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Abstract

Tree shrews are small mammals with excellent vision and are closely related to primates. They 

have been used extensively as a model for studying refractive development, myopia, and central 

visual processing and are becoming an important model for vision research. Their cone dominant 

retina (~95% cones) provides a potential avenue to create new damage/disease models of human 

macular pathology and to monitor progression or treatment response. To continue the development 

of the tree shrew as an animal model, we provide here the first measurements of higher order 

aberrations along with adaptive optics scanning light ophthalmoscopy (AOSLO) images of the 
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photoreceptor mosaic in the tree shrew retina. To compare intra-animal in vivo and ex vivo cone 

density measurements, the AOSLO images were matched to whole-mount immunofluorescence 

microscopy. Analysis of the tree shrew wavefront indicated that the optics are well-matched to the 

sampling of the cone mosaic and is consistent with the suggestion that juvenile tree shrews are 

nearly emmetropic (slightly hyperopic). Compared with in vivo measurements, consistently higher 

cone density was measured ex vivo, likely due to tissue shrinkage during histological processing. 

Tree shrews also possess massive mitochondria (“megamitochondria”) in their cone inner 

segments, providing a natural model to assess how mitochondrial size affects in vivo retinal 

imagery. Intra-animal in vivo and ex vivo axial distance measurements were made in the outer 

retina with optical coherence tomography (OCT) and transmission electron microscopy (TEM), 

respectively, to determine the origin of sub-cellular cone reflectivity seen on OCT. These results 

demonstrate that these megamitochondria create an additional hyper-reflective outer retinal 

reflective band in OCT images. The ability to use noninvasive retinal imaging in tree shrews 

supports development of this species as a model of cone disorders.
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Cone Photoreceptors; Tree Shrew; Adaptive Optics; Optical Coherence Tomography; 
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1. Introduction

In humans, cone photoreceptors mediate high-spatial acuity and color vision and therefore 

represent a critical cell population for completing visual tasks and navigating our 

environment. Diseases that affect cone function have devastating effects on day-to-day life 

and represent a significant societal burden. Recently, exciting progress has been made in 

developing mammalian models to study mechanisms of cone disorders through inherited 

cone dystrophies (Kostic and Arsenijevic, 2016).1 Due to their genetic malleability, much of 

this work is being done in nocturnal mice and rats (Slijkerman et al., 2015) who have poor 

vision and sparse cones. Non-human primates in the Infraorder Simiiformes (e.g. Marmoset 

and Macaque) offer a comparable representation of the human fovea, but high per-animal 

cost, ethical concerns, and low availability are limitations that most research institutions 

cannot overcome. Large animal models with a “fovea-like” area centralis (e.g. dogs (Beltran 

et al., 2014) and pigs (Hendrickson and Hicks, 2002; Kaplan et al., 2017)) are appealing 

because of lower costs and higher availability, but their size and maintenance makes 

experimental logistics challenging so they are used in relatively few labs.

Noninvasive retinal imaging has provided a solution to one of the limitations associated with 

alternative animal models: low availability. The ability to conduct a longitudinal imaging 

study maintains statistical power while reducing the required number of animals. However, 

retinal imaging involving large animal models can present significant logistical and 

engineering challenges. Despite the many advancements balancing practicality and relevance 

in animal modeling, a critical research gap remains between nocturnal rodents and large 

1Extensive research into cone biology and refractive development has also been conducted in (but not limited to) zebrafish (Link and 
Collery, 2015) and chick (Wisely et al., 2017); however the scope of this study and discussion will be limited to mammalian models.
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animal work, further motivating the development of cone dominant small mammalian 

models for vision research.

Diurnal rodents strike a balance between relevance to cone disorders and logistics. While no 

rodent model can fully represent the human retina, Nile rats and ground squirrels have cone-

rich retinal regions (Bobu et al., 2006; Kryger et al., 1998) and photoreceptor transcriptomes 

that may be more relevant to cone retinopathies than natural and genetically modified 

nocturnal species (Mustafi et al., 2016). The guinea pig has been shown to serve as a useful 

model for refractive development (McFadden et al., 2004), but does not exhibit a 

preponderance of cones (Peichl and Gonzalez-Soriano, 1994). Recent studies using the 13-

lined ground squirrel have led to new insights into cone biology (Beier et al., 2018; Kiser et 

al., 2018; Mustafi et al., 2016) and this species is amenable to in vivo retinal imaging 

(Sajdak et al., 2016; Sajdak et al., 2018). However, this species of ground squirrel is an 

obligate hibernator, and its retina undergoes reversible structural and transcriptomic 

remodeling throughout hibernation (Kuwabara, 1975; Luan et al., 2017; Mehta et al., 2013; 

Merriman et al., 2016; Remé and Young, 1977), and therefore offers a limited annual 

window in which to study a physiologically consistent homeothermic retina.

Northern tree shrews (Tupaia belangeri) are small mammals (~200g) that are closely related 

to primates (order Scandentia). They have a substantial binocular visual field (Figure 1A), 

(Kaas et al., 1972) and demonstrate complex visual and social behaviors (Emmons, 2000; 

Mustafar et al., 2018). The visual pathways and primary visual cortex are highly developed 

(Lund et al., 1985). The tree shrew retina contains ~95% cones comprised of short 

wavelength-sensitive cones (S-cones) and long/medium wavelength-sensitive cones (L/M-

cones) in a ratio of 1:12.6) (Müller and Peichl, 1989). Accordingly, tree shrews have been 

shown to be dichromats with a neutral point of approximately 504nm (Jacobs and Neitz, 

1986). The value of tree shrews as an intermediary species between primate and rodent has 

been leveraged in studies of postnatal refractive development, the emmetropization 

mechanism, and in studies of visual system anatomy and neurophysiology (Lee et al., 2016; 

Norton and McBrien, 1992; Sesma et al., 1984; Usrey et al., 1992).

Although in vivo retinal assessment of this species has been limited, recent studies have 

utilized optical coherence tomography (OCT) of the retina to study histological correlations 

(Abbott et al., 2009), retinal thinning in myopia (Abbott et al., 2011), inner retina 

optophysiology (Erchova et al., 2018), and to assess the lamina cribrosa and retinal nerve 

fiber layer in a model of glaucoma (Samuels et al., 2018). The cone inner segments of the 

tree shrew contain mitochondria that are much larger than in other species (termed 

“megamitochondria”) (Knabe et al., 1997; Samorajski et al., 1966). This feature may be of 

particular interest, as the mitochondria are thought to be the source of some of the hyper-

reflective outer retinal bands seen on OCT images (Spaide and Curcio, 2011). Tree shrews 

have approximately the same numerical aperture as mice (Callahan and Petry, 2000; Geng et 

al., 2011; Norton and McBrien, 1992), resulting in an excellent theoretical lateral resolution 

with AOSLO (<1μm).

To provide additional information that may foster ophthalmic research using tree shrews, we 

have analyzed the optical performance of the tree shrew eye, demonstrated noninvasive 
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retinal imaging techniques in the tree shrew including OCT and AOSLO, and compared our 

in vivo measurements to those obtained ex vivo using confocal and electron microscopy.

2. Methods

2.1. Animals

As listed in Supplementary Table 1, measurements were made on 10 juvenile and young 

adult northern tree shrews (Tupaia belangeri) at the University of Alabama at Birmingham 

(UAB) and at the Medical College of Wisconsin (MCW). The animals at UAB were raised 

by their mothers in the UAB Tree Shrew Core. Animals measured at MCW were obtained 

after weaning from the Max Planck Florida Institute for Neuroscience. The experimental 

procedures at both UAB and MCW were conducted in accordance with the ARVO Statement 

for the Use of Animals in Ophthalmic and Vision Research, occurred in AAALAC 

international-approved animal research facilities, and were approved by the Institutional 

Animal Care and Use Committees at each institution.

2.2. Refraction and Wave Aberration Measurements

Refractive and wavefront measurements were conducted on 7 juvenile tree shrews (11 eyes) 

at similar ages to the animals used for retinal imaging (Supplementary Table 1). All animals 

had previously received a dental acrylic pedestal placed atop the skull while under 

anesthesia (100mg/kg ketamine, 7.0mg/kg xylazine, i.m.) as described by (Siegwart and 

Norton, 1994). All measurements were made in awake animals either with 1% atropine 

cycloplegia or without cycloplegia.

Refractive measurements were obtained in awake animals with a Nidek ARK-700 

autorefractor as reported previously (Norton et al., 2010). The animals were gently 

restrained while 5 autorefractor measurements were obtained for each eye. These 

measurements were averaged, converted to spherical equivalent at the corneal plane, and 

adjusted for the small-eye artifact of retinoscopy (Glickstein and Millidot, 1970), by 

subtracting 4 diopters (D) of apparent hyperopia from the autorefractor measurements 

(Norton et al., 2003).

For the wavefront measurements, each animal was placed in a Plexiglas restraint tube for 

less than one hour as described previously (Norton et al., 2006). Ventilation holes prevented 

build-up of body heat. The tube was mounted on a photographic tripod and the animal’s 

head was held in a comfortable position with a clip attached to the dental acrylic pedestal. 

The eye was aligned with the wavefront apparatus to make measurements perpendicular to 

the pupil plane (Figure 1B). The animals blinked as needed, generally made only very small 

eye movements, and showed no signs of distress during the measurement session.

Wavefront aberration measurements were made with a custom-built Shack-Hartmann 

wavefront sensor (SHWS)(Liang and Williams, 1997). In 5 eyes of 3 animals, measurements 

were made with atropine cycloplegia. In 6 eyes of 4 animals, the measurements were made 

without cycloplegia in dim room illumination which dilated the pupils. In this system, 

840nm light from a superluminscent diode was collimated, narrowed to <1mm diameter, and 

directed into the eye of the tree shrew. The average power of the beam was ~10μW. The 
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back-scattered light was passed through an afocal 4f telescope assembly to relay the image 

of the tree shrew’s pupil with a magnification of 1.6x onto a rectangular lenslet array 

(400μm spacing, 24mm focal length) with an effective lenslet sampling of 250μm.

Five SHWS images, each with an exposure time of 100ms, were taken along the optical axis 

for each eye. The three best images were selected and analyzed with custom software. In all 

images, two overlapping spot patterns of different sizes were observed (Supplementary 

Figure 1A). We surmised that these spot patterns arose from the two dominant scattering 

surfaces in the retina, with the wider spaced pattern (more hyperopic) arising from the nerve 

fiber layer and the smaller pattern (relatively less hyperopic) arising from the photoreceptors 

(Supplementary Figure 1B). We took care to select and analyze the spots originating from 

the photoreceptor layer (Supplementary Figure 1C). Wavefront aberrations were measured 

over a 4mm pupil and were fit with a 6th order Zernike polynomial ordered according to the 

OSA standard (Thibos et al., 2002). The Zernike polynomial coefficients from the three best 

images from each animal were averaged together for further analysis. Computations of 

image quality metrics (point spread function (PSF), modulation transfer function (MTF), and 

depth of focus) employed all coefficients of the Zernike polynomial except defocus. 

Astigmatism was considered equally along with the high order aberrations. These data were 

compared to a previously reported human dataset (Cheng et al., 2004) for which the Zernike 

coefficients that describe the wavefronts were recomputed for a 4mm pupil using algorithms 

described previously (Lundstrom and Unsbo, 2007).

Owing to the fact that tree shrew aberrations are relatively high compared to human, we 

found that conventional approaches to estimate the refractive error of the eye based on 

wavefront aberrations were either unreliable (computing directly from the Zernike defocus 

coefficient) or noisy (computing refractive error as the defocus where the Strehl ratio peaks). 

Additionally, we wanted to compute the refractive error by finding a defocus setting that 

optimized an image quality metric that was more suited to the visual capabilities of the tree 

shrew. As such, we estimated refractive error as the defocus setting that yielded the highest 

contrast of a checkerboard pattern with a check size of 21 arcmin, corresponding to a 

fundamental spatial frequency of 1.4 cyc/deg – higher than the peak sensitivity, but below 

the functional spatial frequency cut-off of a tree shrew (Petry et al., 1984). The checkerboard 

pattern also mimicked the experimental approach used by Norton et al (2003) for functional 

estimates of refractive error. We used the same stimulus to quantify the depth of focus of the 

eye, by computing the range over which the contrast was within ½ of the peak contrast (full-

width half-max; FWHM). Finally, refractive errors were corrected for the longitudinal 

chromatic aberration (LCA) between 840 and 550nm. To estimate LCA of the tree shrew 

eye, we developed a single refracting surface eye model (Hughes, 1979) using schematic eye 

parameters from Norton and McBrien (1992) and computed powers at different wavelengths 

using model equations for the refractive index of water as a function of wavelength (Huiner, 

1997; Quan, 1995). LCA between the measurement wavelength of 840nm and 550nm was 

~4.5D.
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2.3. Anesthesia and Preparation for Retinal Imaging

Animals used for retinal imaging are shown in Supplementary Table 1. Animals were 

anesthetized with inhaled isoflurane (5% induction, 1-4% maintained by nose-cone) in 

1L/min 100% oxygen flow using a non-rebreathing system (VetEquip, Inc., Livermore, CA, 

USA), placed on a heated rodent alignment stage with two rotational and three translational 

degrees of freedom. One drop each of 1% tropicamide and 2.5% phenylephrine (Akorn, Inc., 

Lake Forest, IL, USA) was applied to the eye to induce dilation and cycloplegia. A bent 

pediatric ocular speculum was used to keep the eyelids open and wetting drops were applied 

as needed (about every 2 minutes) to maintain corneal hydration. This species occasionally 

stops breathing under isoflurane anesthesia (common in 1/3 tree shrews in this study), so the 

animal’s respiratory rate was constantly monitored by a dedicated researcher to adjust or 

stop isoflurane flow as needed. Imaging and euthanasia were performed under anesthesia 

between the hours of 10AM-3PM. Imaging sessions under anesthesia often lasted up to an 

hour; during this time, none of the tree shrews developed transient cataracts.

2.4. Confocal Scanning Light Ophthalmoscopy (cSLO)

Retinas were imaged using a custom multiline cSLO (modified Spectralis HRA; Heidelberg 

Engineering, Heidelberg, Germany) and the mouse lens. Near-infrared (820nm) reflectance 

and blue auto-fluorescence (486nm excitation with 502-537nm band pass emission) imaging 

was performed. Automatic real-time tracking in the Spectralis software (HRA2 / Spectralis 

Family Acquisition Module ver. 6.5.2.0) was used to register and average 50-80 frames. 

Images were montaged using i2k Retina (DualAlign LLC, Clifton Park, NY, USA) with 

quadratic transformations to account for the spherical warping inherent in wide-field retinal 

imaging.

2.5. Optical Coherence Tomography (OCT)

Imaging was performed with a Bioptigen Envisu R2200 Spectral Domain OCT system 

(Leica Microsystems, Wetzlar, Germany) equipped with a Superlum Broadlighter T870 light 

source (central wavelength: 878.4nm, bandwidth: 186.3nm; Superlum, Cork, Ireland). 

Bioptigen’s Rabbit lens was used for retinal imaging.

Horizontal and vertical line scans (650 A-scans/B-scan; 100 repeated B-scans) of the retina 

were acquired near the posterior pole, nasal to optic nerve head (ONH) which was visible in 

each scan as a landmark (Figure 1B–C). As in the first report of tree shrew OCT (Abbott et 

al., 2009), due to positional constraints caused by our anesthesia nosecone and the long nose 

of the tree shrew, we were unable to image the area centralis which is located in the temporal 

retina, about 30 degree from the ora serrata (Figure 1B) (Müller and Peichl, 1989). Thus, 

these images were taken in the posterior pole region, nasal to the ONH as were the 

wavefront measurements. Fifty B-scans were registered (allowing translation only) to a 

manually chosen reference frame and averaged using the TurboReg plugin in ImageJ 

(National Institutes of Health, Bethesda, MD)(Schneider et al., 2012). Custom software 

(OCT Reflectivity Analytics; github.com/whytestalyon/ORA) was then used to measure 

retinal layer thickness or distances between outer retinal hyper-reflective bands from the 

linear image (Wilk et al., 2017). Ten 5-pixel-wide longitudinal reflectance profiles (LRPs) 

were collected from the nasal retina near the posterior pole (5 LRPs each from the horizontal 
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and vertical line scan) for peak-to-peak and FWHM measurements. We used the following 

Band 1-4 (B1-4) assignments for outer retinal bands: B1 as the anatomic ELM, B1.5 as the 

signal seen in between established B1 and B2. B2 as either the ellipsoid zone or inner 

segment / outer segment junction, B3 as the interdigitation zone or outer segment tips, and 

B4 as the retinal pigmented epithelium (RPE)-basal lamina-Bruch’s membrane (Figure 6). 

Volume scans were nominally 8×8mm with isotropic sampling (650 A-scans/B-scan; 650 B-

scans).

2.6. Adaptive Optics Scanning Light Ophthalmoscopy (AOSLO)

Images of the cone mosaic were acquired using a custom AOSLO modified for a 4.5mm 

pupil diameter at retinal locations comparable to the OCT measurements. Confocal and non-

confocal split-detection images were recorded simultaneously (Scoles et al., 2014). Images 

were collected at the optic nerve for spatial alignment to cSLO, and photoreceptor images 

were recorded ~30-45° (2-3mm) nasally from the optic nerve near the posterior pole (this 

location corresponds to the approximate optic axis of the tree shrew eye). Sinusoidal 

distortion inherent in our scanning system was estimated by imaging a Ronchi grating with 

3000 cycles/inch, then corrected by resampling the video frames over a grid of equally 

spaced pixels. The scale of the AOSLO images (in μm/pixel) was determined by calculating 

the degrees/pixel in the resampled image of the Ronchi grating, then multiplying by the tree 

shrew retinal magnification factor (76μm/degree; based on the 4.35mm posterior nodal 

distance of the species (Callahan and Petry, 2000)), before scaling linearly by the ratio of the 

animal’s axial length (measured by digital caliper after enucleation; Mitutoyo, Takatsu-ku, 

Japan) and a reference axial length of 8.06mm (mean adult tree shrew axial length (Norton 

and McBrien, 1992)).

Reference frames were automatically selected (Salmon et al., 2017), then 50 images were 

registered and averaged (Dubra and Harvey, 2010). The resulting images were automatically 

montaged with custom software (Chen et al., 2016). 55×55 μm or 100×100 μm regions of 

interest (ROIs) were selected from split-detector AOSLO images for cone mosaic analysis 

using custom software (Translational Imaging Innovations, Inc.). Cones were semi-

automatically identified using a segmentation method designed for split detector AOSLO 

images (Cunefare et al., 2016). Cone density, spacing, and Voronoi geometry were derived 

from the cone coordinates as previously described (Cooper et al., 2016).

2.7. Tissue Preparation and Histology

Two of the tree shrews (TS1 and TS2) were euthanized under anesthesia by intraperitoneal 

injection of a pentobarbital-based euthanasia solution (Euthasol, Virbac, Carros, France) for 

subsequent histologic analysis. Eyes were then enucleated, and approximate axial length was 

measured with a digital caliper (eyes were not inflated to re-approximate normal IOP).

Right eyes were immersion fixed overnight in 4% paraformaldehyde (PFA) in phosphate-

buffered saline (PBS) at 4°C for whole-mount immunocytochemistry. Whole globes were 

rinsed 3 times for 5 minutes in PBS and the cornea and lens were removed. Eye cups were 

permeabilized with Proteinase K (20μg/ml diluted in PBS) for 30 min at room temperature 

and rinsed again in PBS. Permeabilization was stopped with 4% PFA for 30 min, and eye 
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cups were rinsed in PBS. The sclera, optic nerve, and choroid were then carefully removed 

from the retina. The RPE remained across most of the whole-mount, only being easily 

detached in a few regions. Retinas were then incubated for 60 min at room temperature in a 

blocking solution (2% goat serum. 1% Triton X-100, and 1% Tween-20 in PBS). Retinas 

were incubated under gentle rocking at room temperature for 24 hours in a blocking solution 

with primary antisera. L/M- and S-opsin were detected with chicken antiserum JH 6105 and 

rabbit antiserum JH 455 (each diluted 1:100 in blocking buffer), respectively. Retinas were 

rinsed under gentle rocking at room temperature 3 times for 60 min in 1% Tween-20 in PBS. 

Primary antibody binding was then detected with anti-chicken and anti-rabbit secondary 

antisera (each diluted 1:500 in 1% Tween-20 in PBS) at 4°C for 24 hours. Retinas were 

rinsed 4 times for 30 minutes in 1% Tween-20 in PBS, then 5-6 radial cuts were made in the 

peripheral retina to flat-mount the retina photoreceptor-side up for immunofluorescence 

imaging. Confocal immunofluorescence images of flat-mounted retina were captured with 

an Olympus VS120 virtual slide microscope (Olympus, Tokyo, Japan) and bright-field 

images were captured with a Leica DM IL LED inverted microscope (Leica Microsystems, 

Wetzlar, Germany).

The inner retina was also imaged with an inverted microscope to obtain the vascular pattern 

of TS1 and TS2 to allow retinal imaging and histological multi-modal alignment to assess 

cone densities at approximately the same retinal region in vivo and ex vivo. Once aligned, 

100×100μm ROIs were selected using custom software (Translational Imaging Innovations, 

Inc.). A topography map from the right eye of TS1 was generated as described previously 

(Cohn et al., 2015), using density values from 63 ROIs sampled every 1mm. Four additional 

200×200μm ROIs were collected 2mm superior, inferior, temporal, and nasal (near the optic 

axis) from the optic nerve head from each whole-mount for cone ratio analysis. These 

images were converted to grayscale for semi-automated cone detection and subsequent 

density, percent six-sided Voronoi, nearest neighbor distance, and density recovery profile 

distance measurements (Rodieck, 1991; Roorda et al., 2001).

Left eyes were processed for electron microscopy as described previously (Sajdak et al., 

2018). In brief, whole globes were immersion fixed overnight in 2% PFA, 2% 

glutaraldehyde in 0.1M cacodylate buffer. The cornea and lens were removed, and retinal 

regions imaged in vivo were dissected from the eye cup and post-fixed in 1% osmium 

tetroxide followed by dehydration in a graded methanol series, then infusion with 

acetonitrile, and embedded in epoxy resin. Once the epoxy molds solidified, 500nm sections 

were cut and stained with 1% toluidine blue to ensure that cones were visible in vertical 

cross-sectional (or horizontal en face) orientation. Once the epoxy molds were sectioned in 

the correct plane, 70nm sections were cut, collected onto hexagonal grids, and stained with 

uranyl acetate and lead citrate for transmission electron microscopy (TEM). Axial distances 

of the following cone structures were then measured from vertically oriented cones: inner 

segment myoid (ISm), inner segment ellipsoid (ISe), outer segment (OS), and RPE.

2.8. Statistics

All statistical tests were performed using Prism version 7.04 (GraphPad, LaJolla, CA) or 

Matlab 2017b (Math-Works, Inc., Natick, MA) with the Statistics and Machine Learning 
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Toolbox ver. 11.2. Intra-animal in vivo and ex vivo cone mosaic density and cell spacing 

were tested for normality using D’Agostino & Pearson tests. Wilcoxon matched-pairs tests 

were used on these nonparametric paired data. Chi-square tests were used to compare cone 

packing geometry of L- and S-cones.

3. Results

3.1. Wavefront Aberrations

The mean and standard deviation of the Zernike coefficient values for all 11 eyes over a 

4mm pupil are shown in Figure 2A–B. Defocus is by far dominant, and is hyperopic, due 

primarily to the 4.5D of LCA of the eye (Figure 2A), compared to the higher order 

aberrations which show no tendencies in any specific directions (Figure 2B). Figure 2C plots 

the magnitude of aberrations for different collections of Zernike terms. The aberration is 

dominated by 2nd order Zernike terms with defocus being the most dominant term. As is 

typical for ocular wave aberrations, the RMS error decreases with increasing order (Porter et 

al., 2001). High-order RMS (HORMS) was 0.44μm, 3.7 times higher than the humans in our 

comparison dataset for the same pupil size (HORMS = 0.12μm). HORMS+Astigmatism, 

which comprise the terms used for image quality metric calculations, was 0.65μm. MTFs 

were computed at the defocus with the highest contrast of the checkerboard pattern for each 

eye (Figure 2D).

3.2. Refractive Error and Depth of Focus

Table 1 shows the refractive error and depth of focus estimates for the 11 eyes. The Shack-

Hartmann estimated refractive error (0.71 ± 0.61 D) and the corrected Nidek autorefractor 

measurements (1.01 ± 0.51 D) both indicated that young tree shrews are slightly hyperopic, 

as suggested by previous reports (Gawne et al., 2018; Norton et al., 2003).

3.3. Noninvasive Assessment of the Tree Shrew Retina

We obtained cSLO, OCT, and AOSLO images from 3 adult tree shrews. Using the ONH and 

nasal vasculature as landmarks, we aligned retinal cross-sections revealed with OCT and the 

photoreceptor mosaic revealed with AOSLO to the en face cSLO (Figure 3). Cones comprise 

about 94-98% of all photoreceptors in the nasal and superior retinal locations imaged with 

AOSLO in this study (Müller and Peichl, 1989; Petry et al., 1993). The large size of the 

cones (~6 μm) in tandem with the high resolution of our AOSLO system (~1.0 μm in this 

species) reveals a variety of reflectivity patterns with confocal AOSLO (Figure 3C). This 

appearance seen with confocal AOSLO complicates the use of conventional, local 

maximum-based cone detection schemes (Li and Roorda, 2007), resulting in multiple false 

positives that may change with repeat imaging (Cooper et al., 2011). This suggests that 

confocal AOSLO may not be sufficient to reliably track individual cones in the tree shrew 

retina, but that split-detector AOSLO offers a possible solution. When present and reflective, 

the sporadic rod was visible with confocal and split-detection AOSLO (Figure 3C).

With AOSLO, we found that cone density is relatively uniform along the horizontal meridian 

nasally from the ONH (Figure 4A; p = 0.09, linear regression), but there is a significant 

decrease in density with distance superior from the horizontal meridian (Figure 4B; p = 
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3.51E
−5, linear regression). Example confocal and split-detector images from areas of low 

and high density are given in Figure 4C. The AOSLO data agree well with a topographical 

map of cone density generated from cone coordinates identified on immunofluorescence 

images from a whole-mounted retina (Figure 4D). The inter-cone spacing ranges from the 

AOSLO images was 5.7-6.3 μm along the horizontal meridian, and 5.6-6.8 μm in the vertical 

meridian, which compares well to the cone spacing of 6 μm “in the central retina” in a 

previous topography characterization of this species (Müller and Peichl, 1989).

3.4. Comparing In Vivo and Ex Vivo Cone Density

To assess how in vivo (AOSLO) and ex vivo (whole-mount) cone densities compared in the 

same animal, we measured regions equidistant from the ONH along the horizontal meridian. 

As expected, cone density was significantly higher in the whole-mount ROIs (Figure 5B) 

compared to the AOSLO ROIs (Figure 5A) in both animals (TS1 AOSLO = 31,283 ± 2,493 

cones/mm2 vs TS1 whole-mount = 34,201 ± 3,280 cones/mm2, p = 0.0039, Wilcoxon 

matched-pairs signed rank test; TS2 AOSLO = 32,959 ± 545 cones/mm2 vs TS2 whole-

mount = 39,115 ± 2,304 cones/mm2, p = 0.0020, Wilcoxon matched-pairs signed rank test). 

A tissue shrinkage factor of 4.50% was derived from the average ratio of nearest-neighbor 

distances between AOSLO and whole-mount for these two animals but was as high as 12% 

in the nasal periphery of TS2. Cone density would be expected to increase by the square of 

this linear shrinkage factor (Figure 5C).

3.5. Ex Vivo Cone Ratio and Packing

Split-detection AOSLO is currently unable to identify cone type. Therefore, we assessed 4 

ROIs (2mm superior, inferior, temporal, and nasal from the ONH) from TS1 and TS2 whole-

mounted retinas to assess cone ratio and packing. Percentage of S-cones from the regions 

sampled ranged from 5.4-8.3%, which is within the 4-10% range reported in the 

topographical characterization of this species (Müller and Peichl, 1989). Nearest-neighbor 

distance (any cone type) was similar across regions analyzed (5.04 ± 0.5 μm) compared to 

18.79 ± 2.92 μm for the S-cone mosaic alone. Density recovery profile distance was also 

similar across regions analyzed (5.93 ± 0.6 μm). Supplementary Figure 2 shows an example 

ROI with individual cones marked and the resulting packing geometry. The cone mosaic 

showed mostly triangular packing geometry across all eight 200×200μm ROIs sampled, with 

82.14 ± 4.38% of all cones having 6-sided Voronoi domains. S-cones showed similar 

packing geometry compared to L-cones, with no significant difference in the proportion of 

6-sided compared to non-6-sided cells (p = 0.35, Chi-square test).

3.6. Comparing In Vivo and Ex Vivo Cross-Sections of Outer Retina

To assess how the hyper-reflective bands in the outer retina compared to cone structure, we 

quantified peak-to-peak distances and the FWHM of OCT local maxima, and then lengths of 

subcellular structures on electron micrographs (Figure 6). We reasoned that the tree shrew’s 

megamitochondria might provide a stronger signal to assess the anatomical origins of B1.5 

(initially seen in ground squirrel (Sajdak et al., 2018)) and B2. The distances between ELM 

to BrM and B1 to B4 were more similar for TS2 (30.7 ± 0.3 μm [OCT] vs. 31.5 ± 1.2 μm 

[EM]) than TS1 (30.6 ± 1.5 μm [OCT] vs. 35.6 ± 1.4 μm [EM]), suggesting variable effects 

of histological processing. When the ELM to BrM distances were normalized to the B1 to 
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B4 axial distances, the junction of the ISm and ISe aligned with B1.5, and the junction of the 

ISe and outer segment aligned with B2. While the length of the ISe was comparable to the 

distance between B1.5 and B2 (Figure 6C), the OCT FWHM of B2 was much smaller than 

the anatomical size of the ISe for both animals used in these comparisons: TS1 B2 FWHM = 

3.4 ± 0.5 μm, and TS1 ISe = 11.9 ± 0.8 μm; TS2 B2 FWHM = 3.6 ± 0.5 μm, and TS2 ISe = 

9.9 ± 0.8 μm.

4. Discussion

Northern tree shrews are a useful, but under-utilized model for vision science. They possess 

a nearly cone-exclusive photoreceptor mosaic (Müller and Peichl, 1989), which we have 

demonstrated can be reliably assessed noninvasively with high-resolution AOSLO. Here we 

provided an optical characterization of the tree shrew eye, compared these optical data to the 

photoreceptor mosaic acquired with AOSLO, and, finally, showed intra-animal in vivo to ex 
vivo comparisons of cone structure from similar retinal locations en face with AOSLO and 

whole-mount histology, and cross-sectionally with OCT and TEM.

4.1. Optical Properties and Comparison to Humans and Mice

There are several approaches to evaluate the optics of the tree shrew eye compared to other 

species. The change in HORMS as a function of pupil size shown on Figure 7A reveal that 

the flatness of the wave aberration in tree shrews falls midway between humans and mice. 

For any given pupil size, the HORMS of a tree shrew is about 4 times lower than a mouse 

and about 4 times higher than a human. However, when measured by other criteria, the tree 

shrew might be considered to have equivalent, or even better optical quality than a human. 

To have an equivalent HORMS, the pupil sizes for the mouse, tree shrew and human would 

have to be 2, 3.5 and 6 mm respectively. As such, the blur they experience for vision would 

be about equal for those pupil sizes. When comparing human and tree shrew MTFs for a 

4mm pupil size (Figure 7B), the lower contrast in the tree shrew is apparent, but the contrast 

at the photoreceptor sampling limit in the tree shrew (0.23 at 6 cyc/deg) is about two times 

better than in the human fovea (0.12 at 60 cyc/deg). By this measure, the tree shrew’s optics 

are better than the human relative to their retinal and visual sampling limits. Finally, owing 

to the higher numerical aperture of the tree shrew compared to the human, the physical size 

of the best-focused spot on the tree shrew retina is smaller than for a human with the same 

pupil size, despite the humans’ lower aberrations. This is apparent in the finer scale of the 

image in cycles/mm in the MTF (Figure 7B) and also in Figure 7C, which shows the 

comparison of PSFs on a common linear spatial scale relative to the photoreceptors. The 

example PSFs chosen for display were at the 30th, 50th, and 70th percentiles of the HORMS 

scale in the 74 human subjects (Cheng et al., 2004), and 3rd, 5th, and 7th ranked tree shrews 

on the HORMS scale. The implication of this is that the ability to resolve fine detail in 

images taken of the tree shrew retina is better than in a human, even with their native 

aberrations. With aberrations corrected, the resolution in microns in a tree shrew is more 

than 3 times better than in a human for the same pupil size.
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4.2. Refractive State of Normal Tree Shrews

When measured with streak retinoscopy or other assessment methods, the eyes of small 

mammals appear to be significantly hyperopic (Glickstein and Millidot, 1970; Hughes, 

1977; Mutti et al., 1997; Norton and McBrien, 1992). This is the case for tree shrews; 

retinoscopy at the juvenile ages examined in this study typically give values of around 7 D 

hyperopic. A slightly lower value of ~6 D was obtained with a Hartinger coincidence 

optometer. The Nidek autorefractor used in the present study provided readings of 5.01 

± 1.01 D. Glickstein and Millodot (1970) suggested the apparent hyperopia is due to an 

“error of retinoscopy” that occurs because these instruments measure the location of the 

optic nerve layer. In the present study, we found evidence of this in the observation of two 

overlapping spot patterns of different sizes observed in the SHWS images (Supplementary 

Figure 2). Using cortical VEPs elicited by checkerboard patterns in combination with trial 

lenses, Norton et al (2003) suggested that juvenile tree shrews are nearly emmetropic and 

that 4.0 D should be subtracted from the autorefractor measured values. The calculated 

refractive state from the posterior SHWS image agrees well with these corrected values 

(Table 1), supporting the suggestion that the refractive state of normal juvenile tree shrews is 

close to emmetropia (slightly hyperopic).

4.3 Limitations and Next Directions for Optical Analyses

We provide a comprehensive analysis of the optical properties of the tree shrew eye and 

some comparison with other species but note that there are limitations in the current study 

that may guide future research. First, the optical and anatomical comparisons were made on 

different animals from different labs. We do not know the extent to which rearing conditions 

affect the physical and optical characteristics between the two cohorts. For example, 

institutional differences in husbandry, nutrition, and caging conditions are uncontrolled 

variables in this study. Second, all optical measurements were made perpendicular to the 

pupil, along the optical axis of the eye. We did not compute aberrations along the line of 

sight (an axis connecting the center of the pupil to the area centralis). We collected Shack-

Hartmann images along this axis but have not yet devised the tools to properly analyze 

wavefront aberrations over a highly elliptical pupil. Third, any discussion of the relationship 

between the optics, retinal sampling characteristics, and visual function should not only 

consider the photoreceptor sampling, but their connections to downstream neurons and the 

convergence/divergence of retinal signals. In the human we have every reason to think that 

signals at the spatial scale of the photoreceptors reach the visual cortex, but, based on 

receptive fields measured in the lateral geniculate nucleus (Holdefer and Norton, 1995) that 

does not appear to occur in tree shrews. However, given that the optics are sufficiently good 

relative to the photoreceptor array, it follows that the optics are also sufficiently good for all 

neurons downstream of them. In fact, the optical contrast of the retinal image is above 50% 

at the reported spatial acuity limits of the tree shrew (max 2.5 cyc/deg (Petry et al., 1984)).

4.4. Amenability of Tree Shrews to Noninvasive Retinal Imaging

As with other small animal models, anesthetized tree shrews require careful monitoring and 

temperature control during the measurement sessions. None of the animals developed cold-

induced cataracts, which have been reported to occur in mice (Bermudez et al., 2011) and 
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can interfere with retinal imaging (Zhou et al., 2012). In this respect, they were similar to the 

13-lined ground squirrel, that has extreme cold tolerance owing to its hibernation physiology 

(Sajdak et al., 2016).

The multiple peaks on confocal AOSLO resulted in difficulty estimating the exact center of 

each cone for analysis. The non-uniform reflectivity of the cones in the confocal images 

likely arises because the focused spot in the tree shrew is small relative to the cone and 

therefore captures more fine details in the scattering and waveguide mode structure in the 

cones comparable to what is seen in confocal images of large human cones in the periphery 

(Sulai and Dubra, 2012). So, to reliably identify cones in the tree shrew, we used split-

detector AOSLO (Scoles et al., 2014) and the “adaptive filtering and local detection” 

algorithm (Cunefare et al., 2016). Alternative solutions for traditional confocal AOSLO 

systems may include temporal averaging (Dubra et al., 2011; Putnam et al., 2010) or larger 

convolution kernels before local-maximum detection (Li and Roorda, 2007). This illustrates 

the important point that AO image acquisition, processing, and analysis techniques that work 

for humans do not necessarily translate to animal subjects.

4.5. in vivo to ex vivo Comparisons

The cone density from split-detection AOSLO images are consistent with previous 

topographical reports in this species of tree shrew (Müller and Peichl, 1989; Petry et al., 

1993), with fairly uniform cone density across the horizontal meridian, and a gradient of 

decreasing density superiorly from the ONH (Figure 4D). The range of densities from 

central retinal regions we assessed in vivo was 33,366 to 24,489 cones/mm2 (Figure 4C), 

which is also consistent with previous ex vivo topographical studies (Müller and Peichl, 

1989; Petry et al., 1993). Comparable nasal variability fluctuating within that range was seen 

in ROIs assessed with AOSLO (Figure 4A). Similar variability in ex vivo topography was 

thought to be related to variable tissue shrinkage in whole-mounted retina (Petry et al., 

1993), but this variability holds true in vivo as well. While our AOSLO design affords high 

lateral resolution, it is limited by a relatively small field-of-view (2°x2°). Therefore, we were 

only able to sample narrow 0.2 × 2-3 mm continuous retinal strips in one direction. Since the 

animals are under anesthesia and must be rotated to image different retinal locations, eye 

drift from a suboptimal anesthesia plane would disrupt the montage continuation and leave 

the imaging team lost in retinal space. With the ONH as the only truly unambiguous 

landmark at this magnification, we could return to the previously imaged location by 

retracing our steps from the ONH, but this adds a substantial delay in the imaging session, 

prolongs anesthesia, and is dangerous to the animal. Due to the potentially excessive 

resolution for these kinds of structural assessments of the cone mosaic, sacrificing resolution 

for a wider field-of-view would be appropriate for this species to cover more retinal area 

within the limited time of an imaging session. As mentioned above, the temporal retina was 

largely inaccessible for in vivo retinal imaging in our hands due to our anesthesia nosecone 

and the anatomy of the tree shrew. The ONH is temporally offset (opposite of humans), and 

their long nose can inhibit access to the area centralis that is positioned near the temporal ora 

serrata. With the radial vascular pattern of smaller vessels around this temporal area 

centralis, there does not seem to be any increase in cone density (Figure 4D; (Müller and 

Peichl, 1989; Petry et al., 1993)).
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Comparing aligned regions equidistant from the ONH revealed similar cone densities in vivo 
(AOSLO) and ex vivo (whole-mount) (Figure 5). As expected, there was variable increase in 

cone density in the regions assessed from the whole-mounted retina. Grouped by modality, 

cone density significantly increased in whole-mount ROIs compared to AOSLO ROIs 

(Figure 5C). While our AOSLO and whole-mount inter-cell spacing agreed with the 5-6μm 

range reported in Müller and Peichl (Müller and Peichl, 1989), tissue shrinkage was variable 

and was often higher in the more peripheral regions compared. While a single shrinkage 

factor can be derived by averaging the effect seen using intra-animal comparisons (4.5% in 

this study), shrinkage is likely to have a greater effect towards the edge of whole-mount 

preparations and away from anchoring retinal structures such as blood vessels. Tissue 

shrinkage is often assumed to be nominal, however; previous reports derived lateral 

shrinkage from fresh to fixed tissue ranging from 7-25% (Curcio et al., 1987; Kolb and 

Wang, 1985; Reymond, 1985). The few reports assessing shrinkage from living tissue to 

fixed tissue report ranges from 14.5-29% in the human fovea (Curcio et al., 2011), and 

anywhere from 0-40% in tree shrew retina depending on the fixation method used (Abbott et 

al., 2009). Additional differences may arise from converting scale from degrees to microns 

in our in vivo analysis, which includes an assumption in sphericity when using a constant 

retinal magnification factor at each retinal eccentricity. This is an understudied area with 

respect to direct in vivo to ex vivo comparisons and will be important for translating scale of 

images when sub-cellular assessment by histology is necessary.

S-cones did not appear to affect packing geometry (Supplementary Figure 2). A disruption 

to mosaic regularity may be expected from S-cones due to their morphological differences in 

the human, non-human primate, and 13-LGS (Ahnelt, 1985; Ahnelt et al., 1987; Hofer et al., 

2005; Jonnal et al., 2017), and the tree shrew S-cone packing factor was found to be almost 

identical to the human (Martin et al., 2000). The S-cone diameters did not appear to differ in 

the tree shrew upon histological evaluation (Müller and Peichl, 1989), but this may be 

confounded by dehydration during fixation. Cone typing by in vivo densitometry, which has 

been demonstrated in humans (Hofer et al., 2005; Roorda and Williams, 1999; Sabesan et 

al., 2015), is a potential avenue to investigate this further, as packing geometry of cone types 

could be assessed before histological manipulation of the tissue, though no structural 

differences were seen in S-cones compared to L- and M-cones using this technique in non-

human primates (Roorda et al., 2001).

Rod photoreceptors were rarely seen and much smaller (diameter: ~1μm), but when present 

and reflective were visible by AOSLO (Figure 3C). Rod outer segments appear longer, are 

found closer to the ELM, and their inner segment mitochondria resemble the more typical 

elongated structure for mammals compared to cone megamitcondria (Supplementary Figure 

3; (Kühne, 1983)). Other than these qualitative assessments, rods were not included in our 

analysis.

Advancements in broadband laser sources, dispersion compensation (Cense et al., 2004; 

Leitgeb et al., 2004; Wojtkowski et al., 2004), and the application of frequency-domain 

interferometry to OCT (Wojtkowski et al., 2002) has resulted in higher axial resolution, 

enabling the differentiation of 5 distinct hyperreflective bands in the outer retina of the tree 

shrew since its initial demonstration (Abbott et al., 2009). Controversy has circled the 
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subcellular attribution of these bands since a comprehensive review of photoreceptor 

structure lengths from human histology resulted in a model assigning B2 to the ISe (Spaide 

and Curcio, 2011) and the ellipsoid zone was then adopted as the official nomenclature for 

this band (Staurenghi et al., 2014). Our results from intra-animal in vivo OCT to ex vivo 
TEM comparisons argue in favor of a contribution of the ISm/ISe junction to B1.5 and the 

IS/OS junction to B2 (Figure 6C). To our knowledge, this represents the first intra-animal 

histological evidence for these assignments, which were originally selected (Wojtkowski et 

al., 2004) due to their theoretical support since the probability of backscattering increases 

with the change in refractive index. This argument hinges on precise refractive index 

measurements (which are not yet available for the tree shrew cone) and/or the presence of a 

small gap between the ISe and the OS containing interstitial fluid of relatively low refractive 

index, the existence of which is questionable (potentially arising from histologic artifact) 

(Burgoyne et al., 2015; Hoang et al., 2002), and not seen in our TEM results. Importantly, 

our results also support mitochondria as a source of reflectivity (Figure 6C), as has been 

shown in many experimental and clinical studies (Litts et al., 2018; Wilson et al., 2007). Due 

to the axial resolution of the Bioptigen system (~1.37 μm in tissue; n = 1.336 (Izatt and 

Choma, 2008)), we can conclude that B2 cannot come from the entire ellipsoid region in the 

tree shrew, as the size of the local maxima of B2 at FWHM is only 33% of the axial distance 

as the ISe seen in TEM. It is likely that the megamitochondria of tree shrew cones 

(Supplementary Figure 3) are all weakly reflective, giving rise to B1.5 (Figure 6A). The 

focusing power of mitochondria toward the outer ISe was recently modeled in the cones of 

ground squirrels (Li et al., 2017); however, the distinction between whether light is focused 

and scattered at the outer EZ or IS/OS will not be solvable with axial distance comparisons 

reliant on ex vivo ultrastructure unless histological confounds can be eliminated. Alternative 

in vivo approaches include using reflective nano-particles targeted to specific organelles (de 

la Zerda et al., 2015; Hayashi et al., 2009; Zagaynova et al., 2008).

Potential confounds exist for both in vivo and ex vivo measurements. Non-linear tissue 

shrinkage is a potential confound in all studies attempting to correlate subcellular structures 

to OCT signals, as water-rich compartments between B1-4 (i.e., ISm, RPE) may change 

more than compartments comprising convoluted cristae of lipid membranes (i.e., ISe, OS). 

Scaling the measurements of B1-4 linearly may result in an over- and under-estimation of 

the lengths of water-rich and lipid-rich components, respectively. Moreover, the z- (axial) 

component of the pixel size on OCT is inversely related to refractive index, which varies 

slightly for each subcellular compartment (by ~5%) (Sidman, 1957) creating a potential 

source of error since a single refractive index was used to estimate pixel size in this study. 

However, due to the relatively short length of the compartments between B1-4, this error (on 

the order of < 1 μm) would not likely result in a misattribution of a hyperreflective band. 

Caution should be exercised however, if the retina were scaled linearly using the nerve fiber 

layer and the RPE as boundaries, as this would increase the likelihood of over-estimating 

thickness of nuclear layers due to their relatively lower refractive index.

5. Conclusions

The present study provides new data that support the use of tree shrews as an animal model 

intermediate between rodents and primates. Tree shrews have excellent optics and are nearly 
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emmetropic. We found that they are amenable to noninvasive study of retinal structures 

including investigation of cone mosaics and subcellular sources of reflectivity in the retina. 

They can be used to study living cones and have potential for modeling cone disorders with 

longitudinal follow-up. Thus, the tree shrew strikes a balance between practicality and 

relevance that is warranted as a complementary model for vision science research. To this 

end, any raw data generated in this study would be happily provided upon request with the 

corresponding author.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 –. 
Tree shrew ocular anatomy overview. (A) A northern tree shrew showing laterally-placed 

eyes and binocular visual field. (B) Horizontal section through a flash-frozen tree shrew 

right eye. N = nasal; T = temporal; P = approximate posterior pole; AC = approximate 

location of area centralis. In contrast to primates, the optic disc is located in the temporal 

retina; the posterior pole region is nasal to the optic disc. (C) A montage of blue 

autofluorescence images in the tree shrew retina indicating the vascular pattern radiating 

outward from the optic disc. In this study, cardinal axes (superior/inferior, nasal/temporal) 
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were defined relative to the ONH, as it was the most distinct retinal feature. Dashed cyan 
outline = approximate visual streak (Müller and Peichl, 1989).
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Figure 2 –. 
Wavefront analysis of the tree shrew eye perpendicular to the pupil plane. (A-B) 

Contribution of Zernike coefficients (OSA single index notation) to tree shrew wavefront 

error. The primary contributor is defocus (A), plots are scaled differently to better visualize 

HORMS (B). (C) Summary of the contribution of Zernike terms to wavefront RMS. (D) 

Radially-averaged MTF computed at the defocus level that maximized contrast of a 21 

arcmin checkerboard stimulus. (A-D) Pupil size: 4 mm; n = 11 eyes. (A-C) Data are 

expressed as mean ± SD.
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Figure 3 –. 
Example of in vivo images from tree shrew retina (right eye). (A) Near-infrared confocal 

scanning light ophthalmoscope fundus image including optic nerve head. T = temporal; N = 

nasal. Dashed-line indicates position of (B). White box indicates AOSLO region shown in 

(C). (B) Tree Shrew retinal layers visualized with a vertical B-scan OCT captured from the 

posterior pole region nasal to the optic disc (Supplementary Figure 1). NFL = nerve fiber 

layer; GCL = ganglion cell layer; IPL = inner plexiform layer; INL = inner nuclear layer; 

OPL = outer plexiform layer; ONL = outer nuclear layer; ELM = external limiting 

membrane; PRs = photoreceptors; RPE = retinal pigmented epithelium. Scale bars = 50 μm. 

(C) Tree shrew photoreceptor mosaic images captured simultaneously with confocal (left) 

and split-detection (right) AOSLO. Note the multiple reflectance peaks per cone on 

confocal, but unambiguous cone boundaries on split-detection. The arrows point out the 

presumed lone rod in this region. Scale bars = 20 μm.
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Figure 4 –. 
Cone photoreceptor topography. (A-B) Cone densities measured with AOSLO as a function 

of eccentricity from the optic nerve head (ONH; A) and the approximate horizontal meridian 

(HM; B). Solid black line: linear regression of measurements for all eyes, dashed lines: 95% 

CI. Regression analysis did not indicate a significant change in density with nasal 

eccentricity (A; p = 0.09) but did indicate a significant decrease in density with superior 

eccentricity (B; m = -2.91E
3cells/mm2/mm; p = 3.51E

−5). Insets show the schematized 

retinal regions that correspond to these data. (C) The top panels are the lowest density region 

analyzed in (A-B); the bottom panels are the highest density region (left and right are 

confocal and split-detector AOSLO, respectively). Scale bar = 10 μm. The trends in (A-B) 

correspond well with the topographical map generated from the TS1 OD whole-mount, (D) 
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which demonstrates an overall density gradient decreasing superiorly. The black spot 

represents the ONH, S = superior; N = nasal; I = inferior; T = temporal; scale bar = 1mm.
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Figure 5 –. 
Intra-animal comparison of tree shrew cone density from ROIs captured at the same 

eccentricity relative the optic nerve in vivo and ex vivo. Split detector AOSLO image (A) 

and whole-mount (WM) immunofluorescent image with L/M-opsin (green) and S-opsin 

(blue) (B) both 2.3 mm nasal from the ONH of TS2. (A & B) In this example, the in vivo 
density from AOSLO (33,491 cones/mm2) is lower than the ex vivo density from the whole-

mounted retina (41,275 cones/mm2). Scale bars = 20 μm. AOSLO (AO) cone densities were 

significantly lower compared to WM cone densities from locations equidistant from the 

ONH for both TS1 and TS2 (C). **P < 0.01, Wilcoxon match-pairs signed ranks test.
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Figure 6 –. 
Intra-animal comparisons of outer retina axial distances in tree shrew retina. (A) Outer 

retinal peaks in tree shrew (TS2 posterior pole region nasal to the ONH of the left eye) OCT. 

Image is displayed in logarithmic format while a linear image was used to collect LRPs. Red 
boxes on the OCT represent the locations of the enlarged averaged LRP (red line) with 95% 

confidence internal shading (gray area) on the right. One location has been magnified for 

better visualization of the outer retinal bands (inset). Scale bar = 100 μm. (B) Electron 

micrograph (EM) of tree shrew (TS2 left eye) cones. Axial distances (dashed cyan lines) 
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were measured from vertically oriented cones in between the anatomical external limiting 

membrane (ELM) and Bruch’s membrane (BrM). Out-of-plane structures (e.g., the middle 

cone’s outer segment in [B]) were excluded from analysis. ISm: inner segment myoid; ISe: 

inner segment ellipsoid; OS: outer segment; RPE: retinal pigmented epithelium. Scale bar = 

3 μm. (C) Comparison of EM axial distances to OCT peak-to-peak distances in two tree 

shrew eyes (mean of 10 measurements ± SD). Once the EM distances (cyan) between the 

ELM and BrM were normalized to B1 and B4 to account for axial shrinkage during fixation 

(“EM norm”, purple), B1.5 aligns to the anatomical ISm/ISe junction and B2 aligns to the 

anatomical ISe/OS junction.
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Figure 7 –. 
Interspecies comparison of optics. (A) RMS as a function of pupil size for mouse (Geng et 

al., 2011), tree shrew and human (Salmon and van de Pol, 2006). (B) Radially-averaged 

MTF for tree shrews (n = 11 eyes) and humans (n = 74 eyes (Cheng et al., 2004)) for a 4 mm 

pupil. Dotted lines indicate the spatial frequency cutoff and the corresponding contrast for 

each species. (C) Comparison of PSFs and cone spacing for tree shrew and human. D-L: 
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diffraction-limited PSF; dashed lines: row-to-row separation for tree shrews (6.5 μm). Scale 

bar = 20 μm.
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Table 1 –

Wave Aberration and Refraction Data.

ID, Eye Refraction 
(NIDEK; D)

Refraction (SHWS; 
D)

SHWS-NIDEK 
(D)

Depth of focus 
(SHWS; D)

HORMS (μm) HORMS+AST 
(μm)

216OS 1.08* 0.13* −0.95 4.40 0.37 0.40

246OD 1.53 0.88* --- 4.80 0.43 0.57

246OS 0.85 0.09* --- 4.60 0.41 0.47

259OD 1.29 0.14* --- 3.40 0.45 0.68

259OS 0.38 −0.21* --- 5.00 0.53 1.00

261OS 2.03* 0.76* −1.27 5.00 0.51 0.76

263OD 0.79 1.11 0.32 4.60 0.50 0.76

264OD 1.46 1.59 0.13 5.20 0.38 0.67

264OS 1.72 1.05 −0.67 5.00 0.36 0.59

265OD 0.64 0.65 0.01 4.40 0.37 0.47

265OS 1.38 1.61 0.23 5.60 0.47 0.79

Mean 1.01 0.71 −0.41 4.73 0.44 0.65

SD 0.51 0.61 0.65 0.57 0.06 0.17

*
indicates measurements made with atropine cycloplegia. Difference between autorefractor and wavefront measurements of refraction was 

calculated only for eyes in which both were measured with, or without cycloplegia because cycloplegia causes a small hyperopic shift. SHWS-
based refraction and depth of focus estimates used the maximum contrast of the 21 arcmin checkerboard stimulus and were corrected for LCA.
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