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Abstract

Objective: Molecular genetic etiologies in epilepsy have become better understood
in recent years, creating important opportunities for precision medicine. Building on
these advances, detailed studies of the complexities and outcomes of genetic testing
for epilepsy can provide useful insights that inform and refine diagnostic approaches
and illuminate the potential for precision medicine in epilepsy.

Methods: We used a multi-gene next-generation sequencing (NGS) panel with simultane-
ous sequence and exonic copy number variant detection to investigate up to 183 epilepsy-
related genes in 9769 individuals. Clinical variant interpretation was performed using a
semi-quantitative scoring system based on existing professional practice guidelines.
Results: Molecular genetic testing provided a diagnosis in 14.9%-24.4% of individu-
als with epilepsy, depending on the NGS panel used. More than half of these diagno-
ses were in children younger than 5 years. Notably, the testing had possible precision
medicine implications in 33% of individuals who received definitive diagnostic results.
Only 30 genes provided 80% of molecular diagnoses. While most clinically significant
findings were single-nucleotide variants, ~15% were other types that are often chal-
lenging to detect with traditional methods. In addition to clinically significant vari-
ants, there were many others that initially had uncertain significance; reclassification
of 1612 such variants with parental testing or other evidence contributed to 18.5% of
diagnostic results overall and 6.1% of results with precision medicine implications.
Significance: Using an NGS gene panel with key high-yield genes and robust ana-
lytic sensitivity as a first-tier test early in the diagnostic process, especially for chil-
dren younger than 5 years, can possibly enable precision medicine approaches in a

significant number of individuals with epilepsy.
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1 | INTRODUCTION

Epilepsy is increasingly recognized to have genetic causes, and
approaches to its diagnostic workup have been described.'™
Aside from determining prognosis and recurrence risk, the
identification of a genetic etiology can guide strategies for
clinical management in certain forms of epilepsy, providing
powerful opportunities for precision medicine.*™'" This is par-
ticularly important in early-onset epilepsies, several of which
are good candidates for precision medicine but in current stan-
dard practice do not attract the requisite urgent attention."!

Next-generation sequencing (NGS) gene panels and
whole-exome or whole-genome sequencing (WES/WGS)
have been used as diagnostic tools for epilepsy and identify
a large variety of sequence and copy number variants.>'*~!7
Accurate interpretation of clinically important variants can
be challenging amid naturally existing variation in epilepsy-
related genes.lg’lg One recent study reports a 15% diagnostic
yield from a NGS gene panel for epilepsy,12 but most pre-
vious studies have involved small cohorts that obscured de-
tailed understanding of the complexities of molecular genetic
analysis.zo_23 However, no studies to date have extensively
investigated the proportion of individuals in a large cohort
with epilepsy for whom a positive molecular genetic diag-
nosis invokes clinical management implications or precision
medicine approaches, either through the use of therapies that
ameliorate or eliminate symptoms or through the avoidance
of certain contraindicated anti-epileptic drugs (AEDs).

We analyzed the results of genetic testing in a large cohort
with epilepsy to understand the proportion of individuals who
receive results with possible precision medicine implications
(PMIs), as determined by current literature on using specific
therapies for epilepsy. Furthermore, we examined the rate
of definitive molecular diagnoses, the spectrum of variants
and their classifications, and diagnostic yield by age groups.
These data provide deep insight that can inform clinicians
on the appropriate use of and expectations from diagnostic
genetic testing for epilepsy.

2 | MATERIALS AND METHODS

2.1 | Next-generation sequencing assay

Invitae's epilepsy test is an NGS-based targeted gene panel
(not exome-based) sequenced at high depth of coverage (50x
minimum, 350X average) to simultaneously identify single-
nucleotide variants (SNVs), short and long indels, exon-level

Key Points

e Using a multi-gene panel with key high-yield genes
as a first-tier test early in the diagnostic process may
possibly support precision medicine interventions in a
significant number of individuals with epilepsy

e Children with epilepsy who are younger than 5 years
show a high diagnostic yield from genetic testing

e Intragenic deletions and duplications contribute a sig-
nificant proportion of clinically significant changes in
epilepsy genes

e Many variants of uncertain significance can be reclas-
sified with familial testing and have clinical manage-
ment implications

deletions/duplications (copy number variants, or CNVs), rare
structural rearrangements that disrupt coding sequences, and
triplet repeat expansions (in the ARX gene). The 183-gene
panel contains well-known and recently described genes as-
sociated with monogenic epilepsy. NGS panel testing was
performed as previously described using DNA prepared from
blood or saliva samples.17

2.2 | Testreferral sources

A cohort of individuals clinically diagnosed with various
forms of epilepsy was referred for diagnostic genetic testing
and analyzed in a consecutive series. All participants pro-
vided informed consent for the testing. The clinical special-
ties of referring providers were determined using National
Provider Identifiers (NPIs) and the National Plan and Provider
Enumeration System (NPPES) Registry. Although informa-
tion provided from ordering clinicians was not standardized,
we used relevant keywords to categorize healthcare centers
and specialty clinics into appropriate groups. Ancestry infor-
mation for referred individuals was self-reported.

2.3 | Clinical testing and variant
interpretation

Clinicians requested testing for all genes on the epilepsy
panel or chose subpanels for narrower clinical indica-
tions. Interpretation of observed variants in epilepsy genes
was performed as described previously.24 Clinical re-
ports included variants classified as pathogenic or likely
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pathogenic (LP/P) or variants of uncertain significance
(VUS) but not those classified as likely benign or benign
(LB/B). A definitive molecular diagnosis included either
single LP/P variants in genes associated with dominant or
X-linked inheritance, or two variants (in homozygous or
compound heterozygous states) in genes associated with
recessive inheritance. Genes on the epilepsy panel were
categorized as “solid evidence” or “preliminary evidence”
depending on the strength of each gene-disorder relation-
ship, as conceptually described previously.25 Variants in
preliminary evidence genes were classified only as VUS,
LB, or B; they did not reach LP/P classifications until the
gene-disease relationship was re-curated to a solid evi-
dence category. Per institutional review board (IRB) ap-
proval (Western IRB #20161796), all reportable variants
observed at Invitae were de-identified and deposited in the
ClinVar database and available for research studies. All
variants were collected from Invitae's internal database for
this study. Categories of possible precision medicine impli-
cations, as listed in Table 1 and referred to in the following
sections, were determined based on existing published lit-
erature and through annotation by multiple clinicians with
expertise in treating epilepsy.

3 | RESULTS

3.1 | Patient demographics and referrals

Clinicians requested testing for all genes on the panel
(9225 individuals) or chose subpanels for early infantile
epileptic encephalopathy (EIEE; 188 individuals) or the
Rett/Angelman spectrum of syndromic epilepsy disorders
(356 individuals). Most individuals in this clinical cohort
were younger than 5 years of age (range, 0-82 years; mean,
8.63 years; median, 6 years). Half (52%) of the individuals
in this cohort were male. Most referrals originated from
clinicians self-identified as neurologists with genetics ex-
pertise (36%), followed by clinical geneticists (25%), neu-
rologists (15%), and pediatricians (5%). The remaining
19% were associated with a variety of other specialties or
did not provide this information. Regarding referral sites,
nearly 28% of individuals were from neurology clinics and
15% from genetics clinics. Another 27% originated from
pediatrics clinics, and the remaining 30% were from sites
without a stated specialization. Most test orders (73%) were
received from clinics at academic centers. Orders from ge-
netics clinics showed a higher diagnostic yield relative to
the others (17.9% vs 14.9%, P = 0.004, chi-squared), while
tests ordered from neurology clinics had a slightly lower
yield (12.1% vs 16.5%, P < 0.001, chi-squared). Lastly,
with respect to geographic origin, the majority of referred
individuals were from North America (88.5%), and the rest

were from South America (4.6%), Asia (3.6%), Europe
(1.7%), Oceania (Australia and New Zealand) (0.9%), and
Africa (0.7%). Their self-reported population origins were
European Caucasian (42.3%), Hispanic (21.8%), African
or African American (8.4%), Middle Eastern (0.4%),
Ashkenazi Jewish (0.9%), Asian (4.6%), Native American
(0.4%), Pacific Islander (0.4%), of combined ancestries
(3.2%), and other or unknown ancestries (17.8%).

3.2 | Yield of molecular diagnoses

A definitive positive molecular diagnosis (hereafter referred
to as “PosMD”) was obtained in 1502 of 9769 individuals in
this cohort, corresponding to a positive yield of 14.9% among
individuals tested on the comprehensive panel and 24% each
on the syndromic epilepsy and EIEE subpanels (Figure 1a).
Individuals referred with autism, intellectual disability, or de-
velopmental delay in addition to epilepsy had a higher rate of
PosMDs compared with that in the rest of the cohort (Figure
1b, P < 0.001). Notably, a mere eight genes accounted for
50% of PosMDs, another 22 genes increased that propor-
tion to 80%, while 76 additional genes contributed to the rest
(Figure 1c and Table S1). Thirteen individuals had a PosMD
in two or more genes, with at least one gene in each instance
associated with a severe early-onset epilepsy (Table S3).

3.3 | Results with possible PMIs

A subset of 491 individuals, representing 33% of all individu-
als with PosMDs, received results with PMIs (Figures 1a and
2 and Table 1). Fifty-one individuals were diagnosed with
biochemical disorders, mostly due to pathogenic variants in
SLC2A1 and TPP1 and, occasionally, in SLC6AS, ALDH7A1,
GAMT, and PNPO. Another 242 individuals had results that
pointed to contraindications for certain AEDs primarily due
to variants in SCNIA, but also in POLG and NHLRCI. No
PosMDs were found in EPM2A or CSTB, which are also as-
sociated with disorders with certain AED contraindications.
The remaining 198 individuals had results compatible with
indications for using specific AEDs. PosMDs with PMI were
not restricted to genes narrowly associated with a few spe-
cific forms of epilepsy but were present in genes overlapping
syndromic epilepsies, EIEE, and a third group of all other
types of epilepsies (Figure 2b). We also assessed 17 genes as-
sociated with disorders for which PMI evidence is emerging
(Figures 1a and 2c and Table 1); at least 21% of individuals
with a PosMD had positive molecular testing results specifi-
cally in these genes alone. Last, although not representing
PMIs, we noted that another 95 and 282 individuals with
PosMDs in this cohort were eligible for clinical treatment tri-
als and condition-specific clinical trials, respectively, based
on molecular testing results (Table S4).



TRUTY ET AL.

Epilepsia Open® 403

A PosMD yield by panel B PosMD yield by co-morbidity
E PosMD
MW PosMD with emerging PMI
B PosMD with PMI
o _
o~
20 -
wn |
i
& 15 -
[a)
5 S
= g
ael a o |
£ < -
%5 10
N
& o
5 -
o - Co-
0 - All o= Autism DD ID
Syndromic EIEE Comprehensive 9769 n;%rlb?:d 594 1143 618
Panel type

# of individuals

C Distribution of PosMD yield across genes

80%
~ 70%
60%
S - 50%
B Genes with PMI
n |
L ]
a
=
3
a O
q_\_'
o
N
w
M|HNBUM|W]INWDIUIDHQBI
T 3 T M AN I NN A I AT M IO I INNTOECTCTTITITONom S
MHSSLLIYIITTFTNONANSINSETOOSETSSZET oo §
~ O~ ~— ~— ~ N S~
T3 823I3 553293 I oI TTITAaTNRES g
3y 9o IXTzRuITxT NI XPOLREXT=z=200uae3 Sy 2
S2EZE55%658868°50¢8sFigsggrrNegsR g
6 Saexgad e < I 9 o = © 2 2 2
) S < 9
<
(o]
(o)
. ~
Epilepsy genes
FIGURE 1

Distribution of positive molecular diagnoses (PosMDs) in a large unselected clinical cohort with epilepsy. Panel A shows

a high diagnostic yield exceeding 20% in NGS panels for the Rett/Angelman spectrum of syndromic epilepsies and early infantile epileptic
encephalopathies (EIEE), while the comprehensive panel showed a 14.9% yield. These represent consolidated figures derived from data from
different versions of each panel. Nearly half of the solid evidence genes (see Methods) in the current panel were discovered only within the last
5-10 years and together contributed a significant rate of PosMDs. These newer genes contributed as much as 7% alone (PRRT2) and more than 20%
together to the overall diagnostic yield. Panel B shows that the diagnostic yield tends to be higher when epilepsy is accompanied by comorbidities
such as intellectual impairment (ID), autism, or developmental delay (DD; P < 0.001, chi-squared). Error bars represent 95% confidence intervals
using the Wilson method. Panel C shows the number of PosMDs by individual genes on the NGS panel. Only eight genes accounted for 50% of all
PosMDs, while another 22 genes raised this yield to 80%. The remaining 20% of PosMDs were spread across 76 genes. Seventy-eight genes had no
PosMDs, and 48 genes produced no LP/P at all. Genes with precision medicine implications are shown in blue
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3.4 | Age atdiagnosis

Individuals with a PosMD ranged in age from newborns to
78 years (median, 4 years; average, 7 years); only 127 in-
dividuals (8%) with a PosMD were older than 18 years. A
PosMD overall was much more frequent in children in their
first year of life relative to the rest of the cohort (P < 0.001,
chi-squared; Figure 2c). Of the PosMDs specifically related
to PMIs, 66% were in children younger than 5 years, 27%
in children aged 5-17, and the remaining 7% in adults. The
age range for this subset was 2 days to 78 years (median,
2 years); only 33 individuals were adults. Children had
PosMDs with PMISs related to biochemical disorders or epi-
lepsies with indications or contraindications for AEDs, while
adults had no PosMDs related to biochemical disorders and
instead mostly had findings in SCN/A, and less frequently in
KCNQ2, SCN2A, and TSC1.

35 |

The 9769 individuals in this study harbored 2101 (11%) vari-
ants classified as LP/P and another 16,373 as VUS (Tables
S1 and S2). Nearly 80% of these were missense SNVs; the
rest were divided among a group of truncating SNVs and
<15 bp indels (17% together) and a key group of technically
challenging variants (TCVs) that are often difficult to detect
using a single traditional method such as Sanger sequencing,
multiplex ligation-dependent amplification, or chromosomal
microarray. These TCVs included exonic CNVs, cytogenetic
CNVs, large indels (>15 bp), mosaic SNVs, and polyalanine
expansions in the ARX gene. We detected 402 intragenic and
cytogenetic CNVs in 133 genes, mosaic pathogenic vari-
ants in 14 genes, mosaic VUS in 15 genes (Tables S2 and
S3), and eight instances of polyalanine expansions in ARX.
TCVs accounted for just 4% of reportable variants but con-
stituted 16.5% of clinically significant LP/P variants overall.
Approximately 45% of TCVs were classified as LP/P and
contributed to at least 245 PosMDs (16.3% of all PosMDs;
Figure 3¢ and Table S2). The LP/P TCVs were present in
81 genes, including several discovered relatively recently
(eg, DEPDC5, PRRT2, NPRL3, TBCID24, and GRIN2A)
and ten related to disorders with PMIs (KCNQ2, SCNIA,
SCN2A, TSC2, EPM2A, SLC6AS, SCNSA, ALDH7A, POLG,
and TSCI). There were also seven instances of a clinically
significant TCV that was compound heterozygous with a sec-
ond pathogenic variant in a gene associated with AR or XL
inheritance (two in CLN3 and one each in SLCI13A5, PIGN,
PPTI1, WWOX, and KIAA2022; Table S3).

The 16 373 VUS were distributed in a range of one to 11
per person (Figure 3a). At least 15% of VUS were in individ-
uals with a PosMD in another gene (Figure 3d). Conversely,
among 8267 individuals without a PosMD, 75% had a VUS

Characteristics of reportable variants

in at least one strong evidence gene (see Methods), 3% had a
VUS in a preliminary evidence gene, and the remainder had
only a single LP/P variant in a gene with AR inheritance or
had no reportable variants (Figure 3b). The majority of VUS
in strong evidence genes were single heterozygous alleles in
genes associated with either AR inheritance (41% of VUS)
or AD inheritance and reduced penetrance (17% of VUS;
Figure 3d). Corroborating this observation, these two cate-
gories of genes had more rare sequence variation in healthy
individuals in the gnomAD database compared with genes
associated with AD inheritance and high penetrance (Figure
S1). In that regard, 39% of individuals in this cohort still had
a VUS in a gene associated with a highly penetrant disorder
that therefore had the potential to reach clinical significance
with parental testing or other studies.

We had initially classified 1612 variants as VUS but
eventually reclassified them to LP/P (15%) or LB/B (85%).
Results of parental testing for 846 probands led to reclassi-
fication in 54% of probands. Most reclassifications to LP/P
occurred because parental testing demonstrated that the vari-
ant had arisen de novo. Reclassifications to LB/B were ei-
ther because the variants were found to be inherited from an
unaffected parent or due to other types of evidence, such as
expansion of databases containing genomic information from
healthy individuals or newly published literature. LP/P reclas-
sifications contributed to 18.5% of all PosMDs overall, while
the subset of LP/P reclassifications specifically related to dis-
orders with PMIs contributed to 6.1% of all PosMDs. More
than half of the PMI-related LP/P reclassifications were in
SCNIA, and a few were in SCN2A, KCNQ2, SCNSA, POLG,
and TSC2. In seven individuals, the variant reclassification
to LP/P occurred in a gene (TPP1, SLC2A1, ALDH7AI, or
SLC6AS8) associated with a treatable biochemical disorder.

4 | DISCUSSION
Molecular testing is increasingly being used to identify ge-
netic causes and confirm clinical diagnoses of epilepsy, but
it remains far from standard practice.9 Our results demon-
strate that multi-gene panel testing frequently delivers impor-
tant PosMDs that can guide precision medicine approaches
to treating epilepsy. The observation of a high diagnostic
yield in infants, and of all molecular diagnoses of treat-
able biochemical disorders in children younger than 5 years,
complements studies that have shown positive clinical and
health economic outcomes from early molecular testing in
epilepsy.zf”27

The scope for precision medicine in epilepsy is expanding
with the recognition of favorable treatment approaches in the
presence of pathogenic variants in a growing list of genes.
PMIs were immediately relevant to at least 33% of individu-
als with a PosMD in our study, which is considerably higher
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than the percentage observed in a smaller previously pub-
lished analysis.** That 51 individuals in our cohort received
a diagnosis for a biochemical disorder, including several
considered very rare, highlights the opportunity for precision
medicine to help achieve a favorable clinical prognosis as
early as possible using established treatments, even in rare

FIGURE 2 Positive molecular diagnoses (PosMDs) with
possible precision medicine implications (PMIs) in epilepsy. Panel

A shows the percentage of PosMDs related to various categories of
precision medicine in epilepsy. Half of the PosMDs with possible PMI
pointed to contraindications for certain anti-epileptic drugs (AEDs).
Approximately 10% of PosMDs with PMI were consistent with
biochemical disorders that have established treatment options. Panel B
shows the number of PosMDs with PMIs in genes in three overlapping
categories of epilepsy disorders: early infantile epileptic encephalopathy
(EIEE), Rett/Angelman spectrum of syndromic neurodevelopmental
epilepsies, and a third group of all other forms of epilepsy. Panel C
shows the positive diagnostic yield in various age groups separated by
infancy (age <1 year), early childhood (age 1-4 years), later childhood
(age 5-17 years), and adulthood (age >18 years). Colors indicate the
proportion of individuals who received a PosMD with possible PMIs
or those with emerging evidence of PMIs. A third group of PosMDs
without PMIs is also shown at the top of each column

disorders that might otherwise escape diagnosis. Aside from
finding actionable results related to biochemical disorders,
we identified a significant number of pathogenic variants in
SCNIA in patients in whom sodium channel blockers would
be contraindicated, as well as variants in a broad range of
other genes that support the use of particular AEDs. We also
identified pathogenic variants in genes associated with forms
of epilepsy for which there is emerging evidence to support
the use of specific AEDs, suggesting that the proportion of
individuals who may possibly benefit from precision medi-
cine in epilepsy could eventually increase considerably.

In addition to immediate PMIs, accessing ongoing clinical
trials based on molecular testing results is another important
opportunity for individuals with epilepsy. We estimate this to
have an impact on another 25% of individuals with PosMDs
in our cohort, demonstrating a good example of implementing
the American College of Medical Genetics and Genomics pol-
icy advocating for patient access to emerging therapeutics.28’29

Several genes discovered within only the last decade or ini-
tially thought to be rarely involved in epilepsy (eg, PCDH19,
SYNGAPI, TPPI, PRRT2, DEPDCS5) had high diagnostic
yields in our study. Some of these are related to disorders for
which new therapies are available or under development. As
a compelling example of precision medicine, the discovery
of pathogenic variants in TPP] is critical because an enzyme
replacement therapy has good efficacy when used early.'**
Similarly, there are ongoing clinical treatment trials aimed at
ameliorating the phenotype in girls affected with epilepsy and
at risk for neurodevelopmental deterioration due to pathogenic
variants in PCDH19.! Finally, mTOR inhibitors are being pro-
posed for DEPDC5-related epilepsy, further illuminating the
growing opportunities for precision medicine in epilepsy.Sz’33

Although genetic heterogeneity is extensive in epilepsy,
half of the PosMDs in this study were explained by only eight
genes and 80% by an additional 22 genes. This observation,
corroborating results from another study,12 suggests that a
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FIGURE 3 Distribution of clinically reportable variants. Panel A shows that variants identified in the 183 genes on the NGS panel were
distributed in a range of one to 12 per individual. Panel B summarizes the proportion of individuals who received a negative report, a report
describing a positive molecular diagnosis (PosMD), or an inconclusive report with a variant of uncertain significance or a single likely pathogenic/
pathogenic variant, or both, that did not contribute to a PosMD. Panel C shows the wide range of variant types identified and the clinical
classifications of each type. A significant number of clinically reportable variants that are technically challenging to identify with traditional
methods were identified in this cohort. Panel D illustrates the distribution of variants of uncertain significance (VUS) identified in this study.

The genes on the panel showed a 100-fold range (0.02%-9%) in the fraction of individuals who had at least one VUS in those genes. The VUS
frequency was lower in the 57 genes associated with early-onset and highly penetrant epilepsies compared with that in the remaining 103 solid
evidence genes on the panel (P = 0.002, Wilcoxon rank sum). AD, autosomal dominant; AR, autosomal recessive; LP, likely pathogenic; P,
pathogenic; PE, preliminary evidence; RP, reduced penetrance; var, variant; VUS, variant of uncertain significance

core set of ~30 genes is essential in any molecular analysis of ~ PosMDs involving TCF4, associated with Pitt-Hopkins syn-
epilepsy. This would even be sufficient to address differential drome, in individuals who had instead been diagnosed clini-
diagnoses in syndromic epilepsies. For instance, we found 16 cally with Rett, Angelman, or unspecified neurodevelopmental
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syndromes. WES can interrogate this core set of genes and a
longer tail of genes rarely or newly implicated in epilepsy.
However, because clinically important results from WES are
often in genes that are available on panels and because WES
has analytic limitations of coverage and relative insensitivity
to TCVs,*** an NGS panel is a useful first-tier test that can
interrogate most molecular etiologies in epilepsy and provide
positive diagnoses rapidly and at relatively low cost.

Evidence-based clinical interpretation of variants is key
to identifying PosMDs and supporting precision medicine in
epilepsy. However, because naturally occurring but latent dis-
ease-causing variants exist alongside rare benign variants in the
general healthy population, identifying the variants responsible
for overt epilepsy in affected individuals is challenging.lg‘19
Therefore, many rare variants are classified as VUS. After
parental testing, VUS in genes with AD inheritance and high
penetrance and homozygous or compound heterozygous VUS
in genes with AR inheritance can be reclassified as LP/P and
contribute to PosMDs. We identified de novo variants in many
probands in this study, consistent with the expectation that such
mutations cause several forms of <3pilepsy.36"3 8 Overall, we re-
solved the significance of 1612 VUS and provided additional
PosMDs, including 91 with PMIs, emphasizing that a fair num-
ber of probands can benefit from VUS resolution studies.

S | LIMITATIONS

While this study describes the implications of genetic testing and
high diagnostic yield in a large cohort, the absence of longitu-
dinal clinical outcomes data for individuals who received posi-
tive testing results poses an obstacle to further understanding the
effectiveness of precision medicine approaches in treating epi-
lepsy. Furthermore, this study describes potential applications of
precision medicine in epilepsy based on existing published lit-
erature on specific therapies, but further studies are still neces-
sary to establish official professional guidelines for the use or
avoidance of these therapies. Our group and others are currently
conducting separate studies to evaluate the benefits of early mo-
lecular genetic testing and precision medicine in epilepsy. The
second limitation of this study, common to diagnostic genetic
laboratories,'? is that we could not define the study entry criteria
at the outset since the cohort consisted of individuals referred for
diagnostic genetic testing due to a variety of epilepsy presenta-
tions and may also be influenced by several factors, such as the
expertise of referring clinicians in genetics, specialization in epi-
lepsy at the referring institution, insurance coverage, economic
factors, and others. In that respect, for example, adults with clini-
cally recognizable genetic syndromes may have had previous
genetic testing of only a small number of genes and not referred
again for broader NGS panel testing. Lastly, the third limitation
of this study is the absence of follow-up WES analysis for indi-
viduals who received negative results on the NGS panel. This

analysis would illuminate the additional diagnostic yield gained
from considering very rare genetic causes of epilepsy. However,
recent research studies have begun to address this question.15 37

6 | CLINICAL RELEVANCE

The various lines of evidence from this study support rou-
tine and early use of an NGS panel as an effective first-tier
test that offers a high diagnostic yield and substantial poten-
tial for precision medicine in epilepsy. Any multi-gene test-
ing approach should be sensitive enough to capture a broad
spectrum of genetic variants, including small intragenic copy
number variants and mosaic variants. The value of genetic
testing will continue to increase as novel therapies are devel-
oped for different forms of epilepsy.
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