI study. The 2 PGs who were newly recruited were also 

assessed with the Mini-International Neuropsychiatric Interview-Plus (47) administered by a 

clinical psychologist. Subjects were excluded if they had a lifetime history of schizophrenia, 

bipolar disorder, attention-deficit/hyperactivity disorder, autism, bulimia, anorexia, anxiety 

disorder, or obsessive-compulsive disorder or if they had a past 6-month history of major 

depressive episode. Current or past-year substance use disorder was also an exclusion 

criterion, as assessed at the time of the PET study using the 10-item Drug Abuse Screening 

Test questionnaire (48). Based on this criterion, data from 2 PGs were not included in the 

main analyses because of meeting the DSM-IV-TR criteria for cannabis dependence during 

the past year. As assessed with the Mini-International Neuropsychiatric Interview-Plus 

interview, 1 of the excluded cannabis-dependent PGs also had a history of cocaine 

dependence that lasted for 1.5 years and ended 5.5 years prior to the PET study. In addition, 

1 included PG had histories of alcohol and cocaine dependence that lasted for 1 year and 

ended 8 and 15 years prior to the PET study, respectively. None of the other PGs or HCs had 

a history of substance use disorder. Furthermore, subjects were excluded if they were 
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currently following psychiatric treatment, using (psychotropic) medication, or drank more 

than four alcoholic beverages daily.

All gamblers qualified as PGs because they met five or more DSM-IV-TR criteria for 

pathological gambling and were otherwise healthy. Of these subjects, 4 PGs had been in 

cognitive behavioral treatment for their gambling problems 2 to 6 years before the PET 

study. The severity of gambling symptoms was assessed using the South Oaks Gambling 

Screen [SOGS (49)]. All PGs had a minimum lifetime SOGS score of 5 (range = 5–18) 

when initially included in the pharmaco-fMRI study (41,46), whereas HCs, with the 

exception of 2 subjects (scoring 1 and 2, respectively), had a SOGS score of 0. The severity 

of gambling symptoms was measured again at the time of the PET study using past-year and 

past-3-month versions of the SOGS (see Table 1; past-year SOGS score range = 5–11, 

past-3-month SOGS score range = 0–10). Frequent forms of gambling were assessed using 

item 1 of the SOGS and are expressed in terms of the percentage of gamblers playing the 

following games at least once a week for money: slot machines (53%), card games (46%), 

casino games (33%), sports betting (40%), lotteries (40%), stock market (7%), and bowling, 

pool, golf, darts, or the like (7%).

Study Procedure

The delay between data collection of the previous pharmaco-fMRI study (41,46) and the 

PET study ranged from 5 to 29 months (median = 23.5 months). After an initial telephone 

screening allowing us to verify that the reinvited gamblers were still experiencing gambling 

problems during the past year, eligible subjects were invited to the Radboud University 

Medical Centre to participate in the PET study and complete self-report measures. These 

measures included the past-year and past-3-month versions of the SOGS mentioned above, 

the Gamblers’ Beliefs Questionnaire (50), and the revised Barratt Impulsiveness Scale (51). 

Approximately 1 hour before entering the PET scanner, subjects received 150 mg of carbi-

dopa and 400 mg of entacapone to reduce peripheral metabolism of [18F]DOPA and increase 

tracer availability in the brain while having no psychotropic side effects. The subjects further 

performed computerized tasks not reported here.

MRI Scan

A high-resolution anatomical scan (Tl-weighted magnetization prepared rapid acquisition 

gradient-echo, repetition time = 2300 ms, echo time = 3.03 ms, 8° flip angle, 192 sagittal 

slices, slice-matrix size = 256 × 256, voxel size =1 × 1 × 1 mm3) was obtained using a 3T 

MR Siemens scanner (Erlangen, Germany) at the Donders Centre for Cognitive 

Neuroimaging and was used for coregistration with the PET data.

PET Acquisition

All PET scans were acquired in the Department of Nuclear Medicine at the Radboud 

University Medical Centre using a Siemens mCT PET/computed tomography (CT) camera 

(with 40-slice CT, voxel size = 4 × 4 mm in-plane, 5-mm slice thickness). Patients were 

positioned as comfortably as possible, in a supine position, with the head slightly fixated in a 

headrest to avoid movement. First, a low-dose CT scan was made for attenuation correction 

of the PET images, followed by an 89-minute dynamic PET scan. The scan started at the 
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same time as the bolus injection of the [18F]DOPA into an antecubital vein. Images were 

reconstructed using an ordered subset expectation maximization algorithm with weighted 

attenuation and time-of-flight recovery. They were further scatter corrected and smoothed 

with a 4-mm full width at half maximum kernel.

Regions of Interest

The regions of interest (ROIs) were hand drawn in native space based on visual inspection of 

each subject’s structural MRI using Mango software (http://ric.uthscsa.edu/mango/

index.html). The dorsal putamen, caudate head, and ventral striatum (including the nucleus 

accumbens, ventral caudate, and ventral putamen) ROIs were drawn according to previously 

published guidelines (52). In addition, we drew the caudate body, defined as dorsal caudate 

posterior to the anterior commissure. The reference region for calculating [18F]DOPA values 

was cerebellar gray matter delineated by FreeSurfer automatic segmentation (http://

surfer.nmr.mgh.harvard.edu). Given the cerebellum’s location posterior and adjacent to the 

midbrain, and the limited spatial resolution and blurring of PET signal, only the posterior 

three-fourths of the cerebellum was included in the ROI to avoid contaminating the 

cerebellar ROI with midbrain [18F]DOPA signal.

PET Analysis

We realigned the [18F]DOPA images to the middle (11th) frame to correct for movement 

during scanning using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/). The mean [18F]DOPA 

image and the realigned frames were coregistered to the structural MRI scan using SPM8. 

To create uptake (Ki) images representing the amount of tracer accumulated in the ROIs 

relative to the cerebellar reference region, we used an in-house graphical analysis program 

implementing Patlak plotting (53). Ki images were generated from PET frames 

corresponding to 24 to 89 minutes, which represent the amount of tracer accumulated in the 

brain relative to the cerebellum. These images are comparable to Ki images obtained using a 

blood input function but are scaled to tracer volume of distribution in the reference region. 

Group comparisons of Ki values were conducted using standard repeated-measures analyses 

of variance with group as a between-subject factor and bilateral (averaged) ROIs as a within-

subject factor. A Greenhouse–Geisser correction was applied to correct for violations of 

sphericity in all analyses of variance. For the post hoc simple main effects of group tested in 

the various ROIs, we applied a false discovery rate (FDR)-corrected p = .05 to account for 

multiple comparisons. The same strategy was applied to investigate group differences in the 

volume of ROIs and their potential role as a confounding variable.

In the PGs, we investigated the relationship between Ki values in the 4 ROIs and measures 

of gambling severity (SOGS scores), impulsivity (revised Barratt Impulsiveness Scale 

scores), and gambling cognitive distortions (Gamblers’ Beliefs Questionnaire scores) using 

Pearson correlations and an FDR-corrected p = .05 to account for multiple comparisons.
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RESULTS

Subject Characteristics and Traits

Subject characteristics are summarized in Table 1. The two groups were matched for age, 

body mass index, net income, and verbal IQ [based on the Dutch version of the National 

Adult Reading Test (54)]. Measures acquired on the PET testing day indicated that PGs were 

significantly more impulsive, had higher SOGS scores during the past year and past 3 

months, and had more gambling distortions than HCs.

PET Measures

Mean Ki was significantly different between ROIs (F3,78 = 122.95, p < .001, Cohen’s d = 

4.34) and groups (F1,26 = 6.01, p = .021, Cohen’s d = 0.965). The group × ROI interaction 

approached significance (F3,78 = 3.139, p = .051, Cohen’s d = 0.695). Assessing simple 

main effects of group revealed significantly higher Ki values in PGs in the caudate body 

(16% higher in PGs: F1,27 = 5.301, pFDR = .040), dorsal putamen (18% higher in PGs: F1,27 

= 8.047, pFDR = .012), and ventral striatum (17% higher in pGs: F1,27 = 6.312, pFDR = .025), 

but not in the caudate head (9% higher in PGs: F1,27 = 1.435, pFDR = .323) (Figure 1).

We performed a number of additional sensitivity analyses. First, we examined whether the 

volume of hand-drawn ROIs could have influenced our results. The total number of voxels 

within all ROIs was not significantly different between groups (F1,25 = 0.174, p = .680), but 

there was a significant difference between ROIs (F3,78 = 304.39, p < .001) as well as a 

significant group × ROI interaction (F3,78 = 3.586, p = .028). Assessing simple main effects 

of group indicated that only the ventral striatum ROI had more voxels in PGs compared with 

HCs (F1,27 = 8.457, pFDR = .028) (details can be found in Table 2). However, in none of the 

ROIs were Ki values correlated with ROI volume (all ps > .065), suggesting that group 

differences in Ki were not driven by differences in volume.

An ROI-based partial volume correction (PVC) was performed in native MRI space using 

individual hand-drawn ROIs and the geometric transfer matrix method (55), resulting in 

PVC ROIs. A repeated-measures analysis of variance with a Greenhouse–Geisser correction 

revealed a significant main effect of group (F1,26 = 4.230, p = .050) and PVC ROI (F3,24 = 

76.186, p < .001) on Ki values. Moreover, there was a significant Group × PVC ROI 

interaction (F3,24 = 3.205, p = .041), indicating that the effect of group differed across the 

striatal subregions. Specifically, post hoc tests showed that Ki values were significantly 

higher in PGs than in HCs in the dorsal putamen (F1,27 = 7.200, p = .013) but did not differ 

between groups in the caudate body (F1,27 = 2.390, p = .134), caudate head (F1,27 = 3.128, p 
= .089), or ventral striatum (F1,27 = 2.905, p = .100).

In the Supplement, we report the results observed when using standard anatomical ROIs 

(caudate, dorsal putamen, and nucleus accumbens) defined from the Hammersmith 

anatomical atlas (56). In addition, we report analyses showing that including the 2 PGs with 

comorbid cannabis dependence leads to qualitatively similar, although weaker, results. Note, 

however, that the exclusion of these gamblers was precisely motivated by the known 

confounding effect of drug toxicity on dopaminergic functioning and the suspicion of 

different dopamine-related abnormalities in drug versus gambling addiction (57).
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In addition, there was a significant positive correlation between the level of gambling-related 

cognitive distortions, measured with the Gamblers’ Beliefs Questionnaire, and Ki values in 

the dorsal putamen (r = .595, pFDR = .043) (Figure 2) as well as in the caudate head (r = .

601, pFDR = .040). There was no significant correlation between gambling severity 

(measured with the SOGS), or impulsivity (measured with the revised Barratt Impulsiveness 

Scale), and the Ki values in any of the ROIs.

DISCUSSION

Our study establishes for the first time a key link between pathological gambling and 

increased striatal dopamine synthesis capacity. This observation is in line with previous 

findings showing that dopamine release is increased in the dorsal striatum of PGs following 

amphetamine administration (40) and is positively correlated with subjective excitement 

(36,39) and gambling severity (36) in the ventral striatum in the context of gambling. Our 

results also agree with reports of greater reward-induced dopamine release in Parkinson’s 

disease patients with treatment-induced pathological gambling symptoms (58,59). 

Importantly, we also found that higher dopamine synthesis capacity in the dorsal putamen 

and caudate head was positively correlated with the severity of gambling-related cognitive 

distortions in PGs. Gambling-related cognitive distortions are a key defining characteristic of 

pathological gambling (60), predicting not only gambling severity (50,60) but also duration 

of play (50) and treatment outcome (61–63). Together, these results support the hypothesis 

that increased dopamine transmission represents an important biological substrate of 

pathological gambling.

The finding that dopamine synthesis capacity is significantly increased in PGs contrasts 

remarkably with results from PET studies measuring dopamine synthesis capacity in 

substance use disorders. Such studies have revealed that substance use disorders are 

accompanied by either low or unaltered dopamine synthesis capacity (16,18–21), possibly 

reflecting variability in presynaptic dopamine cell injury due to varying amounts of 

excessive drug use (17) or differences in drug-induced neuroplasticity (64). We argue that 

this difference between pathological gambling and substance use disorders might reflect the 

absence of substance-specific confounds, including toxicity of drugs on the dopamine 

system, in the case of pathological gambling. This highlights the potential of studying 

pathological gambling, which does not involve the administration of exogenous substances, 

for investigating the role of dopamine in addiction. An alternative possibility is that 

pathological gambling might not be as good a model of addiction as hitherto thought or at 

least might not be as similar to stimulant addiction as previously hypothesized (5). 

Importantly, research has shown that various substance use disorders are associated with 

varying degrees of dopamine abnormality, suggesting that addiction is likely a multiple-

neurotransmitter disorder (7).

Previous work has shown increased gambling-induced dopamine release in the ventral 

striatum as a function of gambling severity/excitement level (36,39) as well as reduced 

ventral striatal dopamine D2/D3 receptor availability as a function of sensation seeking/

impulsivity (35,36,38). In light of the positive relationship between dopamine synthesis 

capacity and dopamine release (65,66), on the one hand, and the negative relationship 
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between dopamine synthesis capacity and D2/D3 receptor availability observed in HCs (67), 

on the other [but see (16,68)], the current results raise the hypothesis that increased striatal 

dopamine release and reduced D2/D3 receptor availability in pathological gambling may 

reflect increased dopamine synthesis capacity. However, it is noteworthy that another recent 

[18F]DOPA PET study did not find evidence of dopamine synthesis abnormality in PGs 

compared with HCs (43). The basis of this discrepancy is unclear, but we speculate that 

differences in drug dependence history might play a role, although this information was not 

provided in the article by Majuri et al. (43). The incidence of smoking was higher in their 

study compared with the current study (73% vs. 38% in PGs). Given that nicotine/ drugs of 

abuse can affect dopamine synthesis capacity (18), it is possible that differences in nicotine/

drug dependence history between the populations of the two studies contributed to the 

observed differences in dopamine synthesis levels. Another factor that has been suggested to 

contribute to mixed results in gambling research is the heterogeneity among PGs (69,70). In 

particular, it has been proposed that different subtypes of PGs, who gamble for different 

motives, might be characterized by different underlying brain mechanisms. For example, 

PGs who gamble to cope with negative affect might be primarily characterized by abnormal 

functioning of the amygdala circuit, whereas PGs who gamble to enhance positive affect 

might be primarily characterized by a hyperactive orbitofronto-striatal circuitry (71,72). 

More research is needed to elucidate the various endophenotypes (including dopamine 

functioning) underlying pathological gambling subtypes and to assess their validity in 

research and clinical treatment. Future (longitudinal) studies will be needed to replicate the 

current findings and better understand the (causal or consequential) interplay among 

dopamine synthesis capacity, dopamine release, and D2/D3 receptor availability.

The observation that higher dopamine synthesis capacity in PGs was most consistently 

found in the dorsal parts of the striatum is striking and overlaps with the location of 

increased striatal dopamine release previously reported as a result of amphetamine 

administration in the anterior caudate and putamen (40). The dorsal striatum is thought to 

play a crucial role in habitual control of behavior, as evidenced by dorsolateral striatal 

lesions disrupting habit formation in animals (73), for instance. Increased dopamine 

synthesis capacity in the dorsal putamen in PGs also fits with incentive sensitization studies 

in humans, showing that after repeated exposure to amphetamine the dorsal putamen 

becomes progressively involved (74,75). Note that such increased dopamine response to 

rewarding stimuli could also reflect a vulnerability to develop addictive behaviors (76). 

Indeed, animals with increased addiction vulnerability show increased dopamine release in 

the nucleus accumbens and dorsomedial striatum following psychostimulant administration, 

as assessed using voltammetry (77). Thus, increased dopamine synthesis capacity, especially 

in the dorsal putamen, could be a vulnerability and/or consequence of addictive behavior 

driving excessive reward-seeking behavior. However, our study was not designed to dissect 

whether alterations in dopamine synthesis capacity are a direct cause or consequence of 

pathological gambling, and the origin of this alteration is still speculative. One possibility is 

that genetic factors affecting components of the dopamine synthesis pathway, such as 

variants in the dopa decarboxylase gene found to be associated with gambling disorder (78), 

might play a role there.
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Our results should be interpreted with the following limitations in mind. First, the study 

included a small sample of only male subjects. This strategy led to a homogeneous 

population without psychiatric comorbidities—in particular, without drug dependence—

which enabled us to measure dopamine synthesis capacity in pathological gambling without 

confounding factors. However, one should note that, with the exception of current and past-

year drug dependence history, all other clinical assessments were performed away from the 

PET study (median = 23.5 months prior to the PET study) on the occasion of a preceding 

pharmaco-fMRI study. In addition, 5 HCs and 5 PGs scored ≥8 on the Alcohol Use 

Disorders Identification Test questionnaire, indicating possible alcohol problems. However, 

because groups did not differ on Alcohol Use Disorders Identification Test scores, it is 

unlikely that this would have influenced our main finding of enhanced dopamine synthesis 

capacity in PGs relative to HCs. Interestingly, at the time of the PET scan, only 4 of the 13 

gamblers were experiencing acute problems with gambling (as assessed by scores >5 on the 

past-3-month SOGS). It is unclear how this might have affected our results, but because 

dopamine synthesis capacity is thought to be a stable measure over long periods of time 

(79), the increased dopamine synthesis capacity found in our PGs might reflect a 

vulnerability in the dopamine system rather than a consequence of current gambling 

problems. Preclinical and longitudinal studies are needed to address whether heightened 

dopamine synthesis capacity in pathological gambling existed before the onset of 

problematic gambling or developed as a consequence of the disorder. Another caveat is that 

although we observed a clearly enhanced dopamine synthesis capacity in PGs compared 

with HCs in the non-PVC ROIs—specifically in the dorsal putamen, caudate body, and 

ventral striatum—this group difference was less striking in the PVC ROIs and significant 

only in the dorsal putamen ROI (which was also the case for atlas-based anatomical ROIs). 

These differences between non-PVC and PVC results are explained by the incorporation of 

the size and shape of the ROIs, as well as their proximity to white matter and cerebral spinal 

fluid, in the latter method. Using PVC ROIs is not always the most sensitive method because 

PVC methods can amplify the existing noise (80) such as increasing the variance in the 

time-activity curves (81). Given the scarcity of reports examining [18F]DOPA differences in 

pathological gambling, we included different analysis methods to comprehensively test the 

reproducibility of the results. We believe that our analyses reveal robust findings of higher 

dopamine synthesis capacity in the dorsal putamen in PGs.

At the clinical level, our results suggest that it could be beneficial to reduce dopamine levels 

in pathological gambling. However, two double-blind, placebo-controlled trials of the 

atypical antipsychotic olanzapine, a dopamine and serotonin antagonist, have shown no 

benefit over placebo (82,83), similar to what was found with bupropion, a dopamine and 

norepinephrine transporter inhibitor (84). Multiple psychopharmacological studies using the 

dopamine D2/D3 receptor antagonists sulpiride and haloperidol have also yielded 

inconclusive results regarding the ability of these drugs to normalize reward processing in 

pathological gambling (41,46,85,86). However, a small single-blind study using the D1 

receptor antagonist ecopipam in PGs did lead to significant reductions in gambling severity 

measures (87). Clearly, more research is needed to assess whether and how striatal dopamine 

receptor blockade would be effective in treating pathological gambling.
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Finally, addiction is a complex mixture of behaviors and cognitions that is reflected in the 

heterogeneity of the patients and also varies from drug to drug, game to game, and drug to 

game. As emphasized by Nutt et al. (7), “it is unlikely that a single neurotransmitter could 

explain every aspect of addiction.”

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Scatter plot showing Ki values in hand-drawn striatal regions of interest in pathological 

gamblers and healthy control subjects. *pFDR < −05. FDR, false discovery rate.

van Holst et al. Page 15

Biol Psychiatry. Author manuscript; available in PMC 2019 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Significant correlation in pathological gamblers between gambling-related cognitive 

distortions (Gamblers’ Beliefs Questionnaire) and Ki values in the dorsal putamen. FDR, 

false discovery rate.
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Table 1.

Demographics and Self-Report Measures

HCs
(n =15)

PGs
(n = 13) Statistic

Age, Years 36.20 (11.63) 40.92 (6.70) p = .209

Number of Smokers 2 5 p = .257

FTND Score in Smokers 4.00 (1.41) 5.60 (2.61) p = .465

Verbal IQ (Based on NART) 104.93 (9.17) 101.38 (11.05) p = .361

Income 1648.66 (1037.73) 1650.00 (1038.54) p = .487

BMI 23.85 (3.12) 24.06 (1.90) p = .840

AUDIT 6.00 (3.78) 6.69 (3.86) p = .636

Number of Subjects Scoring ≥8 on AUDIT
a 5 5 p = .549

BIS-11 58.07 (8.33) 73.25 (10.14) p < .001

SOGS, Past Year 0.40 (0.83) 9.15 (1.63) p < .001

SOGS, Past 3 Months 0.06 (0.26) 3.23 (3.39) p < .001

GBQ-Total 47.71 (21.59) 90.77 (30.94) p < .001

Injected Dose of [18F]DOPA, MBq 184.20 (14.15) 188.54 (7.65) p = .333

Values represent mean (SD) or n.

AUDIT, Alcohol Use Disorders Identification Test; BIS-11, revised Barratt Impulsiveness Scale; BMI, body mass index; [18F]DOPA, [18F]fluoro-
levo-dihydroxyphenylalanine; FTND, Fagerström Test for Nicotine Dependence; GBQ-total, Gamblers’ Beliefs Questionnaire-total score; HCs, 
healthy control subjects; NART, National Adult Reading Test (Dutch version); PGs, pathological gamblers; SOGS, South Oaks Gambling Screen.

aNone of the subjects met the DSM-IV criteria for alcohol dependence as assessed with the MINI-Plus. Self-report measures were acquired on the 

day of the [18F]DOPA PET scan.
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Table 2.

Number of Voxels in Hand-Drawn Brain ROIs

Number of
Voxels in ROI

HCs
(n= 15)

PGs
(n = 13) Statistics

Caudate Head 4057 (696.24) 3917 (651.03) F1,27 = 0.229, pFDR = .785

Dorsal Putamen 6882 (981.28) 6804 (846.19) F1,27 = 0.050, pFDR = .825

Ventral Striatum 2738 (737.08) 3467 (561.53) F1,27 = 8.457, pFDR = .028

Caudate Body 2226 (579.17) 2003 (320.43) F1,27 = 1.58, pFDR = .458

Values represent mean (SD).

FDR, false discovery rate; HCs, healthy control subjects; PGs, pathological gamblers; ROI, region of interest.
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