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Purpose: Fatty liver disease (FLD) affects over 25% of the global population and may lead to 

liver-related mortality due to cirrhosis and liver cancer. FLD caused by occupational and 

environmental chemical exposures is termed ‘toxicant associated steatohepatitis’ (TASH). The 

current review addresses the scientific progress made in the mechanistic understanding of TASH 

since its initial description in 2010.

Recent Findings: Recently discovered modes of actions for volatile organic compounds and 

persistent organic pollutants include: (i) the endocrine, metabolism, and signaling disrupting 

chemical hypotheses; (ii) chemical-nutrient interactions and the two ‘hit’ hypothesis. These key 

hypotheses were then reviewed in the context of the steatosis adverse outcome pathway (AOP) 

proposed by the US Environmental Protection Agency.

Summary: The conceptual understanding of the contribution of environmental exposures to FLD 

has progressed significantly. However, because this is a new research area, more studies including 

mechanistic human data are required to address current knowledge gaps.

Keywords

toxicant associated steatohepatitis; TASH; signaling disruption; endocrine disruption; 
polychlorinated biphenyls; vinyl chloride

INTRODUCTION

Chronic liver diseases may increase mortality due to liver-related causes (e.g., cirrhosis and 

hepatocellular carcinoma) and also due to increased risk for cardiovascular and infectious 

diseases. In fact, liver-related mortality has increased world-wide. Recent data demonstrate 

that between 1999 and 2016, the cirrhosis annual death rate increased by 65%, and the liver 

cancer annual death rate doubled in the United States [1]. The most common histologic form 

of liver pathology is fatty liver disease (FLD). FLD encompasses a progressive pathologic 

spectrum ranging from steatosis, to steatohepatitis with or without fibrosis, to cirrhosis, and 

hepatocellular carcinoma. Steatosis results from altered lipid metabolic pathways and 

complex changes in overall energy metabolism [2]. FLDs are named according to the 

etiologic exposure associated with their development. Alcoholic fatty liver disease was 

initially described followed by nonalcoholic fatty liver disease (NAFLD). NAFLD has been 

associated with diet-induced obesity, insulin resistance, and metabolic syndrome; but not all 

subjects with NAFLD have obesity or diabetes [3].

FLD is common, and the global prevalence of NAFLD alone is 25.2% [3]. More recently, it 

was recognized that occupational and environmental chemical exposures may be associated 

with the development of FLD. The Cave laboratory coined the term, toxicant associated 

steatohepatitis (TASH), to describe FLD occurring in highly-exposed polyvinyl chloride 

(PVC) production workers which was associated with increased pro-inflammatory 

cytokines, insulin resistance, and decreased antioxidants [4]. Numerous environmental 

chemicals have subsequently been associated with TASH in animal and/or epidemiological 

studies, including volatile organic chemicals (VOCs), persistent organic pollutants (POPs), 

metals, particulate matter, pesticides, and others (Table 1). These studies implicate both 

adult and developmental chemical exposures in the pathogenesis of FLD. While the exact 
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number of environmental pollutants that cause fatty liver is unknown, one-third of chemicals 

in the National Institute for Occupational Safety and Health’s (NIOSH) Pocket Guide are 

associated with hepatotoxicity [5]. Moreover, the liver appears to be the most common target 

organ for chemical toxicity; and this is probably due to liver’s central role in xenobiotic 

detoxification [6].

The mechanistic similarities and differences between alcoholic steatohepatitis (ASH), 

nonalcoholic steatohepatitis (NASH), and TASH were recently reviewed [7]. While ASH, 

NASH, and TASH are pathologically similar, disease mechanisms vary by etiologic 

exposure. Since its initial description nearly a decade ago, significant progress has been 

made in the scientific understanding of TASH, as previously reviewed [7, 6, 8–11]. This 

manuscript extends these prior review articles by examining: (i) key hypotheses currently of 

interest to the field; (ii) newly discovered modes of action for VOCs and POPs in the context 

of these hypotheses; and (iii) current limitations and suggested future research directions.

KEY HYPOTHESES CURRENTLY OF INTEREST TO THE FIELD

Several hypotheses contextualize TASH as a part of a systemic disease and provide the 

framework to evaluate recently described modes of action for environmental pollutants in 

TASH. These hypotheses include the endocrine, metabolism, and signaling disrupting 

chemical hypotheses, as well as chemical-nutrient interactions impacting the two ‘hit’ 

hypothesis.

The endocrine and metabolism disrupting chemical hypotheses were recently reviewed [11]. 

Endocrine disrupting chemicals (EDCs) interfere with any aspect of hormone action [11]. 

Metabolism disrupting chemicals (MDCs) promote metabolic changes that can result in 

obesity, type 2 diabetes, or fatty liver in animals and humans alike [11]. These metabolic 

changes can be independent of chemical effects on hormone action [11]. Thus, FLD can be 

considered as the hepatic manifestation of systemic endocrine and metabolic disruption. 

However, it was recently demonstrated that chemical exposures can also alter hepatokine 

production, demonstrating that TASH can also be a cause, and not just an effect, of systemic 

endocrine disruption [12]. MDCs may also cause hormone-independent alterations in 

hepatic metabolism through diverse mechanisms including receptor-based modes of action 

[13, 11, 8] and mitochondrial toxicity [14]. In fact, nuclear receptor ‘crosstalk’-based modes 

of action were proposed to be molecular initiating events (MIEs) in the hepatic steatosis 

adverse outcome pathway (AOP) proposed by the U.S. Environmental Protection Agency 

(EPA) [13]. These and other MIEs regulated the four identified apical key events impacting 

steatosis (e.g., fatty acid uptake, efflux, synthesis, and oxidative metabolism) [13]. EPA’s 

AOP were recently validated in vitro [15], and expanded to demonstrate the downstream 

systemic impact of the receptor-based MIE’s on diabetes and cardiovascular disease [16].

Signaling disrupting chemicals (SDCs) can disrupt the normal hepatic intracellular signaling 

that regulates metabolism, inflammation, and fibrosis. SDCs may ligand activate 

transcription factors implicated in TASH (such as dioxin and the aryl hydrocarbon receptor, 

AhR); antagonize these receptors; or indirectly impact receptor function. Recently, it was 

demonstrated that some POPs and pesticides may antagonize the epidermal growth factor 
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receptor (EGFR) reducing signal transduction leading to altered transcription factor 

(including nuclear receptor) phosphorylation and function in TASH [17–20]. The EDC, 

MDC, and SDC hypotheses provide a framework to evaluate the mechanisms responsible for 

the observed transcriptional reprogramming in TASH. The AOP framework appears to be a 

useful new tool to evaluate mechanisms of EDCs, MDCs, and SDCs in TASH.

New understanding about how interactions between environmental chemicals and nutrition 

impact FLD extends Day’s two ‘hit’ hypothesis in new directions [21]. The two ‘hit’ 

hypothesis proposed that a second ‘hit’ is required for patients with steatosis to progress to 

more histologically advanced liver disease. Classically proposed second ‘hits’ include 

oxidative stress, insulin resistance, organelle dysfunction, and pro-inflammatory cytokines. 

Some exposures such as high-dose vinyl chloride were associated with steatohepatitis and 

fibrosis in humans through the simultaneous induction of multiple hit mechanisms [4, 22]. In 

animal models, a polychlorinated biphenyl (PCB) mixture caused steatohepatitis only in 

mice fed a high fat diet [23]. It was thus proposed that differential exposures to 

environmental chemicals could serve as a second ‘hit’ in the progression of diet-induced 

steatosis to steatohepatitis, again via upregulation of deleterious mechanisms like pro-

inflammatory cytokines [23]. More recently, hepatic proteomics analysis of PCB-exposed 

mice demonstrated that PCB exposures were associated with the attenuation of liver’s 

protective responses against diet-induced obesity including the antioxidant response and 

nuclear receptor function (e.g., the farnesoid x receptor, FXR) [20]. Likewise, a recent 

mouse study demonstrated that low-dose vinyl chloride exposures caused steatohepatitis 

only in mice fed high fat diet [14], although vinyl chloride induced mitochondrial 

dysfunction in mice fed either a control or high fat diet. Over-nutrition likely exceeded the 

reserve capacity of mitochondria damaged by reactive vinyl chloride metabolites to worsen 

high fat diet-induced steatosis and cause steatohepatitis. Based, in part, on these 

observations, it was recently proposed that environmental pollutant exposures may be the 

first ‘hit’ which compromise the liver’s protective responses against over-nutrition to 

promote steatohepatitis following the second ‘hit’ of hypercaloric diets [20]. Thus, complex 

interactions between environmental chemicals and nutrients appear to be important 

determinants of liver disease. These interactions are being increasingly understood in the 

context of the two ‘hit’ hypothesis. Such exposure biology approaches take into 

consideration more than one biology factor in the analysis of liver disease susceptibility.

NEWLY DISCOVERED MODES OF ACTION FOR VOLATILE ORGANIC 

POLLUTANTS AND PERSISTENT ORGANIC POLLUTANTS IN THE 

CONTEXT OF KEY HYPOTHESES

Significant advances have been in the mechanistic understanding of TASH, particularly 

following VOC and POP exposures (Table 2).

A. VOLATILE ORGANIC COMPOUNDS

VOCs are often present in household products such as paints/varnishes, cleaning supplies, 

gasoline, and dry-cleaned clothing [24]. VOCs also contaminate ground water and are 

frequently present at National Priority List (NPL) Superfund sites. As such, many VOCs 
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rank highly on the Agency for Toxic Substances and Disease Registry’s (ATSDR) 

Hazardous Substance Priority List [24]. Ambient VOC levels are often higher indoors and 

can be significantly affected by the building’s proximity to contaminated sites and its 

ventilation [25, 26]. The VOC, vinyl chloride, is a direct hepatotoxicant at high exposures 

[4]. Low-dose vinyl chloride exposures that are not hepatotoxic per se, can enhance 

underlying liver injury due to another factor [27, 28, 14], consistent with the ‘two hit’ 

hypothesis. The toxicity of VOCs in TASH may be mediated by reactive VOC metabolites 

[27].

Several VOCs have been shown to be MDCs, by disrupting normal hepatic carbohydrate and 

lipid metabolism to induce steatosis. While highly-exposed vinyl chloride workers had 

insulin resistance (IR) [4]; low-dose vinyl chloride exposures caused IR in mice fed a high 

fat diet [14]. A recent serum metabolomics analysis of occupationally exposed vinyl 

chloride workers described changes in several lipid metabolites and metabolism regulating 

enzymes, such as AMP-activated protein kinase (AMPK) [29]. These results were 

recapitulated in a mouse model of vinyl chloride metabolite exposure, demonstrating that 

mammalian target of rapamycin (mTOR) and AMPK, which are normally activated in 

opposition, were both activated causing a paradoxical state of lipid accumulation and 

glycogen depletion [27]. By impacting normal regulatory kinase function, vinyl chloride 

may also be considered to be a SDC. Repeated exposure to high levels of perchloroethylene 

(PCE) also induced hepatic steatosis [30]. Metabolomics analyses demonstrated that even 

low-dose PCE significantly altered lipid homeostasis in vivo, contributing to enhanced 

steatosis [31, 32]. This was due, at least in part, to altered activation of peroxisome 

proliferator-activated receptor α (PPARα) [33, 34].

The carbonyl stress imposed by reactive VOC metabolites damages organelles, thus 

contributing to TASH. Mitochondria are key to maintaining cellular energy homeostasis, and 

several VOCs have been demonstrated to impact mitochondrial integrity and function. vinyl 

chloride-induced mitochondrial damage serves as a canonical example of an environmental 

exposure limiting the capacity of mitochondria to adapt appropriately to the metabolic stress 

imposed by the second ‘hit’ of a hypercaloric diet. Vinyl chloride and its metabolites directly 

damage mitochondrial complex I and II, leading to uncoupling of the electron transport 

chain. This causes the cell to increase flux through anaerobic glycolysis to compensate for 

this loss of ATP yield [14], also rendering it more sensitive to cytotoxic second ‘hits’. 

Mitochondria are also a significant source of endogenous reactive oxygen species (ROS) via 

electron leakage during normal oxidative respiration [35, 36]. In human subjects, vinyl 

chloride exposures were associated with antioxidant depletion consistent with oxidative 

stress [4] and increased circulating lipid peroxidation products and decreased carnitine/

carnitine esters consistent with mitochondrial dysfunction [29] validating the animal studies. 

Active VOC metabolites are often strongly electrophilic and therefore highly reactive. 

Specifically, oxidative damage occurs upon covalent adduct formation on major 

macromolecules in the hepatocyte, including proteins, lipids, and/or DNA (i.e., carbonyl 

stress). For example, vinyl chloride metabolite exposure significantly increased 4-

hydroxynonenal adduct formation in high fat diet-fed mice [28], likely due to increased 

electron leakage by damaged mitochondria [27, 14]. Similarly, major metabolites of PCE 

including trichloroacetic acid (TCA) and dichloroacetic acid (DCA), caused oxidative stress 
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through formation of lipid peroxidation adducts in vivo [37, 38]. Likewise, acrolein is a 

well-known propagator of oxidative stress by causing lipid peroxidation adducts [39, 40].

The endoplasmic reticulum (ER) is the cell’s hub for protein folding and synthesis [41, 42]. 

Upon detection of adducted or misfolded proteins, the ER prompts the unfolded protein 

response (UPR) to remove these proteins. The aldehydes and ROS generated by VOCs 

avidly react with proteins resulting in ER stress [43]. For example, vinyl chloride and its 

metabolites enhanced the accumulation of oxidatively damaged proteins caused by high fat 

diet, accompanied by a robust dilation of the ER [27, 28, 14]. Likewise, acrolein 

significantly increased expression of ER stress markers, without protective UPR activation in 

primary human hepatocytes [39] and in intestinal epithelial cells [44]. The latter changes 

caused gut barrier disruption, which contributes to fatty liver pathogenesis by increasing 

portal venous endotoxemia [45–48]. Thus, the ER and mitochondria are examples of 

organelles damaged by the carbonyl stress imposed by VOC metabolism contributing to 

TASH.

The transition from steatosis to the more severe steatohepatitis requires the development of 

superimposed hepatic inflammation. High-dose vinyl chloride exposures were associated 

with increased liver inflammatory infiltrate and increased serum pro-inflammatory cytokines 

in PVC production workers [4]. In mice, chronic vinyl chloride exposures (sub-OSHA dose) 

increased the hepatic neutrophil accumulation caused by high fat diet-feeding [14]. As was 

the case with vinyl chloride-induced organelle toxicity, vinyl chloride-induced inflammation 

appears to be due, at least in part, to vinyl chloride metabolites. In a mouse model, treatment 

with vinyl chloride metabolites significantly increased neutrophil infiltration, inflammasome 

activation, and pro-inflammatory cytokine expression in mice fed a diet enriched with 

saturated fat (the second ‘hit’) [28]. Interestingly, mice fed a diet rich in unsaturated fat were 

protected from liver injury and inflammasome activation [28]. This specific diet-dependence 

observed in mice was surprising because vinyl chloride exposures in humans were 

associated with marked upregulation of oxidized linoleic metabolites known to active the 

inflammasome while inducing liver mitochondrial dysfunction and apoptosis [29, 49]. In 

addition to inflammasome activation, the local and systemic inflammatory responses 

associated with VOC exposures can be induced and propagated by VOC-induced oxidative 

and ER stress [50]. Carbon tetrachloride has also been shown to enhance monocyte 

recruitment to the liver [51]. Regarding the developmental origins of FLD, trichloroethylene 

exposures during lactation and gestation increased expression of pro-inflammatory 

chemokines in offspring of mice [52]. A new field in the study of mechanisms of 

inflammation is the formation and release of neutrophil extracellular traps (NETs). NETs are 

an extensive meshwork of decondensed chromatin and hydrolytic enzymes, contributing to 

injury and necrosis [53]. The VOC, acrolein, has recently been shown to increase hepatic 

tissue damage after ischemia reperfusion. Increased expression of pro-inflammatory 

cytokines and enhanced NET formation were observed in isolated neutrophils [54]. Thus, 

VOCs induce hepatic inflammation though mechanisms including inflammasome activation, 

organelle stress, and enhanced NET formation.

Wahlang et al. Page 6

Curr Environ Health Rep. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



B. PERSISTENT ORGANIC POLLUTANTS

Dioxins and dioxin-like PCBs—Dioxins (e.g., 2,3,7,8-tetrachlorodibenzodioxin, TCDD) 

and dioxin-like PCBs (e.g., PCB 126) activate the aryl hydrocarbon receptor (AhR), and that 

is their proposed mode of action. Exposures to dioxins have long been associated with 

wasting syndrome, steatosis, and hypoglycemia. Following PCB 126 exposures in rats, 

specific hepatic fatty acids incorporated into triglycerides were increased in a dose-response 

with adrenic acid (22:4) showing the greatest maximal increase [55]. Likewise, mice 

exposed to PCB 126 had increased hepatic triglycerides and free fatty acids [12]. In rodent 

models, PCB 126-induced steatosis was reproducibly associated with increased lipid influx 

(via upregulation of AhR target genes including CD36 and fatty acid binding protein-1); 

variably decreased fatty acid oxidation (via downregulation of PPARα); and variably 

decreased lipid efflux (via downregulation of apolipoprotein B100); despite decreased 

lipogenesis (via downregulation of fatty acid synthase) [12, 56–59]. In some cases, the 

increased liver lipids were associated with reduced serum lipids and trend toward reduced 

adiposity, consistent with the central redistribution of fat to the liver [12]. PCB 126 reduced 

hepatic gluconeogenesis and increased insulin sensitivity to promote fasting hypoglycemia 

despite decreased insulin production [12, 56–58].

New mechanisms for PCB 126 in FLD were recently identified. In mice, PCB 126 decreased 

production of the hepatokine, fibroblast growth factor-21 (FGF-21) [58, 12], and the 

enterokine, glucagon-like peptide-1 (GLP-1) [60]. Because FGF-21 and GLP-1 protect 

against metabolic syndrome, these data implicate liver and intestinal disease as a cause of 

PCB 126-mediated endocrine disruption. The reduction in GLP-1 was associated with PCB 

126-induced dysbiosis including a reduction in bifidobacteria and a significantly increased 

Firmicutes to Bacteroidetes ratio [60]. Following PCB 126 exposures, the development of 

more severe liver injury, inflammation, and fibrosis (e.g., steatohepatitis) may require a 

nutritional second ‘hit’ [59, 58]. A recent liver metabolomics analysis of PCB 126 treated 

mice demonstrated that compared to mice fed a control diet, mice fed a methionine-choline 

deficient (MCD) diet had more metabolites associated with dysfunctional pathways and 

increased hepatic lipid peroxidation, mitochondrial dysfunction, and thiol depletion [61]. 

Regarding signaling disruption, PCB 126 was the most potent EGFR inhibitor tested [18], 

and it also inhibited protective hepatic AMPK and cyclic AMP responsive element binding 

protein 1 (CREB-1) signaling [57]. TCDD exposures also increased hepatic steatosis via 

fatty acid uptake [62] and appeared to require high fat diet co-exposures in order to increase 

fibrosis [63]. Metabolic reprogramming by TCDD in FLD was recently reviewed [64]. The 

endocrine and metabolic disruption accounting for TCDD-induced steatosis shares many 

similarities with PCB 126-induced steatosis, strongly implicating AhR’s role in TASH [64].

Non-dioxin-like PCBs—Non-dioxin-like PCBs (NDL PCBs) disrupt hepatic energy 

metabolism through other receptor-based mechanisms including constitutive androstane 

receptor (CAR) and pregnane X receptor (PXR) [8]. In diet-induced obesity mouse models, 

exposures to the NDL PCB 153 increased steatosis [65]; while Aroclor 1260 exposures 

caused steatohepatitis [23]. The latter data were recently confirmed in a cross-sectional 

analysis of the Anniston Community Health Survey (ACHS) [66]. Using serologic 

biomarkers, a high prevalence of TASH was observed in this cohort with increased PCB 
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exposures and overweight/obesity. TASH was associated with increased PCB exposures, 

insulin resistance, dyslipidemia, pro-inflammatory cytokines, and liver necrosis. ΣPCBs was 

inversely associated with leptin and pancreatic insulin production. EPA’s steatosis AOP 

proposed pollutant-induced PXR/CAR activation to be MIEs for FLD [13, 16]. Thus, we 

hypothesized that PXR or CAR knockout mice would be protected against the steatohepatitis 

associated with Aroclor 1260 in a diet-induced obesity model [67]. While PXR and CAR 

clearly modulated several mechanisms implicated in FLD, knocking out these receptors did 

not prevent steatohepatitis [67]; thus implicating additional mechanisms.

CAR can either be directly activated by ligand binding or indirectly activated via altered 

receptor phosphorylation. Direct CAR ligands, such as TCPOBOP, protect against FLD [68], 

suggesting that the indirect activators may cause TASH. PCBs are indirect murine CAR 

activators, but may activate human CAR both directly and indirectly [69, 18, 17]. Recently, 

the mechanism for PCB-induced indirect CAR activation was elucidated. PCBs antagonized 

EGFR via high-affinity hydrophobic binding at the ligand binding domain to prevent ligand-

induced endocytosis and tyrosine kinase activation leading to downstream CAR de-

phosphorylation and consequently increased CAR activity [18, 17]. Perhaps because it 

shares similarities with the insulin receptor, the EGFR also regulates numerous pathways 

involved in metabolism, regeneration, and gene expression [70, 71]. Disruption of these 

pathways may promote TASH.

A recent in vivo hepatic phosphoproteomics analysis revealed that PCB-induced signaling 

disruption impacted many pathways and interacted with diet [19]. Aroclor 1260 reduced 

hepatic phosphoprotein levels by nearly 25%. Consistent with ACHS, PCBs impacted leptin 

and insulin signaling pathways while liver necrosis was a pathologic ontology: increased by 

the interaction between PCBs and high fat diet. Casein kinase 2 (CK2), extracellular 

regulated kinase, protein kinase B, and cyclin dependent kinase activities were 

downregulated by PCBs, and this downregulation was worsened by diet-induced obesity. 

PCB-induced alterations in CK2 subunit expression negatively regulated caspase-3 to 

promote secondary liver necrosis. More recently, it was demonstrated that nuclear factor 

erythroid 2-related factor (NRF2) and hepatocyte nuclear factor 4-alpha (HNF4α) were 

epidermal growth factor sensitive targets whose functions were reduced by NDL PCBs [20]. 

PCB-induced NRF2 down-regulation decreased hepatic glutathione levels, rendering the 

liver more susceptible to the oxidative stress imposed by the diet-induced obesity second 

‘hit’ [20]. HNF4α is a critical identity gene regulating the expression of the liver’s specific 

metabolic genes [72] as well as pancreatic insulin production. Other recently described 

novel modes of action for PCBs in FLD include: (i) reduced expression of signal transducer 

and activator of transcription 3 (STAT3, a transcription factor implicated in interleukin-6 and 

leptin signaling) [17]; (ii) reduced function of protective nuclear receptors [e.g., PPARα, β, 

γ and FXR)] [20]; (iii) altered hepatokine expression impacting the liver:pancreas axis [12]; 

(iv) gene:environment interactions [e.g., patatin-like phospholipase domain-containing 

protein (PNPLA3)] [12]; and (v) increased production of pro-fibrotic cytokines like 

transforming growth factor β (TGF-β) [20]. Thus, NDL PCBs impact multiple FLD 

mechanisms including nuclear receptors, signaling molecules and pathways, cell death 

pathways and antioxidant defenses.
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Perfluoroalkyl substances—PFAS disrupt hepatic lipid metabolism by interacting with 

PPARs and other receptors due to their structural similarities with fatty acids [73]. PFAS 

appear to cause steatosis by upregulating lipogenesis and lipid influx, while downregulating 

lipid efflux [74–81]. PFAS are potent immunotoxic chemicals suppressing innate immune 

function, partly through PPARα-dependent mechanisms [82]. In the C8 Health Study, blood 

PFAS levels were positively associated with liver enzymes, a liver apoptosis biomarker, and 

sex differences in adipocytokine levels; but were inversely associated with serum tumor 

necrosis factor α [83–85]. In the National Health and Nutrition Examination Survey, low-

level PFAS exposures were associated with elevated liver enzymes only in obese participants 

[86], consistent with the FLD two ‘hit’ hypothesis. Thus, PFAS exposures seem to uniquely 

regulate liver lipid metabolism, cell death, and inflammation in diet-induced obesity.

CURRENT LIMITATIONS AND SUGGESTED FUTURE RESEARCH 

DIRECTIONS

Because TASH is a recently described disease, important knowledge gaps remain in the 

understanding of TASH mechanisms. These data gaps inform future research directions. 

Most importantly, more mechanistic human data are required. Although pathology is the 

gold standard for the diagnosis of steatohepatitis and fibrosis; the liver biopsy procedure is 

often associated with risk. Moreover, FLD is asymptomatic or has nonspecific symptoms 

until it has progressed to decompensated cirrhosis or liver cancer; and standard serologic 

biomarkers for liver injury, such as alanine aminotransferase (ALT) may be insensitive for 

the diagnosis of TASH [4]. Therefore, liver biopsy is not justified or available in most 

environmental exposure cohorts, because even subjects with liver disease may be 

asymptomatic or have normal liver enzymes. The lack of human liver tissue paired with 

exposure assessment data remains a major barrier to the field. Several alternative strategies 

could alleviate this research barrier. First, exposure assessment could be performed in 

previously biopsied NAFLD cohorts. Second, novel blood [(e.g., cytokeratin 18 [4, 66, 85] 

or “liquid liver biopsy” [87]] or imaging-based biomarkers (e.g., fibroscan) for FLD could 

be applied to existing exposure cohorts. These studies could potentially (i) identify 

environmental chemicals associated with TASH, (ii) determine dose responses for these 

chemicals, and (iii) determine mechanisms. NAFLD mortality is associated with fibrosis 

[88], and more studies evaluating fibrosis in TASH are required. Some studies (Table 1) 

suggest a role for environmental exposures in the developmental origins of FLD. This along 

with the possible contribution of epigenetic mechanisms require further investigation. 

Polymorphisms in several genes including PNPLA3 have been associated with NAFLD, and 

some animal studies suggest that environmental exposures may regulate PNPLA3 expression 

[12]. More data are needed on gene:environment interactions in TASH. The potential 

reversibility of TASH is unknown, and therapy studies are required. The gut:liver axis has 

become increasingly important in the pathogenesis of FLD; and it is profoundly impacted by 

the gut microbiome. The microbiome may have a role in TASH [60], but more data are 

required. Likewise, environmental exposures may influence the genesis and progression of 

alcoholic liver disease [89], but more data are needed to better understand the potential role 

of exposures in alcoholic liver disease. Finally, some POPs disrupt sex hormone signaling. 

For instance, some low molecular weight PCBs are known to activate estrogen receptors and 
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to antagonize androgen receptor, whereas higher molecular weight PCB congeners may be 

anti-estrogenic [90, 91]. More data are needed to identify potential sex differences in TASH.

CONCLUSIONS

The conceptual understanding of the contribution of environmental exposures, particularly 

POPs and VOCs, to fatty liver disease has progressed significantly. Increasing numbers of 

environmental health studies now include liver endpoints, allowing for the further 

identification of chemicals implicated in TASH and their mechanisms. Several key 

hypothesis and the EPA’s proposed steatosis adverse outcome pathway have provided a 

better framework for understanding TASH mechanisms. Such key hypotheses include: the 

endocrine, metabolism, and signaling disrupting chemical hypotheses; and the chemical-

nutrition interactions impacting the two “hit” hypothesis. Environmental exposures (first 

‘hit’) may compromise the liver’s protective responses against over-nutrition (summarized in 

Figure 1) to promote steatohepatitis from hypercaloric diets (second ‘hit’). Finally, because 

this is a new research area, more studies are required to address current knowledge gaps.
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LIST OF ABBREVIATIONS:

ACHS Anniston Community Health Survey

AhR aryl hyodrocarbon receptor

ALT alanine aminotransferase

AMPK AMP-activated protein kinase

AOP adverse outcome pathway

ASH alcoholic steatohepatitis

ATSDR Agency for Toxic Substances and Disease Registry

CAR constitutive androstane receptor

CK2 casein kinase 2

CREB-1 cyclic AMP responsive element binding protein 1

EDCs endocrine disrupting chemicals

EGFR epidermal growth factor receptor

EPA Environmental Protection Agency

ER endoplasmic reticulum
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FLD fatty liver disease

FXR farnesoid x receptor

FGF-21 fibroblast growth factor-21

GLP-1 glucagon-like peptide-1

HNF4α hepatocyte nuclear factor 4-alpha

IR insulin resistance

MCD methionine-choline deficient

MDCs metabolism disrupting chemicals

MIEs molecular initiating events

mTOR mammalian target of rapamycin

NAFLD nonalcoholic fatty liver disease

NASH nonalcoholic steatohepatitis

NDL non-dioxin like

NIOSH National Institute for Occupational Safety and Health

NAFLD nonalcoholic fatty liver disease

NPL National Priority List

NRF2 nuclear factor erythroid 2-related factor

PCBs polychlorinated biphenyls

PCE perchloroethylene

PFAS perfluoroalkyl substances

POPs persistent organic pollutants

PNPLA3 patatin-like phospholipase domain-containing protein 3

PPARα peroxisome proliferator-activated receptor α

PVC polyvinyl chloride

PXR pregnane X receptor

ROS reactive oxygen species

SDCs signaling disrupting chemicals

STAT3 signal transducer and activator of transcription 3

TASH toxicant associated steatohepatitis
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TCDD 2,3,7,8-tetrachlorodibenzodioxin

TGF-β transforming growth factor β

UPR unfolded protein response

VOCs volatile organic compounds
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Figure 1. Selected Modes of Action for Volatile Organic Compounds and Persistent Organic 
Pollutants in Fatty Liver Disease.
These modes of action are related to the endocrine, metabolism, and signaling disrupting 

hypotheses as well as nutritional interactions and the two ‘hit’ hypothesis.
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Table 1.

Selected examples of chemicals associated with fatty liver disease.

Category Chemical / Chemical Group Laboratory animals Epidemiology/Clinical Evidence

POPs Dioxins Adult Exposure [92–95, 62, 96, 63] [97–99]

Polychlorinated biphenyls Adult Exposure [12, 23, 56, 65, 92, 59, 58, 67]. [66, 97, 98,100–104]

Perfluorooctanoic acid Adult Exposure [80, 105, 74, 106] [83–85, 107–109].

Perfluorooctanesulfonic acid Adult Exposure [110–112, 78] [108, 109, 84, 107]

Developmental Exposure [113]

Polybrominated diphenyl ethers Adult Exposure [114]

Diethylhexyl phthalate
Adult Exposure [115, 116]

Developmental Exposure [117]

Organochlorine Insecticides [118–120] [101, 97, 99]

Atrazine Adult Exposure [121–123]

VOCs Vinyl Chloride/Metabolites Adult Exposure [27, 28, 14] [4, 29].

Smoking/nicotine Adult Exposure [124, 125] [126, 127]

Tributyltin
Adult Exposure [128]

Developmental Exposure [129–131]

Air Pollution / Particulate Matter Adult Exposure [132–135] [136]

Benzo[a]pyrene
Adult Exposure [137]

Developmental Exposure [138]

Metals
Arsenic

Adult Exposure [139–143] [145]

Developmental Exposure [144]

Lead [100, 146]

Mercury Adult Exposure [147, 148] [100]

Cadmium Adult Exposure [149–151] [152, 153]

Others Bisphenol A Developmental Exposure [154–157]

Fungicides
Adult Exposure [92, 158]

Developmental Exposure [92]

Glyphosate-based herbicides Adult Exposure [159] [160]

Dinoseb Adult Exposure [161]
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Table 2.

Main targets and modes of action for volatile organic compounds and persistent organic pollutants in fatty 

liver disease.

Target Category Target/Receptor Outcomes/Processes Chemical 
Group

References

Hepatic Nuclear 
Receptors

PPARs -steatosis
-immuno-toxicity
-apoptosis

PFOA/PFOS
VOCs

[73, 162, 163]
[33]

PXR, CAR, FXR -lipogenesis & decreased fatty acid oxidation
-decreased gluconeogenesis
-hepatokine dysregulation
-altered cholesterol/bile acid metabolism

PCBs [23, 67, 12]

Sex Steroid 
Receptors

ERα, ERβ, AR -endocrine-metabolic disruption PCBs, PFAS [164, 165]

Other Receptors AhR -lipid accumulation
-inflammation and oxidative stress
-hepatokine dysregulation
-gut microbiome alterations

PCBs, TCDD [62, 12, 166, 93, 167, 
63, 60]

EGFR -EGFR signaling disruption
-diminished HNF4A
-altered insulin production

PCBs, OCPs [19, 17]

Energy Sensors/
Regulators

CREB -disruption of hepatic energy ‘sensing’ Dioxin-like 
PCBs

[57, 168]

AMPK, mTOR, -glycogen depletion
-lipid accumulation

VOCs [27, 29]

Organelles/Protein 
Complex

Endoplasmic 
reticulum, 
Mitochondria, 
Inflammasome

-ER and oxidative stress
-carbonyl stress
-inflammation
-enhanced neutrophil extracellular trap formation

VOCs [4, 14, 28, 43, 44, 54].

Antioxidant 
Responses

NRF2 -Reactive oxygen species generation
-oxidative stress

PCBs, VOCs [4, 20]
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