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ABSTRACT Mycobacterium tuberculosis is an ancient master
of the art of causing human disease. One important weapon
within its fully loaded arsenal is the type VII secretion system.
M. tuberculosis has five of them: ESAT-6 secretion systems
(ESX) 1 to 5. ESX-1 has long been recognized as a major cause
of attenuation of the FDA-licensed vaccine Mycobacterium
bovis BCG, but its importance in disease progression and
transmission has recently been elucidated in more detail. This
review summarizes the recent advances in (i) the understanding
of the ESX-1 structure and components, (ii) our knowledge
of ESX-1’s role in hijacking macrophage function to set a path
for infection and dissemination, and (iii) the development of
interventions that utilize ESX-1 for diagnosis, drug interventions,
host-directed therapies, and vaccines.

INTRODUCTION
Tuberculosis (TB) is a global health problem caused by
the airborne pathogen Mycobacterium tuberculosis. Cur-
rently, one-third of the world’s population is infected with
M. tuberculosis, and this slow, tenacious bacterium kills
1.6 million people around the world each year, equating
to over 4,300 deaths every day (1). Failure to eradicate this
age-old disease is the result of an ineffective vaccine and
extended, often insufficient, chemotherapy. To date, the
only licensed vaccine available is Mycobacterium bovis

BCG, a live attenuated strain of M. bovis discovered in
1919 by Albert Calmette and Camille Guérin follow-
ing 230 subcultures of the original virulent isolate (2, 3).
Distribution of this vaccine to various countries, and
more subculturing, led to genetic variations between dif-
ferent BCG strains. However, all strains possess a com-
mon deletion that occurred prior to 1919. The deleted
region is called region of difference 1 (RD1), and it en-
codes a key part of the type VII secretion system known
as ESAT-6 secretion system 1 (ESX-1) (Fig. 1A); deletion(s)
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FIGURE 1 Schematic of the ESX-1 secretion system. (A) Gene map of the esx-1 locus and the espACD operon in M. tuberculosis
H37Rv. The esx-1 locus includes esx genes encoding the secreted effector proteins EsxA and EsxB alongside ecc genes encoding
ESX-conserved proteins and esp genes encoding ESX secretion-associated proteins (108). The espACD operon is at a locus
distinct from the esx-1 locus but shares sequence homology with espE, espF, and espH of esx-1 (dashed lines). The spontaneous
deletion (Rv3871 to Rv3878) from esx-1 found in the vaccine strains ofM. bovis BCG is known as region of difference 1 (RD1) and is
indicated by the gray box. (B) Model of the ESX-1 secretion system in the mycobacterial cell envelope. In common with all ESX
systems, the core structure of the ESX-1 secretion apparatus starts with the inner membrane-spanning conserved components
EccB, EccC, EccD, and EccE (109). EccC is an ATP-driven translocase consisting of two subunits (a and b) that are assembled
following EccB binding of target substrate, in this case, the heterodimer EsxAB, where EccCb interacts with the carboxyl-terminal
signal sequence of EsxB (labeled “C”) (21, 110). EsxAB secretion is codependent on the secretion of EspC/EspA, which is also
dependent on interaction with the cytosolic ATPase EccA (20, 111). EspC polymerizes during secretion, indicating a role for EccA
and EspA as cytosolic chaperones (18), and forms a filamentous structure thought to provide a channel for secretion of ESX-1
substrates (18). Other important ESX-1 substrates include the PE and PPE families of proteins, which form heterodimers and are
recruited by the putative cytosolic chaperone EspG to initiate interaction with the core complex of proteins within the inner
membrane (112–114). EspB is also secreted by ESX-1 and forms a PE-PPE-like fold, containing a C-terminal domain that is
processed by the MycP1 protease during secretion (26, 115). EspD to -F and EspH proteins are cytosolic and were recently shown
to be stabilized by the cytosolic chaperone EspL (24–26).
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in this particular region are considered the major cause
of BCG attenuation (4–6).

Brief History of ESX-1
ESX-1 is considered omnipresent in terms of scientific
publications and functionalities, with studies showing its
involvement in intercellular conjugation (7), membrane
escape (8), and passage through the lung interstitium (9).
ESX-1 is a complex, multifunctional type VII secretion
system, producing and releasing a plethora of proteins,
many of which are required for its own secretion.

Mahairas et al. first observed RD1 (Rv3871-9) at the
genetic level in 1996 while comparing genetic differences
between BCG, its parent M. bovis, and its cousin M. tu-
berculosis (4). Following this seminal study, comparative
genomics of numerous BCG strains determined that RD1
was the first region of difference that occurred prior to
attenuation in 1921 (10). ESX-1 and its four closely re-
lated homologues in M. tuberculosis were identified as
potential secretion systems in an organism that was orig-
inally believed to have none, with additional homologues
identified in other Gram-positive bacteria (11). Similar to
Calmette and Guérin a century earlier, several groups saw
the potential for a novel vaccine strategy, postulating that
the removal of this particular attenuating region from the
backbone of the strains that cause human TB, i.e., M. tu-
berculosis, would result in a vaccine that would work
better than BCG. In 2003, the Jacobs, Sherman, and Cole
groups were the first to create vaccine candidates based on
this hypothesis, with the first two labs knocking out RD1
in M. tuberculosis (9, 12) and the latter taking an alter-
native approach by adding RD1 to BCG (13). Interest-
ingly, RD1 knockdown strain studies in mice revealed
intriguing results, wherein the bacterial count was the
same but the pathology was dramatically different (9).
Protection was observed, but it never achieved the levels
found with BCG vaccination in murine models of infec-
tion. However, Koch’s molecular postulates were fulfilled,
telling us that the removal of RD1 resulted in attenuation
(14). Interestingly, a recently isolated clinical strain defec-
tive in this region has shown similar results, where there is
no significant difference in bacterial count but pathology
and cytokine response are remarkably different (15).

Although these studies did not lead to novel vaccine
candidates, they did provide tools to study M. tubercu-
losis virulence, which may help us design better vaccines
and treatment strategies. Recent advances in our under-
standing of TB disease and ESX-1 are discussed. How-
ever, care should be taken to differentiate between cellular
functions as they pertain to different organisms; for ex-
ample, there have been significant advances in Mycobac-

terium marinum studies in its zebrafish host, which have
shown that ESX-1 is not virulence related in this partic-
ular species of mycobacteria (16).

Vaccine Studies That Taught Us More
about Pathogenesis than Protection
No ESX-1 story is complete without the original ESX-1
knockout mutant,M. bovis BCG. The tale has been told
many times of the 230 subcultures that Albert Calmette
and Camille Guérin carried out, culminating in the at-
tenuation of virulent M. bovis. The story of BCG begins
at the Pasteur Institute in Lille, France, where Guérin
began subculturing a virulent strain of M. bovis isolated
from the udder of a tuberculous cow. The culture was
passaged every ∼3 weeks on a medium containing po-
tato, glycerine, and ox bile. Mycobacterial cultures are
notoriously clumpy, and Calmette and Guérin found
that a mycobacterial stew, composed of M. bovis grow-
ing on potatoes that were cooked in ox bile and then
dipped at one end in glycerinated ox bile, led to an
emulsified culture, making it easier to standardize inoc-
ulating doses. This serendipitously resulted in attenua-
tion of the strain, which led Calmette and Guérin to
produce a vaccine utilizing this bacillus (2). By 1919, 230
subcultures had resulted in a strain that failed to produce
tuberculous disease when injected into guinea pigs, rab-
bits, cattle, and horses (17). Following this success, prep-
arations began for the first human clinical trials.

In the early 20th century, ethical standards were
somewhat less stringent than today, and the first human
“trial” of BCG was undertaken in an unlikely subject,
infants. In 1921, an infant under the care of its grand-
mother, who had TB, was given three doses of oral BCG
to prevent likely infection and possible death (3). This
initial foray into attenuated TB vaccines was a success,
and the child remained healthy. Following this success, a
larger trial began 6 months later in which BCG was
orally administered to 317 infants at birth. Ultimately,
BCG proved to be safe and effective in protecting against
childhood TB (3). However, vaccine safety was severely
questioned in 1930 following the Lübeck disaster, in
which 250 infants were vaccinated in a northern Ger-
man city with a contaminated BCG strain, resulting in
73 deaths and 135 additional cases of TB. A lengthy
investigation attributed the disaster to negligent vaccine
preparation, leading to contamination with virulent tu-
bercle bacilli.

Despite this early setback, BCG has subsequently
proven to be one of the safest vaccines ever created and has
saved the lives of countless individuals, many of them
children. However, TB remains an enormous global prob-
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lem, bringing attention back to BCG attenuation funda-
mentals, the loss of RD1, and, in turn, the absence of an
ESX-1 secretion system.

THE ESX-1 SECRETION SYSTEM
AND ITS PROTEINACEOUS ARMY
Many of the proteins secreted by ESX-1 are immuno-
dominant and are at the forefront of infection and dis-
ease. The ESX type VII secretion systems are complex;
the current working model of the ESX-1 secretion sys-
tem is shown schematically in Fig. 1B, with the recent
addition of EspC, which forms a filamentous structure
spanning the bacterial cell envelope (18).

The main ESX-1 system spans the inner membrane
with a channel-like structure composed of conserved ESX
components (EccB to -D) that form the membrane core
complex. EccB and EccC are ATPases involved in recog-
nizing substrates and providing energy for the secretion
of substrates across the mycomembrane (19–21). Inter-
estingly, in ESX-1 and ESX-5, the eccC gene, encoding a
FtsK/SpoIIIE-type ATPase, has split into two genes that
generate the proteins EccCa and EccCb, which interact
and form a functional unit for secretion through the ESX-
1 system. Although the mycosin protease MycP1 is not an
integral part of the central membrane complex, and its
protease activity is dispensable for ESX-1-mediated pro-
tein secretion, MycP1 is a conserved membrane compo-
nent associated with the membrane complex, and this
association is essential for the stability of the complex (22).

In addition to membrane components, ESX-1 also has
cytosolic components, including cytosolic ATPase (EccA),
chaperones (EspD to -H), and secreted substrate proteins
(EsxAB, PE35-PPE68, EspA to -C, and EspE) called ef-
fectors. EccA is a cytosolic AAA (ATPase associated with
diverse cellular activities)-type ATPase. Most cytosolic
chaperones associated with the ESX-1 system belong to
ESX-1 secretion-associated proteins (Esp). EspI (Rv3876)
to -L (Rv3880c) are encoded within an operon that gen-
erates ESX conserved components (Rv3868 to Rv3883c),
and the EspE to -H (Rv3864 to Rv3867) genes are up-
stream, whereas the EspACD (3616c to 3614c) operon
is at a more distant location in the genome (Fig. 1A).
EspD itself is secreted by M. tuberculosis, although not
exclusively in an ESX-1-dependent manner, but it is also
required for stabilizing (EspC and EspA) and secretion
(EsxA) of ESX-1 substrates (23). More recently, the EspD
to -F and EspH proteins were shown to be stabilized by
the chaperone EspL (24). Although some Esp proteins
serve as cytosolic chaperones, some act as effectors (EspA
to -C and EspE) of ESX-1 and are secreted (25, 26). EspC

has been shown to form filaments in the membrane (18),
whereas EspE localizes to the cell wall. Fusion of EspE
with a fluorescent marker protein in M. marinum dem-
onstrated that ESX-1 localizes at new poles with active
peptidoglycan synthesis following cell division (27). How
the Esp proteins encoded within the esx-1 operon or dis-
tally in the genome interact with each other and with
other components of the ESX-1 system and contribute
to its integrity and functionality are still active areas of
study.

The other major effectors secreted by the ESX-1 sys-
tem are key immunogenic, highly secreted ESX proteins,
including the early secreted antigenic target of 6 kDa
(ESAT-6, also called EsxA) and the culture filtrate pro-
tein of 10 kDa (CFP-10 or EsxB). EsxA and EsxB are
secreted as a heterodimer (EsxAB) in a codependent com-
plex (28). Binding of the EsxAB heterodimer to the ESX-1
inner membrane core complex component EccC for se-
cretion involves recognition of the bipartite secretion sig-
nal motif, consisting of WXG, located on EsxA, and
tyrosine-X-X-X-aspartic acid/glutamic acid (YXXXD/E),
located on EsxB (21, 25, 29). In contrast, secretion of the
PE35-PPE68 heterodimer is dependent on direct binding
to EspG (30). The ESX-1 system is highly complex, and
this complexity is not restricted to the machinery and
effector molecules; the regulation of ESX-1 itself also
appears to be multifactorial and is indirectly regulated
by PhoPR (31), WhiB6 (32), EspR (33), Lsr2 (34), and
MprAB (35).

ESX-1 Lyses Membranes
The macrophage phagosome is a highly inhospitable en-
vironment; however, M. tuberculosis survives and repli-
cates within this environment. It has long been debated
whether M. tuberculosis can escape the phagosome and
replicate within the cytosol, and McDonough et al. were
some of the first researchers to demonstrate the contro-
versial escape ofM. tuberculosis from phagosomes to the
cytosol using electron microscopy (36). This has since
been shown to be ESX-1 mediated via ESAT-6 (37). The
ESX-1 system was also found to lyse whole cells, causing
macrophage and epithelial cell necrosis in in vitro infec-
tion experiments (4). Many researchers carried out the
obvious experiments, adding ESAT-6 (EsxA) directly to
cell cultures to look for membrane lysis, often in terms
of measuring the release of cytoplasmic contents. How-
ever, no cell lysis was observed, until the missing link of
low pH was identified (38, 39). Conrad et al. stated that
contact dependence was required for ESAT-6 membrane
lysis but then, in the same study, showed that low pH
caused this as well (40). The Jacobs laboratory tried this
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experiment in 2003 before we knew of the low-pH trig-
ger, and although our study was unsuccessful, we did
demonstrate total membrane disruption in a simplified
artificial membrane model with ESAT-6 or ESAT-6 and
CFP-10 together, but not with CFP-10 alone (9). In ad-
dition, cryo-electron micrographs of ESAT-6 and CFP-
10 proteins showed differently sized pore-like structures
(Fig. 2, inset a) (8).

Phagosome Permeabilization
and Its Prospective Roles
The implications of phagosomal escape have been dis-
cussed in many reviews covering mycobacterial species
and other intracellular pathogens, such as Salmonella
enterica serovar Typhimurium or Listeria monocyto-
genes (41). The reasoning includes cytoplasmic nutri-
tional availability, antigen presentation to CD8 T cells,
and dissemination. InM. tuberculosis, it is clear that this
escape happens (37) and that it is ESX-1 mediated; how-
ever, some studies suggest that such escape is a temporal
by-product of ESX-1 lysing the cell membrane to escape
from the cell (42).

Nutrient-rich cytoplasm seems an attractive envi-
ronment for proliferation, providing an advantage to
intracellular pathogens that develop mechanisms to per-
meabilize, and escape from, the phagosome. Interest-
ingly, to counter host-imposed nutrient restrictions, M.
tuberculosis can synthesize most of the essential nutri-
ents for its growth, but it is also capable of acquiring
nutrients from the host. M. tuberculosis can obtain car-
bon, nitrogen, and some amino acids from the host (41,
43, 44), but intriguingly, it is not able to acquire argi-
nine, methionine, or leucine from the host (45–47). In
the Jacobs laboratory, we have demonstrated that argi-
nine or methionine auxotrophy is bactericidal to M. tu-
berculosis in vitro and in vivo, both in macrophages and
in mice (45, 46), whereas leucine auxotrophy is bacte-
riostatic (45–47). This finding was noteworthy, as mouse
plasma has an arginine concentration of∼200 μMunder
normal conditions, and M. tuberculosis possesses argi-
nine transporters (48, 49). Salmonella Typhimurium es-
tablishes an active arginine recovery system using its
arginine transporter ArgT and by promoting accumula-
tion of the host arginine transporter (mCAT1) on phago-
somes (50), which does not appear to be the case withM.
tuberculosis. This amino acid autarky is, as yet, an un-
explored metabolic vulnerability. However, it does sug-
gest that if ESX-1 is functional and provides access to the
cytosol, M. tuberculosis amino acid auxotrophs should
acquire their missing nutrient from the cytosol and pro-
liferate and disseminate as observed with other patho-

gens (41, 51). However, by utilizing nutrients from the
host in this manner, these pathogens also alert the host
immune system. It is unclear whether M. tuberculosis’s
ability to biosynthesize most of the amino acids and
metabolic shutdown during famine of the nutrients pro-
vide an evolutionary advantage by enhancing the abil-
ity of M. tuberculosis to persist in the host, ultimately
evading vaccine and drug treatments. Further studies are
needed to better answer these questions and fully elu-
cidate the essentiality and sufficiency of ESX-1 system
to lyse phagosomal membranes and gain access to the
nutrient-rich cytosol for proliferation and dissemination.

Another implication of phagosome permeabilization
byM. tuberculosis is egress of the organism to the cytosol
for dissemination and pathogenesis of disease. ESAT-6-
mediated phagosome disruption activates the cytosolic
inflammasome receptor NLRP3, also triggering increased
necrosis (52, 53). Augenstreich et al. suggested that ESX-1,
along with phthiocerol dimycocerosates, causes phago-
somal rupture but leads to an alternative mode of death,
specifically, apoptosis (54). Further, ESX-1-mediated
phagosome permeabilization has been shown to enhance
type I interferon (IFN) secretion as a pathogenic mech-
anism for promoting bacterial replication and manipula-
tion of host immunity (8, 55). With so many conflicting
studies, it is clear that phagosome disruption remains a
much-debated topic in the TB field. Engendering further
conflict in the field is the question of whether ESX-1
mediates exit from the cell by the formation of ejec-
tosomes, membrane protrusions containing the bacilli
that propel themselves by means of an actin tail. These
structures have been observed in M. marinum (56), but
whether they occur in M. tuberculosis-infected human
macrophages has yet to be determined, particularly as
M. tuberculosis does not have the required active tail (57).

ESX-1 at the Site of Disease: Disease
Progression via Necrosis
Orme suggested that necrosis is itself a means to pro-
gression of TB disease (58), and following intracellular
replication within alveolar macrophages at the site of
disease, cell death often occurs, with M. tuberculosis
ESX-1 promoting necrosis, not apoptosis (4). Indeed,M.
tuberculosis actively suppresses macrophage apoptosis,
reducing bacterial replication (59) with ESX-1, while
ESX-1-mediated necrosis enhances bacterial replication
(60). M. tuberculosis also mediates cellular necrosis in
other host cells, such as alveolar epithelial cells in the
epithelial bilayer, which is needed for infection and dis-
ease progression (61–63). King believes the interaction
of M. tuberculosis with alveolar epithelial cells is too
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FIGURE 2 ESX-1-related disease progressionwithin the lung. Steps involved in progression
of disease are represented with the numbers 1 to 9. (1) Infection of alveolar macrophages
with M. tuberculosis (wild type) or ESX-1 mutant. (2) Lysis of the phagosomal and cellular
macrophage membranes is carried out by EsxA from wild-type M. tuberculosis (2a), while
the ESX-1 mutant remains trapped in the alveolar macrophages in the alveolar space (2b).
(3) Infection of type II pneumocytes in the alveolar epithelium (AE) by M. tuberculosis, with
resulting ESAT-6-mediated lysis, allowing passage into the interstitial tissue or (3a) trans-
location of infected alveolar macrophage to lung interstitial tissue. (4) Translocated bac-
teria are ingested by and replicate within macrophages, which produce cytokines such
as fractalkine. (5) Release of bacilli by necrosis of infection-dependent macrophages.
(6) Recruitment of neutrophils and naive macrophages by fractalkine and infection of
new macrophages and other cells by phagocytosis. (7) Intracellular replication of bacilli
in recruited infected macrophages. (8) Continuation of the cycle, leading to egress of
M. tuberculosis from the host cells into deeper interstitial tissue and dissemination within
the lungs. (9) Establishment of granulomas and necrosis. (Insets) (a) Electron micrograph
of EsxAB. (b) Electron micrograph of the ESX-1 mutant (blue arrow) trapped within the
phagosome of an alveolar macrophage in alveolar space in a murine model. (c) Electron
micrograph showing wild-type M. tuberculosis (red arrow) following egress to the cyto-
plasm and interstitial spaces in the murine lung.
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often overlooked in TB disease, with most researchers
conducting studies using macrophages and often missing
these short-lived interactions, i.e., the egress across the
alveolar interstitium within epithelial cells (63). Notably,
studies have shown that type II pneumocytes are highly
susceptible to M. tuberculosis infection, with the bacilli
translocating into interstitial tissue through the basolat-
eral surfaces of these cells via exocytosis or necrosis (64).
In collaboration with our laboratory, King’s group per-
formed screens to find mutants of M. tuberculosis in-
capable of lysing alveolar epithelial cells, discovering
that ESX-1 was required for epithelial cell lysis (9). We
also observed ESX-1-mediated macrophage lysis both
in vitro and in vivo (Fig. 2), with M. tuberculosis ESX-1
mutants remaining trapped within alveolar macrophages
but wild-type bacilli escaping and egressing to the inter-
stitial tissue (9).

Krishnan et al. predicted in 2010 thatM. tuberculosis-
infected alveolar macrophages may translocate from al-
veolar spaces to lung interstitium to disseminate M.
tuberculosis (65), and recent studies support their hy-
pothesis. Cohen et al. recently provided evidence of
M. tuberculosis-infected alveolar macrophages being re-
located to the lung interstitium due to ESX-1 and in-
terleukin 1R (IL-1R) dependence (66). ESX-1 effector
protein involved in dissemination of infected alveolar
macrophages into the interstitium in mice is still un-
determined (9, 66).Once M. tuberculosis escapes from
the activated macrophage via necrosis, it needs a niche.
In this instance, a growth-permissive naive macrophage
serves as the perfect host where M. tuberculosis can sur-
vive and replicate. Therefore, to attract naivemacrophages,
M. tuberculosis has evolved a mechanism involving in-
duction of fractalkine production by M. tuberculosis-
infected cells.

ESX-1 and the Chemokine Fractalkine
First discovered by Bazan et al. in 1998 (67), fractalkine
is a rather unusual chemokine and in a class of its own,
having a strange stalk-like structure that can also tether
host cells. It has been reported to attract naive mac-
rophages to the lung, and fractalkine production from
M. tuberculosis-infected cells has been determined to be
ESX-1 regulated (68). This study also linked fractalkine
levels to the influx of naive macrophages during TB in-
fection using bronchoalveolar lavage samples taken di-
rectly from the lungs of TB patients. Other cytokines are
likely involved in this influx, such as ESX-1-regulated IL-
1R (66, 68, 69).

IfM. tuberculosis ESX-1 mediates fractalkine produc-
tion from the infected macrophage, what is the effector

protein responsible for triggering its production? This
appears to be ESAT-6, which activates the tyrosine ki-
nase Syk (53); Syk functions in an upstream activation
pathway to produce fractalkine, and its inhibition can
stop M. tuberculosis ESX-1-mediated fractalkine pro-
duction and the resulting monocytic infiltration (68). The
fractalkine axis has been proposed as a treatment target
via the inhibition of monocyte infiltration and thus in-
flammation in diseases such as Crohn’s (70), and a vac-
cination approach has successfully been used to protect
against respiratory syncytial virus infection in an animal
model (71). Early establishment of infection and subse-
quent bacillary dissemination relies upon the availabil-
ity of permissive “niche” cells. Therefore, a chemotactic
signal would be a requisite for increasing the number of
the cells from the approximate onemacrophage per every
9 ml of lung volume (72). The question of whether other
ESX-1-dependent effectors also are involved in the in-
duction of fractalkine production by M. tuberculosis-
infected macrophages is an open area of investigation.

DO OTHER BACTERIA HAVE ESX-1
SECRETION SYSTEMS?
Homologues of ESX-1 proteins have been detected in
various members of the Actinobacteria (other mycobac-
terial species and Streptomyces coelicolor), Firmicutes
(Staphylococcus aureus, L. monocytogenes, Bacillus an-
thracis, and Bacillus subtilis), and Gammaproteobac-
teria, such as Helicobacter pylori (73). These secretion
systems contain at least one FtsK-SpoIII ATPase, plus
one member of the WXG100 protein family (73). A
type VII-like secretion system in S. aureus is composed of
five membrane proteins (EsaA and EssA to -D), three
cytosolic proteins (EsaB, -E, and -G), and five secreted
virulence factors (EsxA to -D and EsaD) (74). In S. au-
reus, this specialized type VII secretion system is rapidly
induced in response to interaction of the bacteria with
host fluids, including blood serum, nasal secretions, and
pulmonary surfactant (74). Furthermore, by generating
mutants with deletions of genes homologous to the M.
tuberculosis ESX-1 membrane core complex genes essA,
essB, and essC in two S. aureus strains, Kneuper et al.
demonstrated that these genes play a major role in nasal
colonization and in development of pneumonia in cystic
fibrosis murine infection models (75). Deletion of this
secretion system in S. aureus leads to its attenuation via
decreased bacterial growth and a subsequent decrease in
the number of abscesses in host kidneys, spleen, and liver
in mice (76, 77). Conversely, an ESX-1 secretion system
found in L. monocytogenes is not required for epithelial
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cell invasion and intracellular multiplication in macro-
phages in vitro; indeed, in an in vivo murine model, the
expression of the ESAT-6 homologue EsxA was detri-
mental to L. monocytogenes, resulting in decreased infec-
tion (78). Whether deletion of ESX secretion systems from
these pathogens can be exploited for live-vaccine design
to protect against infection remains to be investigated.

PRACTICAL IMPLICATIONS OF ESX-1
Drug Interventions and Diagnostics
Studies on ESX-1 proteins have been of continuous in-
terest for the development of drug interventions, diag-
nostic markers, and vaccines. EsxA and EsxB, two of the
most highly secreted proteins of M. tuberculosis, have
formed the basis for a major breakthrough in TB diag-
nostics, the IFN-γ release assays (IGRAs). The addition
of another ESX-1 protein, EspC, which is present in
BCG but not secreted, may potentially enhance the sen-
sitivity and specificity of these assays (79). Interestingly,
lysis ofM. tuberculosis phagosomal membranes via EsxA
and EsxB is associated with NOD2-RIP2- or cGAS-
STING-dependent or -independent activation of type I
interferon IFN-α and IFN-β induction (80). Furthermore,
Barczak et al. showed that PDIM production and export
are required for coordinated secretion of ESX-1 substrates
for phagosome permeabilization and induction of type I
IFN response (81).

Several studies have shown that induction of type I
IFNs can worsen the outcome of TB (80, 82–84). Berry
et al. performedwhole-blood transcript signature studies
on patients with active and latent TB to identify sig-
natures linked to the progression of active disease (85).
Recently, Singhania et al. identified type I IFN as a part
of the transcriptome signature that can differentiate be-
tween patients with active and latent TB (86). These
studies suggest that inhibitors of M. tuberculosis pertain-
ing to IFN-α and IFN-β induction are good targets for
novel immunotherapeutic strategies to combat M. tuber-
culosis. In addition to the effector proteins EsxA and
EsxB, potential targets include immunogenic PE (Pro-Glu)
and PPE (Pro-Pro-Glu) proteins and Esp proteins. Ef-
fectors such as EspE that are localized on the M. tuber-
culosis cell surface are potential therapeutic targets for
antibodies, generating antibody-dependent cell cytotoxic
responses, with the aim of eliminating extracellular M.
tuberculosis. In a recent study, IL-2 induced by stimu-
lation of whole blood with ESX-1-secreted PE35 and
PPE68, using a technique similar to that used for IGRAs,
was capable of discriminating between patients latently in-
fected with M. tuberculosis and those with active TB (87).

The use of ESX-1 proteins distinguishes between BCG-
vaccinated and nonvaccinated humans, as BCG does not
possess or secrete these proteins. Determining the differ-
ence between latent TB infection, BCG vaccination, and
active TB infection could revolutionize TB treatment
strategies, allowing the development of differentiating bio-
markers. Better characterizations of the T-cell-stimulatory
proteins secreted by ESX-1 will lead to development of
improved IGRAs with enhanced prognostic value.

Why Do We Need a New Vaccine?
BCG is good at protecting a range of animals, from
badgers to horses. Unfortunately, that same coverage does
not translate to adult humans, resulting in a failure to
eradicate TB. However, there is a silver lining with BCG,
as it is able to elicit some protection against the disease in
children (88). However, if we are to rid the world of TB by
2020, which is the aim of theWorld Health Organization,
we need a better vaccine, and luckily, there are several in
the clinical pipeline that are related to ESX-1 or other type
VII secretion systems.

In 2012, the Tuberculosis Vaccine Initiative led the TB
vaccine community to generate a blueprint for TB vaccine
development (https://www.who.int/immunization/sage/3
_TB_Vaccines_Strategic_Blueprint_draft_Oct2011_nov11
.pdf). TB vaccine development is difficult, as there is still
no known immune correlate of protection. In 2012, there
were 13 candidate TB vaccines undergoing clinical trials.
In the 5 years that followed, progress of these candidates
through the TB vaccine pipeline slowed or failed alto-
gether, with very few preclinical candidates emerging (89).
This impeded progress resulted in the current pipeline
of 12 TB vaccine candidates that are currently in phase 1
to 3 clinical trials (Fig. 3). This pipeline consists of a va-
riety of delivery methods (protein/adjuvant, attenuated/
killed cells or cell extract, and viral vectors), but the range
of antigens and vaccine technologies is actually quite nar-
row; most rely on eliciting a strong T-helper 1 (Th1) and
cell-mediated immune response, known to be important
in anti-TB immunity, based on the attenuated M. tuber-
culosis vaccine strain (BCG).

Approaches that focus on ESX-1 and other type VII
secretion systems include live, attenuatedMTBVAC (90)
and VPM1002 (91) and the protein subunit vaccines
ID93+GLA-SE (92), H4:IC31 (93), H56:IC31 (94), and
M72+AS01E (95). ID93+GLA-SE, H4:IC31, and H56:
IC31 have ESAT-6 as one of the antigens secreted by
ESX-1, whileM72+AS01E has PPE18 secreted by ESX-5
(92–95). MTBVAC was developed from an attenuated
M. tuberculosis clinical isolate that retained most of the
discoveredM. tuberculosis T-cell epitopes, including the
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immunodominant antigens EsxA and EsxB of the RD1
region deleted from BCG (Fig. 1A). MTBVAC has en-
tered clinical trials as a preventive vaccine in newborns,
adolescents, and adults. It is believed that by targeting
the virulence-specific epitopes missing from the BCG vac-
cine, MTBVACmight afford better protection against TB
in human hosts (96). VPM1002 is a recombinant BCG
strain with the urease gene (ureC) replaced by the liste-
riolysin O gene hly from L. monocytogenes (91). In phase
II clinical trials, VPM1002 afforded safety and immuno-
genicity to newborn infants as well as adults. Further-
more, the incidence of abscess formation was lower with
VPM1002 than BCG (97).

However, it may be possible that M. tuberculosis
whole-cell vaccines alone cannot confer the desired level
of protection and need to be combined with novel ap-
proaches involved in enhancing host immune response,
such as that taken in the development of the ID93+GLA-
SE and M72+AS01E vaccine candidates. ID93+GLA-SE
vaccine was rationally designed as a fusion protein of
four immunogenic protein targets that are associated with
either virulence (Rv3619, Rv3620, and Rv2608) or la-
tency (Rv1813) (92, 98). Rv3619 and Rv3620 are the
ESX-5 ESX protein pair (ESXM/N) paralogs called EsxV
and EsxW and are uniquely expressed by M. tuberculo-
sis, not M. bovis or BCG, while Rv2608 (PPE42) and
Rv1813 are common to M. tuberculosis, M. bovis, and

BCG (99–101). The immunogenicity of this vaccine can-
didate has been boosted by using a Toll-like receptor 4
agonist as an adjuvant, resulting in the induction of a
humoral responsewith a preferential increase in IgG1 and
IgG3 subclasses and a Th1-type cellular response (102).
Similarly, M72+AS01E includes the antigens Rv1196
(PPE18) and Rv0125, along with the adjuvant AS01E,
and showed an efficacy of 54% efficacy in phase 2b trials
against M. tuberculosis (103). Although this candidate
includes an alternative agonist and is designed to promote
T cell and antibody responses, we do not know if these
are the only correlates that will protect.

There are also questions regarding the role of che-
mokines in the vaccine response. This subclass of pro-
teins is responsible for recruiting host immune cells and
has been largely neglected by TB vaccinologists. Perhaps
a better chemokine-centered vaccine could be developed
that could halt or contain the spread of M. tuberculo-
sis upon initial infection. M. tuberculosis uses ESX-1 to
spread into the lung interstitium from its initial en-
counter with the alveolar macrophage (66), in granulo-
ma formation in a human lung tissue model (104), and
to modulate the infected macrophage to produce the
chemokine fractalkine, which calls in permissive macro-
phages that can lead toM. tuberculosis progression (68).
Altering this chemotactic call may switch the immune
response, favoring the host. It is therefore possible that

FIGURE 3 TB vaccines in the pipeline, undergoing phase 1 to 3 clinical trials. Current
vaccine candidates in the pipeline include protein/adjuvant-based, attenuated/killed or
cell extract-based, and viral vector-based vaccines.
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ESX systems will lead the way for novel vaccine develop-
ment. If so, we need to further understand how they work
before we can harness their secretory host-controlling
powers.

Moreover, multiple strains have been observed in the
same patient (105), withmixed infections beingmassively
underrepresented in the majority of diagnostic methods
used today (106). Such incomplete diagnosis is, in itself, a
huge issue with regard to curbing the spread of TB, po-
tentially resulting in incorrect treatment regimens and
enhanced TB rates, but this topic is beyond the scope of
this article. In addition, many of the circulating strains
causing TB may be other members of theM. tuberculosis
complex (107), indicating that we may need to look for
vaccines that will also protect against other members of
the M. tuberculosis complex, including Mycobacterium
africanum, M. bovis, etc.

CONCLUDING REMARKS
Without ESX-1, M. tuberculosis is highly attenuated. M.
tuberculosis uses virulence-associated ESX-1 to lyse mem-
branes, egress through cells and lung tissue, and cause
tuberculous disease. We need to understand the exact role
of each of the plethora of proteins that ESX-1 employs
to manipulate and modulate. We urgently need novel
strategies to protect against and prevent M. tuberculosis
infections. Furthering our understanding of this pro-
teinaceous army could enable us to target specific ESX-1
proteins involved in the hijacking of the host pathways
and ultimately halt the spread of disease. Perhaps this
will open new avenues leading to the development of
novel immunotherapeutic strategies for TB and a variety
of other bacterial diseases.
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