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Abstract

Transcatheter aortic valve replacement (TAVR) is a life-saving alternative to surgical intervention. 

However, the identification of higher pressure gradients, reduced effective orifice areas, residual 

paravalvular leakage (PVL), and subclinical leaflet thrombosis are cause to be concerned about 

valve durability1,2,3. The aim of this study is to optimize the potential of a hyaluronan (HA) 

enhanced polymeric transcatheter aortic valve (HA-TAV) that has promised to reduce blood 

damage causing-turbulent flow while maintaining durability. HA-enhanced linear low-density 

polyethylene (LLDPE) leaflets were sutured to novel cobalt chromium stents, size 26mm balloon 

expandable stents. Hemodynamic performance was assessed in a left heart simulator under 

physiological pressure and flow conditions and compared to a 26mm Medtronic Evolut and 26mm 

Edwards SAPIEN 3. High-speed imaging and particle image velocimetry (PIV) were performed. 

The HA-TAV demonstrated an effective orifice area (EOA) within one standard deviation of the 

leading valve, SAPIEN 3.The regurgitant fraction (RF) of the HA-TAV (11.23 ± 0.55 %) is 

decreased in comparison the Evolut (15.74 ± 0.73 %) and slightly higher than the SAPIEN 3 

(10.92 ± 0.11 %), which is considered trace regurgitation according to valve standards. A 

decreased number of higher principal Reynolds shear stresses were shown for the HA-TAV at each 

cardiac phase. The HA-TAV is directly comparable and in some cases superior to the leading 

commercially available prosthetic heart valves in in-vitro hemodynamic testing.
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1. Introduction

Transcatheter aortic valve replacement (TAVR) has emerged as a life-saving treatment for 

patients that are excluded from traditional surgical valve replacement surgeries due to risk of 

procedural complications[1]. The percutaneous valve replacement procedure is less invasive, 

avoiding morbidity and a long recovery following an open heart procedure, which in turn 

reduces length of hospital stay [2, 3]. Despite the advantages of TAVR, clinical studies have 

identified features associated with poor outcomes, including residual paravalvular leakage 

(PVL), leaflet calcification, and subclinical leaflet thrombosis, which negatively impact 

valve function[4–8]. While the typical functional lifetime of a bioprosthetic surgical valve 

ranges from 10–15 years[9], that of a transcatheter bioprosthetic is reduced to 7–10 years 

following replacement[10, 11]. Even though the most current transcatheter valve designs 

have addressed some of these issues, for example implementing skirts to reduce PVL, 

reduced functional lifetime still remains as a major disadvantage of TAVR.

The commonality between all commercially available transcatheter aortic valves in the U.S. 

and Europe that have been approved by the FDA and CE respectively is the leaflet material, 

which is always chemically fixed pericardium tissue. Many of the features that are 

associated with poor outcomes of TAVR are inherent to chemical fixation of tissue based 

leaflets, including subclinical leaflet thrombosis and calcification buildup[12, 13]. 

Additional concerns with crimping stability of these tissue components have risen in more 

recent years[14, 15]. Efforts to substitute the pericardium-based prosthetic heart valves with 

polymeric materials date back to the 1960’s with the first silicone valve surgical aortic 

implant reported by Roe et. al. in 1969[16]. Until recent years, the material science and 

engineering behind polymer chemistry has not been able to simultaneously produce a 

biocompatible, durable, and anti-thrombogenic polymeric leaflet substitute[17, 18], and 

improved materials are still under investigation. One such material, hyaluronan (HA) 
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enhanced linear low density polyethylene, has shown promise as a leaflet substitute due to 

its strength, flexible nature, and tunable surface properties, as well as its cytocompatability, 

resistance to platelet adhesion and activation, and reduced clotting as compared to 

conventional heart valve materials such as fixed tissue and pyloritic carbon [19, 20].

In addition to the thrombotic proclivity of a material, thrombogenic potential is also highly 

dependent on flow conditions, which are significantly influenced by valve design[21–23]. 

Increased turbulent stresses are associated with increased thrombogenic potential, and 

therefore it is important to investigate turbulent stresses to characterize prosthetic valve 

function. Turbulent stress levels, and especially Reynolds shear stress, are well known to be 

an indirect measure of the shear stresses experienced by blood cells and platelets in a 

turbulent flow environment[24]. In a healthy native aortic valve, maximum Reynolds shear 

stress values have been reported as < 3 Pa, where in stenotic valves, this number is an order 

of magnitude higher at 30 Pa [25]. Previous studies have associated non-physiological flow 

following transcatheter valve replacement with increasing levels of blood damage, ranging 

from platelet activation to hemolysis [21, 26–28]. Therefore, an ideal prosthetic valve design 

would yield the least turbulent effects and decreased levels of Reynolds stress while 

exhibiting surface hemocompatiblity (i.e. resistance to platelet adhesion, fibrosis, and 

contact activation).

In the new era of both balloon-expanding and self-expanding transcatheter valve approval 

for use in low risk patients, efforts towards the development of durable polymericvalves are 

numerous and escalating [29, 30]. Of those, the hemodynamic performance of 

investigational valves including the TRISKELE valve[31], Polynova valve [32], and the 

Strait Access Technologies valve have been studied and published with promising results. 

While basic hemodynamic data on these and investigational polymeric surgical valves[33–

35] are promising, the respective studies do not report the turbulent characteristics of these 

valves and thus their turbulent flow induced thrombogenic potential is unknown. We aim to 

characterize in-vitro the hemodynamic function and turbulent flow characteristics of a 

hyaluronan (HA) enhanced polymeric transcatheter aortic valve (HA-TAV) with a novel 

stent design that aims to reduce flow turbulence and decrease thrombogenic potential.

2. Materials and Methods

2.1 Valve Stent Design

The polymeric transcatheter aortic valve was manufactured in house, as an assembly of an 

interpenetrated network of Hyaluronan (HA) and linear low density polyethylene (LLDPE) 

for the valve leaflets and a cobalt chromium (CoCr-MP35N) stent. The stent was designed in 

3D CAD software (Solidworks 2018), and laser cut (STI Laser Industries) to be balloon 

expandable. The balloon expandable stent has a valve diameter is 26mm, and a height of 

25mm. A total of 9 non-load bearing polypropylene sutures were used to attach the polymer 

leaflets to the stent frame to fix their position during crimping. Major features of the CoCr 

stent design include two distinct rows of diamond shaped structures, where the bottom row 

is comprised of 6 uniform diamond shaped structures and the top row is comprised of three 

larger diamond shaped structures with a 60 degree angle, and 3 “V” shaped structures 

connecting them as shown in Figure 1. The 3 tips of the larger diamond shaped structures 
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are the stent posts, and the “V” shaped structures serve to keep the native aortic valve 

leaflets from interfering with the functionality of the polymeric leaflets once implanted in 

the native aortic root. Another unique feature of this stent design is that the polymeric 

leaflets are attached outside of the stent, rather than being sutured to the inside, and fold 

under the “V” shaped structures to form the leaflets. A leaflet arch length (h/D) of 0.115 as 

described in Yousefi et. al.[36] was used for this valve.

2.2 Leaflets’ materials

The polymeric leaflets were cut from sheets of interpenetrated networks of HA and LLDPE. 

Hyaluronan is a highly hydrophilic and anionic molecule, essential to the extracellular 

matrix of human heart valves[37]. It has been shown to be non-toxic, biodegradable, and 

non-immunogenic and is therefore highly suitable for blood contacting applications [19, 38, 

39]. One advantage of HA is that the molecule has extraordinary potential to be chemically 

modified, as a way to control its degradation and mechanical properties, as in an 

interpenetrating network. 80 μm thick polymeric sheets were blow-molded by Flex-Pack 

Engineering, Inc. (Union-town,OH) from LLDPE resin (Dowlex 2056; Dow Chemical 

Company, Edegem, Belgium) and then a swelling process was used to form an 

interpenetrated network (IPN), where two polymers are combined at the molecular level, 

with HA. This method of introducing HA to the LLDPE has been shown to improve the 

ability of the two polymers to remain intact, as the polymers in an IPN cannot be separated 

unless chemical bonds are broken[40] [41]. The HA IPN has shown to be much more 

durable than surface treatments (such as heparin) that reduce platelet adhesion and improve 

hemocompatability [20, 42, 43] making it a promising material for prosthetic heart valve 

leafletsas anticoagulation therapy will not be necessary. Additional details of the 

manufacturing process and details of the desirable material properties of HA-LLDPE 

including high yield tensile and tear strengths can be found in previous works[19, 44–46]. 

Photographs of the valve are shown in Figure 2.

2.3 Hemodynamic Parameters

The hemodynamic performance of a polymeric TAV was compared against two of the 

leading commercially available transcatheter valves of comparable sizes, a 26mm Medtronic 

Evolut (Minneapolis, Minnesota) and a 26mm Edwards SAPIEN 3 (Irvine, California). The 

three valves were inserted into an aortic root model of physiological size and connected to 

an experimental pulse duplicator left heart flow simulator, shown in Figure 3, that is capable 

of creating pulsatile flow conditions under physiological pressure (120/80 mmHg), heart rate 

(60 bpm), and cardiac output (5 L/min) as previously described [47–54]. A working fluid of 

60/40 water to glycerin (99% pure glycerin) was used to provide density and kinematic 

viscosity comparable to blood, at 1060 kg/m3 and 3.5 ·10−6 m2/s respectively. Aortic and 

ventricular pressure as well as flow rate were collected at a sampling frequency of 100 Hz 

for 60 consecutive cardiac cycles. The aortic flow and pressure that were imposed on the 

valve are shown in Figure 4, where the flow and pressure have been ensemble averaged over 

60 cardiac cycles. Valve leaflet motion was recorded with en-face high speed imaging 

collected at 1000 frames per second throughout the cardiac cycle. From these data, effective 

orifice area (EOA), regurgitant fraction (RF), and pinwheeling index (PI) were computed for 

each of the valve types.
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2.3.1 Effective Orifice Area (EOA)—The effective orifice area (EOA) is a common 

parameter that assesses valve performance through the quantification of valve stenosis. It is a 

measurement of the effective jet area during the valve opening phase of the cardiac 

cycle[55]. EOA was computed from the Gorlin relation:

EOA =
Qrms

51.6 ΔP
(1)

Where Qrms is the root mean square aortic valve flow rate (cm3/s) and ΔP is the mean 
pressure drop (mmHg) over the full cardiac cycle.

2.3.2 Regurgitant Fraction (RF)—Regurgitant fraction (RF) is a second common 

parameter that is used to assess valve performance. It represents the ratio of the closing (CV) 

and leakage volume (LV) to the forward flow volume (FV). A higher performing valve 

would demonstrate a low regurgitant fraction (≤ 15%)[56].

RF = CV + LV
FV (2)

2.3.3 Pinwheeling Index (PI)—The pinwheeling index (PI) measures the twisting 

extent of the leaflets upon closure[54]. High pinwheeling indices have been shown to be 

linked with decreased leaflet durability[57–59]. PI is computed from still frames of high-

speed imaging during valve closing phase as follows:

PI =
Lactual − Lideal

Lideal
(3)

where Lactual represents the actual length of the free edge of a leaflet, and Lideal represents 

the shortest distance between the post and central coaptation region, as previously described 

by Midha et al.[60].

2.4 Particle Image Velocimetry (PIV)

Particle image velocimetry (PIV) was performed to visualize and evaluate the flow velocity 

field through the valves and to identify turbulence characteristics. Briefly, the flow of 

interest was seeded with florescent PMMA-Rhodamine B particles (average diameter ~10 

μm) and illuminated by a thin laser sheet created with a double pulsed neodymium-doped 

yitrium lithium fluoride (Nd-YLF) solid state laser coupled with spherical and cylindrical 

lenses. Time-resolved recordings were acquired at spatial and temporal resolutions of 0.037 

mm/pixel and 1000 Hz respectively. 250 repetitions of phase locked measurements were 

recorded for acceleration, peak, deceleration, and diastolic phases of the cardiac cycle. 

DaVis PIV software (DaVis 7.2; Lavision, Gӧttingen, Germany) used for all image post 

processing. More details of PIV techniques can be found elsewhere[1, 50–53, 61].
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2.4.1 Vorticity Calculations—Vorticity is the curl of the velocity field and therefore is 

useful to visualize both rotational blood shearing and turbulence. High vorticity regions 

along the axis perpendicular to the plane indicate shear and rotation of the fluid 

particles[54]. Vorticity was computed as follows:

ωz = −
dV x
dy −

dVy
dx (4)

Where ωzis the vorticity component with units of s−1; Vx and Vy are the x and y components 

of the velocity with units of m/s.

2.4.2 Principal Reynold’s Shear Stress (RSS)—Large Reynold’s shear stress (RSS) 

is an indicator of high turbulence and has been widely correlated with increasing likelihood 

of blood and endothelial damage after implantation of heart valve prostheses[26, 62]. 

Principal RSS is a statistical quantity that measures the shear stress between fluid layers 

when particles decelerate or accelerate while changing direction [63] and is calculated as:

RSS = ρ u′u′ − v′v′
2

2
+ u′v′ 2 (5)

Where ρis the density of the working fluid (kg/m3) and u′ and V′ are the instantaneous 

velocity fluctuations in the x and y directions respectively (m/s). Equation (5) implicitly 

assumes no out-of-plane component of instantaneous velocity, w’, and can be considered as 

a lower bound for the principle RSS [64].

The principal RSS was calculated for each spatial location downstream the valve and binned 

by RSS value frequency. Each bin was normalized to the maximum number of counts in any 

one bin, and this normalized frequency of principal RSS values was plotted.

2.5 Statistical Analysis

Statistical analysis in this study was performed using JMP Pro version 13.0.0 (SAS Institute 

Inc, Cary, NC). All data are presented as mean ± standard error. A non-parametric 

comparison of means was performed to compare the mean hemodynamic parameters and a 

p-value of p < .05 was considered statistically significant. Analyses were performed over 60 

replicates.

3. Results

3.1 Hemodynamic Assessment

Hemodynamic parameters obtained from the flow and pressure data for each valve were 

given in Table 1. The HA-TAV had an EOA of 2.08 ± 0.04 cm2, within one standard 

deviation of the leading valve, SAPIEN 3 at 2.1 ± 0.025 cm2, through their means were 

significantly different (P < 0.001). Likewise, the HA-TAV had an increased effective orifice 

area as compared to the Evolut 1.8 ± 0.036 cm2, with a significance of P < 0.001. The RF of 
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the HA-TAV (11.23 ± 0.55 %) is lower in comparison to the Evolut (15.74 ± 0.73 %) (P < 

0.05) and slightly higher than the SAPIEN 3 (10.92 ± 0.11 %) (P < 0.05), putting it well 

within the range of the two leading commercially available valves.

3.2 Pinwheeling

The En-face views of valve opening and closing at peak systole and mid-diastole are shown 

for each valve in Figure 5 and in supplementary Video 1. At peak systole, the Evolut and 

SAPIEN 3 are maximally open, with symmetrical orifices, while the HA-TAV is non-

symmetrical and non-circular. Visual inspection of the images shows that the SAPIEN 3 has 

the largest twisting in the coaptation region, followed by the Evolut and then the HA-TAV. 

This is in accordance with the values reported in Table 1, where the PI was significantly 

decreased (P < 0.001) for the HA-TAV (0.0456 ± 0.03) as compared to the Evolut (0.122 

± 0.045) and SAPIEN 3 (0.366 ± 0.067).

3.3 Velocity Vector Field and Vorticity Contours

Phase averaged velocity vector fields and corresponding vorticity contours are shown in 

Figure 6 at four time points in the cardiac cycle, namely, acceleration, peak systole, 

deceleration and diastole, which are denoted by a red dot along the representative aortic flow 

curve. Bright red and blue contours represent the shear layers, which correspond to the jet 

boundaries. The distance between the shear layers represent the width of the jet through the 

valve.

The maximum value of velocity for the HA-TAV was 1.56 m/s during acceleration, 1.94 at 

peak systole, and 1.03 at deceleration phase. In comparison, the Evolut’s maximum velocity 

at acceleration phase was decreased (1.00 m/s), increased to reach 2.45 m/s at peak systole, 

and then 1.37 m/s during deceleration. The SAPIEN 3 velocity increased from 0.86 m/s 

during acceleration, 2.10 m/s at peak systole, and reached 0.94 m/s during deceleration. The 

velocity during diastole was 0.17 m/s for the HA-TAV, and 0.19 m/s for both the Evolut and 

SAPIEN 3.

Developed shear layers occur sooner during acceleration phase in the HA-TAV as compared 

to the Evolut and SAPIEN 3. At peak systole, the shear layers were thinner with the HA-

TAV compared to the Evolut and SAPIEN, and were characterized by lower vorticity 

magnitudes 5 mm downstream the valve with the HA-TAV approximately half the 

magnitude of the SAPIEN 3 and approximately 4/5th of the magnitude of the Evolut. At the 

deceleration phase, the distance between the shear layers was significantly reduced for the 

HA-TAV, and only very slightly for the Evolut and SAPIEN 3, showing that the jet narrows 

sooner in systole for the HA-TAV.

3.4 Reynolds Shear Stress (RSS)

Figure 7 shows the principal Reynolds shear stress (RSS) at acceleration, peak, deceleration 

and diastolic phases of the cardiac cycle for each valve. RSS is an important indicator of 

platelet activation due to the turbulent fluctuations of the blood velocity[26–28, 53, 54, 62, 

65].
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For each valve, the highest values of RSS were present at peak systole. In comparison to the 

Evolut and SAPIEN 3, the HA-TAV had a significantly smaller region in which higher RSS 

values (>10 Pa) were present, concentrated near the stent frame alone. While in the HA-TAV 

and SAPIEN 3 the majority of the RSS had dissipated by the deceleration time point, the 

Evolut demonstrated slower dissipation of these stresses. This observation is clearly 

demonstrated in the distribution plots of the principal Reynolds shear stresses at 

acceleration, peak and deceleration in Figure 8. During acceleration, there is a single peak of 

the normalized frequency curve for the HA-TAV and the two commercial valves. The Evolut 

has the widest peak, indicating that it holds the highest number of higher RSS values. 

During peak systole, the HA-TAV has a similar frequency profile as it did in acceleration. 

The Evolut does not reach 0 frequency as quickly, and the profile of the frequency curve is 

not smooth indicating regions of high values of increased RSS, while the SAPIEN 3 is 

somewhat smoother, reaching 0 frequency at a lower value of RSS than for the Evolut. At 

deceleration, the frequency profile for the HA-TAV is no longer smooth, but still reaches 0 at 

a lower RSS value than the two commercially available valves. The Evolut has a wide 

second peak at higher RSS values, and the SAPIEN 3 has a sharp second peak at lower RSS 

values.

4 Discussion

The potential of the novel HA-TAV was investigated in this in vitro study through (1) 

evaluating hemodynamic parameters (2) assessing velocity and vorticity and (3) analyzing 

turbulence characteristics through calculating RSS.

4.1 Hemodynamic Assessment and Pinwheeling

The effective orifice area of the HA-TAV was comparable to the SAPIEN 3, and both were 

larger than the Evolut. One reason for this difference may be that the HA-TAV and SAPIEN 

3 are balloon-expandable, while the Evolut is self-expanding. Balloon expandable valves are 

known to contribute to reduced pressure gradients in TAVs and larger orifice areas, due to 

the radial force of the balloon anchoring into the aortic root[1, 66, 67]. The improved 

effective orifice area could also likely be due to the polymeric material and difference in the 

HA-TAV stent design that allows the leaflets to fold out beyond the confinement of the 

inner-diameter of the stent producing a unique three dimensional leaflet surface geometry 

during the forward flow phase. This leaflet surface geometry likely produces some out of 

plane component of the main jet, which could induce swirling flows and increase effective 

orifice areas. A particle streak video (Supplementary Video 2) of the HA-TAV show 

evidence of these potential swirling flows as compared to that for the Evolut and SAPIEN 3.

Regurgitant fraction is of major importance in the development of novel transcatheter aortic 

valves, as a high RF puts additional load on the heart to pump adequate blood supply to the 

rest of the body[52]. Also, additional consideration should be given to the development of a 

non-physiological backwards flow jet that can induce platelet activation and hemolysis[36, 

68–71]. RF of the HA-TAV falls within the levels of the SAPIEN 3 and Evolut, marking it as 

comparable to these two commercially available valves and trace with regards to the 

standards presented by Nishimura et. al.[72]
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The pinwheeling index of the HA-TAV is significantly decreased in comparison to the 

Evolut and SAPIEN 3. This is likely an effect of the leaflet design, with arched profiles 

modified from Yousefi et. al.[36] that allow for there to be a balance between optimal 

coaptation area and minimized PI to ensure central gap closure and enhance leaflet 

durability respectively.

The regurgitant fractions obtained in this study for the HA-TAV were found to be lower than 

those obtained with TRISKELE-26 valve (19.3%) while the effective orifice area was found 

to be higher for the HA-TAV as compared to the TRISKELE-26 (1.9 cm2) [31].

4.2 Velocity and Vorticity

The increased velocity for the HA-TAV during the acceleration phase as compared to Evolut 

and SAPIEN 3 is likely due to a combination of the delay in opening of the polymeric 

leaflets (Supplementary Video 1), and the geometry of the orifice that is present throughout 

the cardiac cycle. The flexural properties of material used for prosthetic heart valve leaflets 

are highly important to heart valve design, as it has been shown that leaflet bending plays a 

critical role in bioprosthetic heart valve and function[73]. The smaller orifice produces 

higher jet velocities at this stage. However, at peak systole, the HA-TAV has reached max 

opening and shows decreased max jet velocities than for the Evolut and SAPIEN 3.

In the HA-TAV, the shear layers are significantly diminished in approximately half of the 

distance downstream of the valve outlet as they are for the Evolut and SAPIEN 3, with much 

lower magnitudes in as little as 5 mm from the outlet. This decrease in vorticity fluctuation 

is indicative of a decrease in turbulence (and therefore energy loss). This decrease in in 

vorticity and in turbulence may be due to the leaflet geometry that could induce a slightly 

out of plane component of the main jet giving way to swirling flows. In the deceleration 

phase, it is clear that the HA-TAV begins to close sooner after reaching max opening than 

the two tissue valves, as seen by the sudden diminishing of distance between shear layers 

(jet width) at this time point.

4.3 Reynolds’ Shear Stress

RSS magnitudes have an important role in determining the biocompatibility of a valve 

prosthesis because they can indicate regions of probable platelet activation from turbulent 

fluctuations of the blood velocity[26–28, 65, 74]. Previous in vitro studies attempted to set 

some thresholds that mark the onset of platelet activation[51]. The critical shear stress levels 

for hemolysis and platelet lysis under physiological exposure times have been shown to be 

between 150–400 Pa [25]. However, thresholds are not yet well-established, and the 

characterization of turbulent stress is still controversial[51].

At peak systole, where RSS was highest for each valve, it is clear that the HA-TAV has the 

least frequency of high RSS values that increase the likelihood of platelet activation (>100 

Pa)[75–77]. This is likely due to the stent frame design that is both low in profile, and has a 

decreased number of “grid” like structures that have been shown to increase turbulence, 

unsteadiness, and skewness of velocity fluctuation[53, 54, 78–80]. The stent design aspects 

therefore also explain the increase in RSS of the Evolut compared to the SAPIEN 3, as the 

Evolut has an increase profile (protrudes further into the aorta) which increases the meshed 
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flow contacting areas[54]. The leaflet flutter seen in the two tissue valves are also known to 

cause high cycle-to-cycle variability in the flow, which could have contributed to the 

increased frequency of high Reynolds shear stress[81]. While each valve demonstrated a 

max RSS value exceeding 100 Pa at peak systole, at every cardiac phase the HA-TAV had 

decreased frequency of high RSS values suggesting that platelet activation and therefore 

thrombus formation is least likely to occur in this valve.

5. Polymeric TAVs as an alternative for bioprosthetic TAVs

While current bioprosthetic TAVRs have made a less invasive heart valve replacement 

surgery possible, there are still major concerns about their long term durability, especially 

when the life expectancy of a patient exceeds the ‘proven’ good midterm durability of 5–7 

years[82]. The biological tissue used in all commercially available TAVs is prone to 

structural valve degeneration, which has been estimated to occur in over 50% of patients 

receiving transcatheter aortic valve replacements within 8 years[83]. Factors associated with 

complications post-TAVR such as subclinical valve thrombosis have been detected in 10% to 

15% of patients receiving bioprosthetic TAVs[84], and introducing anticoagulation therapy 

poses its own severe risks[85]. Now that TAVR is approved for low risk patients, it is 

therefore crucial and urgent to develop not only a substitute of a leaflet material but rather a 

novel valve as a whole presenting excellent hemodynamic performance from appropriate 

interaction between leaflet and stent, and leaflet-stent and blood. The data presented herein 

demonstrate the hemodynamic potential of a polymeric based TAVR device to change the 

future of TAV replacement therapy. In-vivo data are ongoing to validate these in-vitro data.

6. Summary

The hemodynamic performance and turbulence of a novel polymeric transcatheter valve, the 

HA-TAV, were compared against two same size leading commercially available transcatheter 

valves, the Medtronic Evolut and Edwards SAPIEN 3 in-vitro. Resulting measurements of 

hemodynamic parameters including EOA, RF, and PI have demonstrated that the HA-TAV 

exceeds baseline hemodynamic requirements and is directly comparable to the leading 

valves, while the results of turbulent flow characterization in the HA-TAV show 

improvement over the leading commercially available valves. Ongoing accelerated fatigue 

testing and in-vivo studies strongly indicate the potential for a polymeric valve to be an 

alternative solution to the prosthetic valves currently used in TAVR procedures.

7. Limitations

Though we do not expect valve to valve variability in either of the commercially available 

valves, limited availability of the TAVs that were used has limited the study to n=1 of each 

valve type. Further, valve hemodynamics performance and turbulence characteristics are not 

the only factors used to assess valve performance and readiness for in vivo use and in the 

current state additional studies would be needed to claim that this valve is an alternative to 

those that are commercially available. Of these additional studies, accelerated fatigue testing 

is necessary to evaluate the expected long term durability of the sutured polymer and novel 
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stent frame. Further studies are needed to comprehensively assess the mechanism by which 

the HA-TAV demonstrated superior hemodynamics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

TAVR Transcatheter aortic valve replacement

HA Hyaluronan

PVL Paravalvular leakage

HA-TAV Hyaluronan enhanced transcatheter aortic valve

LLDPE Linear low-density polyethylene

EOA Effective orifice area

RF Regurgitant fraction

PI Pinwheeling index

PIV Partical image velocimetry

CV Closing volume

LV Leakage volume

FV Forward flow volume

RSS Reynolds shear stress
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Figure 1. 
3D CAD model of cobalt chromium transcatheter stent frame, detailing stent thickness(0.55 

mm), profile(25 mm), and major frame angle (θ=60°)
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Figure 2. 
A. HA-TAV profile of stent frame and semi-closed leaflet position B. HA-TAV profile so 

stent frame and open leaflet position
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Figure 3. 
Schematic of left heart flow simulator
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Figure 4. 
Aortic flow (blue) and pressure (green) conditions that the valves were subject to over one 

cardiac cycle.
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Figure 5. 
En-face views of each valve at peak systole and mid diastole
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Figure 6. 
Phase averaged velocity vectors and vorticity contours throughout the cardiac cycle
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Figure 7. 
Phase averaged Principle Reynolds shear stresses (RSS) throughout the cardiac cycle
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Figure 8. 
Normalized frequency of Principal Reynolds shear stress at the defined phases in the cardiac 

cycle
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Table 1.

Measured hemodynamic parameters of each valve

EOA (cm2) RF (%) Pinwheeling Index

HA-TAV 2.08±0.04 11.23±0.55 0.0456±0.03

Evolut 1.80±0.036 15.74±0.73 0.122±0.045

SAPIEN 3 2.10±0.025 10.92±0.11 0.366±0.067
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