
Biology of Reproduction, 2019, 100(4), 872–884
doi:10.1093/biolre/ioy249

Review
Advance Access Publication Date: 21 November 2018

Review

Novel roles of mechanistic target of rapamycin

signaling in regulating fetal growth†
Madhulika B. Gupta 1,2,3 and Thomas Jansson4,∗

1Department of Pediatrics, University of Western Ontario, London, Ontario, Canada; 2Department of Biochemistry,
University of Western Ontario, London, Ontario, Canada; 3Children’s Health Research Institute, London, Ontario,
Canada and 4Department of Obstetrics and Gynecology, Division of Reproductive Sciences, University of Colorado |
Anschutz Medical Campus, Aurora, Colorado, USA

∗Correspondence: Department of Obstetrics & Gynecology, University of Colorado | Anschutz Medical Campus (CU
Anschutz), Research Complex-2; Mail Stop 8613, 12700 East 19th Avenue, Room P15-3000E, Aurora, CO 80045, USA.
Tel: +1 303 724 8622; Fax: +1 303 724 3512; E-mail: Thomas.jansson@ucdenver.edu

†Grant support: Supported by grants from NIH (HD089980, HD093950 HD065007, HD068370, and HD078376).
Edited by Dr. Myriam Hemberger

Received 12 September 2018; Revised 8 November 2018; Accepted 19 November 2018

Abstract

Mechanistic target of rapamycin (mTOR) signaling functions as a central regulator of cellular
metabolism, growth, and survival in response to hormones, growth factors, nutrients, energy,
and stress signals. Mechanistic TOR is therefore critical for the growth of most fetal organs, and
global mTOR deletion is embryonic lethal. This review discusses emerging evidence suggesting
that mTOR signaling also has a role as a critical hub in the overall homeostatic control of fetal
growth, adjusting the fetal growth trajectory according to the ability of the maternal supply line to
support fetal growth. In the fetus, liver mTOR governs the secretion and phosphorylation of insulin-
like growth factor binding protein 1 (IGFBP-1) thereby controlling the bioavailability of insulin-like
growth factors (IGF-I and IGF-II), which function as important growth hormones during fetal life.
In the placenta, mTOR responds to a large number of growth-related signals, including amino
acids, glucose, oxygen, folate, and growth factors, to regulate trophoblast mitochondrial respira-
tion, nutrient transport, and protein synthesis, thereby influencing fetal growth. In the maternal
compartment, mTOR is an integral part of a decidual nutrient sensor which links oxygen and nu-
trient availability to the phosphorylation of IGFBP-1 with preferential effects on the bioavailability
of IGF-I in the maternal–fetal interface and in the maternal circulation. These new roles of mTOR
signaling in the regulation fetal growth will help us better understand the molecular underpinnings
of abnormal fetal growth, such as intrauterine growth restriction and fetal overgrowth, and may
represent novel avenues for diagnostics and intervention in important pregnancy complications.

Summary Sentence

Emerging evidence suggest that mTOR signaling in the fetal liver, trophoblast, and decidua serves
as a critical hub in the overall homeostatic control of fetal growth, adjusting the fetal growth
trajectory according to the ability of the maternal supply line to support fetal growth.
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Introduction

Fetal growth is broadly determined by the genetic growth potential of
the fetus and the availability of oxygen and nutrients. Abnormal fe-
tal growth affects 10–15% of all pregnancies in the developed world
[1, 2] and occurs when the fetus fails to achieve its genetically deter-
mined growth potential (intrauterine growth restriction) or exceeds
its growth determined genetically (fetal overgrowth). Abnormal fe-
tal growth is not only associated with increased perinatal morbid-
ity and mortality but also increases the risk of developing obesity,
diabetes, and cardiovascular disease in childhood and later in life
[3–12]. Thus, understanding the molecular mechanisms regulating
fetal growth in normal and complicated pregnancies is of fundamen-
tal importance and of significant public health interest. Whereas the
role of endocrine factors and nutrients in regulating fetal growth
has been the focus of multiple excellent overviews [13–22], this re-
view discusses emerging evidence implicating mechanistic target of
rapamycin (mTOR) signaling as a critical hub in the overall home-
ostatic control of fetal growth, adjusting the fetal growth trajectory
according to the ability of the maternal supply line to support fetal
growth.

Mechanistic TOR is a serine/threonine kinase that regulates cell
survival, metabolism, growth, and proliferation [23–27]. Mechanis-
tic TOR exists in two complexes, mTOR complex (mTORC) 1 and
2, with the protein raptor associated with mTORC1 and rictor asso-
ciated with mTORC2. mTORC1 regulates protein translation me-
diated by phosphorylation of S6K1 and 4EBP1 [23–28]. mTORC2
phosphorylates Akt, PKCα, and serum and glucocorticoid-regulated
kinase 1 (SGK1), and regulates the actin skeleton, cell-cycle progres-
sion, anabolism, and cell survival [29–31]. Deptor is an endogenous
inhibitor of both mTORC1 and 2 [32].

It is well established that mice lacking either mtor [33, 34], rap-
tor [35], or rictor [36] die early in development, demonstrating the
critical role of mTORC1 and 2 for embryonic development and
growth. In contrast, whole-body deptor mutant KO mice are vi-
able, fertile, and normal in size [37]. Moreover, there is a wealth
of evidence that mTOR signaling plays an important role in the
growth of individual fetal tissues and organs such as the intestine
[38, 39], beta cell [40, 41], and skeletal muscle [42–45]. Similarly,
decreased tissue growth is associated with inhibition of mTOR sig-
naling in the fetal brown adipose [46], brain [47], heart [48], and
thymus [49]. Whereas restricted fetal liver growth is not associ-
ated with mTOR inhibition following 48 h of starvation in the rat
[50], inhibition of fetal liver mTOR signaling has been reported in
other animal models of IUGR, including in the naturally occurring
runt in pigs [51] and following maternal nutrient restriction in the
baboon [52].

In this review, we will summarize recent data suggesting that
mTOR signaling in specific tissues plays an important role in regu-
lating overall fetal growth in response to changes in the availability
of oxygen, nutrients, and growth factors by influencing global home-
ostatic systems. The mechanisms involved include mTOR regulation
of placental function and influencing the maternal and fetal insulin-
like growth factor (IGF) axis by regulating IGF binding protein 1
(IGFBP-1) secretion and phosphorylation. Both IGF-I [53, 54] and
IGF-II [55, 56] are key regulators of fetal growth, and both growth
factors are abundantly present in the maternal circulation and at
the maternal–fetal interface [13] and regulate placental function
[13, 57]. However, because phosphorylation of IGFBP-1 increases
the affinity for binding IGF-I but not IGF-II [58], we will focus on
this specific IGF.

First, we will discuss the molecular mechanisms by which mTOR
and the amino acid response (AAR) signaling pathway govern the
secretion and phosphorylation of IGFBP-1 in the fetal liver. Because
changes in the abundance and phosphorylation of IGFBP-1 have pro-
found effects on the bioavailability of IGFs, fetal liver mTOR and
AAR signaling link oxygen and nutrient delivery to fetal growth.
Second, we will briefly review how trophoblast mTOR responds to
a large number of growth-related signals, including amino acids,
glucose, oxygen, folate, and growth factors, to regulate trophoblast
mitochondrial respiration, nutrient transport, and protein synthe-
sis, thereby influencing fetal growth. Third, we will examine the
emerging evidence suggesting that mTOR functions as a decidual
nutrient sensor which links oxygen and nutrient availability to in-
creased phosphorylation of IGFBP-1 with preferential effects on the
bioavailability IGF-I in the maternal–fetal interface and in the ma-
ternal circulation. We will conclude by presenting an overall model
placing mTOR signaling as a critical hub in the overall homeostatic
regulation of fetal growth and discussing how this model may help
us better understand the molecular underpinnings of abnormal fetal
growth. Finally, we will briefly speculate how this new knowledge
could lead to novel avenues for diagnostics and intervention in im-
portant pregnancy complications.

Fetal liver mTOR and AAR signaling pathways

link oxygen and nutrient availability to fetal

growth

The bioavailability of fetal IGF-I is tightly regulated by IGFBP-1,
which is primarily secreted by the fetal liver [59]. Phosphorylation
of IGFBP-1 at three serine residues (Ser101, 119, and 169) is known
to markedly increase its affinity for binding IGF-I [60], thus affect-
ing the ability of IGF-I to interact with the IGF receptor, resulting
in inhibition of IGF-I function [61, 62]. While phosphorylation of
human IGFBP-1 does not alter the affinity for IGF-II [58], the affinity
of phosphorylated human IGFBP-1 for IGF-I is 6 to 10- fold higher
than for the nonphosphorylated protein [62–64] and hypoxia causes
increased phosphorylation of IGFBP-1 with up to 300-fold higher
affinity for IGF-I [65]. In addition, phosphorylation makes IGFBP-1
more resistant to proteolysis [61, 66]. Functionally, phosphoryla-
tion increases the capacity of IGFBP-1 to inhibit IGF-I-stimulated
cell proliferation, DNA synthesis, amino acid transport, and apop-
tosis [67–69]. We have shown that hepatic IGFBP-1 phosphoryla-
tion induced in response to hypoxia caused a profound increase
in its affinity for IGF-I, resulting in a marked inhibition of IGF-I-
dependent cellular proliferation [65, 70]. IGFBPs also influence cell
function by mechanisms that are independent of their ability to alter
IGF–receptor interaction [71]. For example, IGFBP-1 contains RGD
sequences that mediate binding to α5β1 integrin, and this interaction
stimulates cell migration independent of IGF-I [72].

There are numerous observations indirectly supporting a mech-
anistic link between increased IGFBP-1 secretion and restricted fe-
tal growth. For example, mouse fetuses overexpressing igfbp1 are
growth restricted [73–75], clearly demonstrating a cause-and-effect
relationship between IGFBP-1 and fetal growth in this species. In
addition, IUGR is associated with elevated fetal IGFBP-1 [76] and
increased IGFBP-1 phosphorylation at three specific residues in hu-
man fetuses [52, 77, 78]. Importantly, using liver tissue from growth
restricted and control baboon fetuses we reported that IUGR is as-
sociated with increased fetal liver IGFBP-1 abundance and phospho-
rylation [52].
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Figure 1. Liver mTOR as a link between decreased oxygen and nutrient avail-
ability and restricted fetal growth. Inhibition of fetal liver mTOR signaling
and activation of AAR are mechanistically linked to increased IGFBP-1 secre-
tion and IGFBP-1 phosphorylation in primary fetal hepatocytes, and we pro-
pose that these changes precede the development of IUGR. Both insulin-like
growth factor I (IGF-I) and IGF-II are key regulators of fetal growth. However,
because phosphorylation of IGFBP-1 increases the affinity for binding IGF-I but
not IGF-II only IGF-I is depicted in the figure (see the text). AAR, amino acid
response pathway; CK2, casein kinase 2; IGFBP-1, insulin-like growth factor
binding protein 1; IGF-I, insulin-like growth factor I; IUGR, intrauterine growth
restriction; mTOR, mechanistic target of rapamycin; PKC, protein kinase C.

It is well established that IGFBP-1 secretion is regulated by nutri-
ent and oxygen availability [79–82]; however, the underlying molec-
ular mechanisms are largely unexplored. Moreover, how the phos-
phorylation of IGFBP-1 is regulated has, until recently, remained
unknown. Based on studies in cultured HepG2 cells and primary fe-
tal baboon hepatocytes, we demonstrated that inhibition of mTOR
is required for increased IGFBP-1 secretion and phosphorylation in
response to hypoxia [83, 84] and the enhanced IGFBP-1 secretion fol-
lowing decreased amino acid availability [85]. In contrast, IGFBP-1
hyperphosphorylation in response to amino acid deprivation is me-
diated by activation of the AAR signaling pathway [85] (Figure 1).
The AAR signal transduction pathway is activated by limitation or
imbalance of essential amino acids [86], resulting in increased levels
of uncharged tRNA species, which bind to general control nondere-
pressible 2 (GCN2) kinase. As a result, the translation initiation
factor eIF2α is phosphorylated, which leads to inhibition of global
translation, but increased translation of activating transcription fac-
tor (ATF) 4. ATF4 increases the expression of a small group of genes
involved in transport, metabolism, and oxidative stress [86].

Moreover, it was demonstrated that CK2 and PKC constitute the
key kinases, regulated by mTOR and AAR, responsible for IGFBP-1
serine phosphorylation [52, 84, 87] (Figure 1). An important role of
CK2 in the phosphorylation of IGFBP-1 was further supported by
extensive co-localization between these two proteins in HepG2 cells
(Figure 2). CK2 is a ubiquitous kinase that phosphorylates substrates
characterized by multiple acidic residues surrounding the threonine
or serine residue [88–90]. CK2 exists in tetrameric structures con-
sisting of two catalytic subunits (α or α′, in any combination) and
two regulatory β-subunits.

Collectively, we propose that inhibition of fetal liver mTOR sig-
naling and activation of AAR result in increased IGFBP-1 secretion

and IGFBP-1 phosphorylation and constitute a key molecular link
between decreased oxygen and nutrient availability and reduced fe-
tal growth (Figure 1). Preliminary data suggest that these changes in
the fetal liver occur prior to the development of IUGR in response
to maternal nutrient restriction in nonhuman primates [91].

Mechanistic TOR regulates trophoblast function

in response to an array of upstream signals

The placenta constitutes the main interface between mother and
fetus and represents the primary site for maternal–fetal exchange.
The syncytiotrophoblast, a highly specialized multinucleated epithe-
lial cell layer covering the surface of the chorionic villi, produces
a multitude of hormones, mediates nutrient transport, and forms a
physical and immunological barrier between the maternal and fetal
circulations. Thus, the syncytiotrophoblast is strategically positioned
as a large maternal–fetal interface, which determines nutrient supply
to the fetus. Moreover, a wide array of cellular signaling pathways
in the syncytiotrophoblast modulate and integrate placental growth
and function in response to maternal and fetal cues [92].

Upstream signals influencing trophoblast mTOR
signaling
mTORC1 integrates a large number of metabolic signals, including
hormones and growth factors, such as insulin, IGF-I and EGF, cel-
lular ATP levels, hypoxia, DNA damage, amino acids, glucose, and
fatty acids, to regulate cellular metabolism, growth, and prolifer-
ation [93, 94]. In contrast to mTORC1, mTORC2 predominantly
responds to insulin/PI3K signaling [93]. These signals are likely to
regulate mTOR signaling also in trophoblast cells as confirmed for
growth factors [95], fatty acids [96], and glucose [97]. In addition,
corticosterone administration to pregnant mice has been reported
to inhibit placental mTORC1 and mTORC2, as evidenced by a de-
crease in the ratio of the degree of phosphorylation/total abundance
for 4EBP1 and S6K and Ser 473 phosphorylation of Akt [98]. More-
over, adiponectin decreases trophoblast mTOR signaling activity by
inhibiting insulin signaling [99–101]. We have recently reported that
mTORC1 and mTORC2 are novel folate sensors in the placenta and
beyond [102]. Specifically, folate deficiency in pregnant mice caused
a marked inhibition of mTORC1 and mTORC2 signaling in mul-
tiple maternal and fetal tissues, downregulation of placental amino
acid transporters, and fetal growth restriction [103]. In addition, fo-
late deficiency in cultured primary human trophoblast (PHT) cells
resulted in inhibition of mTORC1 and mTORC2 signaling and de-
creased the activity of key amino acid transporters [104]. Folate
sensing by mTOR in PHT cells is independent of the accumulation
of homocysteine and requires the proton-coupled folate transporter
(PCFT, SLC46A1). These findings, which provide a novel link be-
tween folate availability and cell function, growth, and proliferation,
may have broad biological significance given the critical role of folate
in normal cell function.

In summary, trophoblast mTORC1 has an array of upstream reg-
ulators, including free fatty acids, amino acids, glucose, ATP, and
oxygen (Figure 3), and it is likely that the placental levels of these
nutrients are changed in conditions such as placental insufficiency,
maternal undernutrition, or obesity [105, 106]. It has been proposed
that the placenta integrates a multitude of maternal and fetal nutri-
tional cues with information from intrinsic nutrient-sensing signaling
pathways to match fetal demand with maternal supply by regulat-
ing maternal physiology, placental growth, and nutrient transport,
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Figure 2. Dual Immunofluorescence staining for the co-localization of IGFBP-1 and CSNK-2β and the co-localization of IGFBP-1 and CSNK-2β. Human hepa-
tocellular carcinoma (HepG2) cells were stained with anti-mouse IGFBP- 1 (monoclonal antibody 6303), anti-rabbit IGF-I, and anti-rabbit CSNK-2β antibodies.
Corresponding secondary antibodies were Alexa anti-mouse 660 (shown green) and anti-rabbit 568 (red). Images were captured via confocal microscopy. (A
and B) IGFBP-1 (red) is predominantly localized in the perinuclear region of the cells (A, white arrows), whereas CSNK-2β (green) is detected throughout the cell
(B). (C) Merged channel image shows co-localization (yellow) predominantly in the perinuclear region (white arrows). (D) Co- localization of IGFBP-1 (red) and
IGF-I (green) in HepG2 cells, indicating a positive control, with perinuclear localization of IGFBP-1 signal (white arrows). (E) Dual immunofluorescence with no
primary antibodies depicting a negative control where no staining was visualized. Scale bars: 20 μm. Reproduced from [84] with permission. CK2-2β, casein
kinase 2-2β; IGFBP-1, insulin-like growth factor binding protein 1; IGF-I, insulin-like growth factor I.

and that trophoblast mTOR plays a critical role in this homeostatic
regulatory loop [92, 107, 108].

Mechanistic TOR regulates key trophoblast functions
mTORC1 is the master regulator of protein synthesis mediated
by phosphorylation of p70S6 kinase (S6K1), activating the protein
translation initiation, and eiF4E binding protein (4EBP), which al-
lows 5′cap-dependent translation [109]. mTORC1 is also an impor-
tant regulator of cellular lipid, nucleotide, and glucose metabolism.
For example, mTORC1 stimulates de novo lipid synthesis by SREBP
activation [110] and promotes a switch from oxidative phospho-
rylation to glycolysis, thereby shunting glucose into the pentose
phosphate pathway and generating critical intermediates such as
ribose-5 phosphate needed by growing and proliferating cells [110].
In addition, mTORC 1 inhibits autophagy by phosphorylation of
ULK, a key activator of autophagy [111], and stimulates mitochon-
drial biogenesis mediated by the transcription factor PGC1α [112].
mTORC2, on the other hand, promotes cell proliferation and sur-
vival by phosphorylating a number of the AGC protein kinase family
members including Akt, PKCα, and SGK1, which regulate cytoskele-
tal remodeling and cell migration [93].

Most of the information pertaining to mTOR regulation of cell
function has been generated in various nonplacental cell lines. How-
ever, it is likely that mTOR signaling has similar functions in, for
example, PHT cells. It was recently reported that mTORC1, but not
mTORC2, is a positive regulator of oxidative phosphorylation medi-
ated by effects of mitochondrial biogenesis [113]. In addition, using
human placental villous explants and PHT cells, we have identified
a novel role for mTOR signaling as a regulator of nutrient trans-
port in mammalian cells [95, 97, 104, 114–116]. Specifically, we
reported that inhibition of both mTORC1 and/or mTORC2 down-
regulates trophoblast System A and L amino acid transport activity
by affecting the plasma membrane trafficking of specific System A
(SNAT2) and System L isoforms (LAT1) [95]. Furthermore, it was
demonstrated that Nedd4–2, an E3 ubiquitin ligase, is required for
the regulation of plasma membrane trafficking of amino acid trans-
porter isoforms by mTORC1, but not mTORC2 [116]. In contrast,
regulation of amino acid transporter trafficking by mTORC2 in PHT
cells is mediated by the Rho GTPases Cdc42 and Rac1, which in-
fluence the actin skeleton (Rosario et al, unpublished observations).
The powerful effects of mTOR signaling on nutrient transport are
not limited to amino acids. For example, both mTORC1 and 2 are
positive regulators of trophoblast folate uptake by modulating the
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Figure 3. mTORC1 signaling is influenced by a multitude of upstream regula-
tors. AAR, amino acid response pathway; AdipoR, adiponectin receptor; Akt,
protein kinase B; ATP, adenosine triphosphate; fADN, full length adiponectin;
FFA, free fatty acids, IRS-1, insulin receptor substrate 1; mTORC1, mechanis-
tic target of rapamycin complex 1; mTORC2, mechanistic target of rapamycin
complex 2; PI3K, phosphoinositide 3-kinase.

cell surface expression of folate receptor-α (FR-α) and the reduced
folate carrier [104].

Taken together, a diverse set of metabolic signals impinges on
trophoblast mTOR signaling, which regulates key placental func-
tions, which in turn influence fetal growth and development. For
example, mTOR regulation of trophoblast oxidative phosphoryla-
tion influences ATP availability with potential profound effects on
all active transport processes. In addition, mTOR directly regulates
placental transport of amino acid and folate, thereby affecting the fe-
tal availability of these critical nutrients and fetal growth. Moreover,
mTOR regulates placental protein synthesis directly and indirectly
(by modulating ATP availability) with expected consequences for
placental growth.

Placental mTOR signaling and abnormal fetal growth
A consistent relationship exists between changes in placental
mTORC1 signaling and altered fetal growth in women and across
a range of animal models of IUGR and fetal overgrowth (Table 1).
Specifically, placental mTORC1 is altered in pregnancy complica-
tions associated with abnormal fetal growth and in animal models
where maternal nutrient availability has been altered experimentally.
Placental mTORC1 activity is inhibited in human IUGR [117, 118]
and activated in placentas of large babies born to obese mothers
[119]. Furthermore, placental mTORC1 activity has been reported
to be decreased in hyperthermia-induced IUGR in the sheep [120],
in response to a maternal low protein diet in the rat [121] and ma-
ternal calorie restriction in the baboon [122]. In general, placental
nutrient transport, specifically placental amino acid transport, is reg-
ulated in the same direction as mTOR signaling (Table 1). However,
Sferruzzi-Perri and co-workers reported that undernutrition in preg-
nant mice resulted in inhibition of placental mTOR signaling, using
S6K phosphorylation as a functional readout, but increased transpla-
cental amino acid transport [123]. The reasons for this contrasting
finding remain to be established but may be related to the moderate
calorie restriction used in the study of Sferruzzi-Perri et al [123].

Mechanistic TOR functions as a decidual nutrient

sensor and regulates IGFBP-1 secretion and

phosphorylation

In the maternal compartment, the decidua is a major site of IGFBP-
1 synthesis and secretion. Locally in the placental barrier IGFBP-1
inhibits trophoblast invasion [124, 125]. Furthermore, the decidua
constitutes the major source for maternal circulating IGFBP-1 in
pregnancy [126, 127]. Serum IGF-I concentrations are decreased
in mothers delivering IUGR babies [128] and most [128–138], but
not all [139–142], studies show that IUGR or low birth weight is
associated with increased maternal serum IGFBP-1 levels. Because
maternal IGF-I is a powerful positive regulator of placental function
and growth [143–145], alterations in the maternal IGF-I/IGFBP-1
levels in pregnancies complicated by IUGR may directly contribute
to the restricted fetal growth.

Hypoxia and leucine deprivation markedly increased IGFBP-1
phosphorylation and decreased IGF-I bioactivity in cultured hu-
man endometrial stromal cells decidualized in vitro [146]. Moreover,
IGFBP-1 phosphorylation is increased in decidualized stromal mes-
enchymal cells in human IUGR [147]. We examined decidua and ma-
ternal plasma collected at delivery from appropriate-for-gestational
age (AGA) and IUGR pregnancies and maternal plasma collected
in late first trimester from women who later delivered an AGA or
IUGR infant. It was demonstrate that decidual mTOR is markedly
inhibited, AAR is activated, and IGFBP-1 abundance and phosphory-
lation are increased in IUGR [147]. Moreover, IGFBP-1 hyperphos-
phorylation in maternal first trimester plasma is associated with the
development of IUGR [147].

This data suggest that the decidua functions as a nutrient sensor
linking limited oxygen and nutrient availability to increased phos-
phorylation of IGFBP-1, mediated by mTOR and AAR signaling.
Hyperphosphorylation of maternal plasma IGFBP-1 may serve as a
novel early biomarker of IUGR. These observations are consistent
with the possibility that IGFBP-1 phosphorylation constitutes a link
between decreased decidual oxygen and nutrient availability and re-
duced fetal growth, mediated by diminished IGF-I bioavailability,
resulting in inhibition of trophoblast invasion [125, 148, 149] and
placental function (Figure 4).

Interestingly, compelling data generated in a genetic mouse model
of spontaneous preterm birth, involving a conditional deletion of
the tumor suppressor p53 in uterine tissues, implicate activation
of mTORC1 signaling in spontaneous and inflammation-induced
preterm birth [150–152]. Specifically, decidual p53 deficiency re-
sulted in premature decidual senescence mediated by mTORC1 acti-
vation, leading to preterm birth and fetal death, outcomes that were
prevented with mTORC1 inhibitors [150–152].

Mechanistic TOR signaling as a critical hub in the

overall homeostatic control of fetal growth: the

example of IUGR

The evidence presented above suggest that mTOR signaling in the fe-
tal liver, trophoblast, and decidua serves as a critical hub in the over-
all homeostatic control of fetal growth, adjusting the fetal growth
trajectory according to the ability of the maternal supply line to sup-
port fetal growth. This concept can be illustrated using IUGR as an
example (Figure 5). The most common cause of IUGR in Western
societies is believed to be placental insufficiency due to a lack of
normal gestational increase in uteroplacental blood flow caused by
suboptimal trophoblast invasion. It is often assumed that the failure
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Table 1. Examples of studies reporting placental mTORC1 signaling and amino acid transport capacity in association to maternal nutrition
and fetal growth.

Placental mTORC1 activity Placental amino acid transport activity References

Human IUGR Decreased Decreased [115, 158, 159]
Low protein diet in the rat with IUGR Decreased Decreased [121]
Maternal nutrient restriction in the baboon with IUGR Decreased Decreased [122]
Human GDM with fetal overgrowth Increased Increased [184, 185]
Human obesity with fetal overgrowth Increased Increased [183]
High fat diet mouse with fetal overgrowth Increased Increased [101, 186, 187]

Figure 4. Decidual nutrient sensing. A model linking decreased nutrient and oxygen availability in the decidua in early pregnancy to the development of IUGR.
Both insulin-like growth factor I (IGF-I) and IGF-II are key regulators of placental function, and both growth factors are abundantly present in the maternal
circulation and at the maternal–fetal interface. However, because phosphorylation of IGFBP-1 increases the affinity for binding IGF-I but not IGF-II only IGF-I
is depicted in the figure (see the text). AAR, amino acid response pathway; CK2, casein kinase 2; IGFBP-1, insulin-like growth factor binding protein 1; IGF-I,
insulin-like growth factor I; IUGR, intrauterine growth restriction; mTOR, mechanistic target of rapamycin.

of uteroplacental blood flow to increase normally directly causes the
restricted fetal growth. However, an array of adaptive responses in
the decidua, trophoblast, and fetus as a consequence of the initial
change in uteroplacental blood flow, some of which are mediated by
inhibition of mTOR (Figure 5), are likely to play important roles.

One consequence of the lack of normal increase in uteroplacen-
tal blood flow is that nutrient and oxygen availability decreases in
the decidua, trophoblast, and, ultimately, in the fetus, which inhibits
mTOR signaling in these tissues. In the decidua, mTOR inhibition re-
sults in the increased release of hyperphosphorylated IGFBP-1, which
effectively binds IGF-I, decreasing the bioavailability of this impor-
tant growth factor at the maternal–fetal interface and in the mater-
nal circulation. Because IGF-I promotes placental growth [143–145]
and function, specifically amino acid and glucose transport in cul-
tured trophoblast cells [114, 153–157] and across the placenta in
vivo [143], the result is a decreased placental growth and placental
nutrient transfer contributing to the development of IUGR. The pre-
dominant placental response to a lack of normal increase in uteropla-
cental blood flow is inhibition of mTORC1 and mTORC2 signaling

[115, 158, 159], downregulation of placental nutrient transport, in-
cluding decreased activity of amino acid [160–165] and folate trans-
porters [166], decreased mitochondrial function [113], and protein
synthesis, which directly contributes to decreased fetal nutrient avail-
ability and IUGR.

A regulatory loop involving mTOR inhibition and IGFBP-1
phosphorylation—similar to what is present in the decidua—exists in
the fetal liver. Inhibition of fetal liver mTOR signaling and activation
of AAR result in increased IGFBP-1 secretion and IGFBP-1 phospho-
rylation, which may occur prior to the development of IUGR [91],
and constitute a key molecular link between decreased oxygen and
nutrient availability and reduced fetal growth.

Trophoblast mTOR signaling may regulate placental secretion
of factors that influence maternal and/or fetal physiology. This
hypothesis is supported by our preliminary observations linking
trophoblast mTOR signaling to fetal liver IGFBP-1 secretion and
phosphorylation [167]. Specifically, incubation of HepG2 cells, an
established model for fetal hepatocytes, in conditioned media from
PHT cells in which raptor (mTORC1 inhibition) or rictor (mTORC2
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Figure 5. A model placing mTOR signaling as a critical hub in the overall homeostatic regulation of fetal growth. IGFBP-1 binds both IGF-I and IGF-II. However,
because phosphorylation of IGFBP-1 increases the affinity for binding IGF-I but not IGF-II only IGF-I is depicted in the figure (see the text). IGFBP-1, insulin-like
growth factor binding protein 1; IGF-I, insulin-like growth factor I; IUGR, intrauterine growth restriction; mTOR, mechanistic target of rapamycin.

inhibition) had been silenced, caused an increase in IGFBP-1 secre-
tion and phosphorylation [167].

The proposal that decidual, trophoblast, and/or fetal liver mTOR
signaling plays an important role in regulating fetal growth has yet
to be systematically tested in rigorous animal experiments involving
approaches for tissue-specific, inducible targeting of the genes in the
mTOR pathway. However, when s6k1 expression was rescued in
the placenta of s6k1–/– mice using tetraploid embryo complemen-
tation, the fetal growth restriction in s6k1–/– mice was completely
rescued [168, 169], strongly implicating a key role of trophoblast
mTORC1 signaling in determining fetal growth in the mouse. Fur-
thermore, some MTOR gene variants in humans may be associated
with major functional deficits resulting in early pregnancy growth
failure and miscarriage, which is supported by reported associations
between a single nucleotide polymorphism in the MTOR gene and
recurrent spontaneous abortion [170]. Moreover, an important role
of mTOR in the regulation of fetal growth is further supported by
animal experiments showing that administration of the mTORC1 in-
hibitor rapamycin at embryonic day 11 in mice causes spontaneous
abortions and fetal lethality around embryonic day 16 [171]. The
fact that MTOR gene variants yet to be associated to birth weight
in large GWAS studies [172, 173] may suggest a marginal role for
mTOR signaling in regulating fetal growth in women. However, a
lack of association between variants in a particular gene and a phe-
notype in GWAS studies cannot be taken as evidence that the gene
in question is unimportant in determining the phenotype. This point
is best illustrated by efforts in the past 20 years to identify genes
responsible for the heritability of type 2 diabetes: the total number
of associated variants explains only a small proportion of the heri-
tability of this disease. More importantly, however, no gene variants
in, for example, insulin (INS), insulin receptor (INSR), PI3-kinase
(PIK3CA), GLUT 2 (SLC2A2), or GLUT 4 (SLC2A4) have been

associated with type 2 diabetes risk even in the most recent GWAS
study involving more than 600,000 subjects [174], which cannot
lead to the conclusion that insulin, the insulin receptor, PI3 kinase,
Glut 2, and Glut 4 are inconsequential for the regulation of glucose
homeostasis. In analogy, no firm conclusion with respect to the im-
portance of mTOR signaling in the regulation of fetal growth can be
drawn from the fact that no genetic variant at the MTOR locus has
been shown to associate with birth weight in GWAS.

One important implication of this model is that intervention
strategies to alleviate or prevent IUGR must take mTOR-mediated
adaptive responses in the decidua, trophoblast, and fetal liver into
account and are unlikely to be successful if they attempt to correct
isolated fetal deficits associated with IUGR. Based on the concept
that decreased fetal amino acid availability represents a key mecha-
nism underpinning the development of IUGR, maternal amino acid
supplementation has been contemplated [175, 176] as a strategy to
prevent and treat IUGR. It is possible that the positive effects of
maternal supplementation with branched chain amino acids on fetal
growth that has been reported in animals with normal sized and
IUGR fetuses [45, 177, 178] may be due to activation of mTOR
in the decidua, trophoblast, and the fetus. Given the recent suc-
cessful development of in vivo trophoblast-specific gene targeting
approaches in mice [179–181], it may be possible to design inter-
ventions that activate placental mTOR signaling in IUGR in the
future. Drug discovery aiming at identifying mTOR activators or
inhibitors of DEPTOR may lead to the development of drugs useful
in IUGR. Because mTOR activation promotes cancer cell prolifer-
ation, survival, metabolic transformation, and metastasis, a num-
ber of drugs have been developed for use in cancer [182]. Albeit
speculative, it is possible that some of these drugs could be consid-
ered in selected cases of fetal overgrowth in maternal obesity and
gestational diabetes, conditions associated with placental mTOR
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activation and enhanced placental function [183]. Identifying
biomarkers for IUGR in early pregnancy could improve the clin-
ical management of these patients by allowing early intervention,
preventing some of the perinatal complications associated with this
condition. IUGR is associated with inhibition of mTOR signaling
and increased IGFBP-1 phosphorylation in the decidua, and our
data suggest that IGFBP-1 hyperphosphorylation in first trimester
maternal plasma may serve as a novel predictive IUGR biomarker.
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