Skip to main content
. 2019 Jun 28;20(8):141–154. doi: 10.1002/acm2.12662

Table 4.

Tenfold cross‐validation results for the whole pixel‐level bleeding detection dataset.

Color features Texture features Classifier PREC REC SPEC ACC F1 MCC ROC PRC
None All RT 0.876 0.875 0.770 0.875 0.876 0.645 0.823 0.836
All None RT 0.938 0.938 0.883 0.938 0.938 0.824 0.911 0.912
All All RT 0.962 0.962 0.930 0.962 0.962 0.893 0.946 0.946
All Five top RT 0.963 0.963 0.931 0.963 0.963 0.894 0.947 0.946
All Five different RT 0.963 0.963 0.932 0.963 0.963 0.895 0.947 0.947
All All RF 0.976 0.976 0.959 0.976 0.976 0.931 0.997 0.997
All Five top RF 0.975 0.974 0.956 0.974 0.975 0.928 0.996 0.996
All Five different RF 0.976 0.975 0.958 0.975 0.975 0.930 0.997 0.996
All All LMT 0.973 0.973 0.954 0.973 0.973 0.922 0.995 0.994
All Five top LMT 0.970 0.970 0.945 0.970 0.970 0.914 0.994 0.993
All Five different LMT 0.973 0.972 0.954 0.972 0.972 0.922 0.995 0.994
ZeroR 0.598 0.773 0.227 0.773 0.674 0.000 0.500 0.649

PREC, precision; REC, sensitivity or recall; SPEC, specificity; F1, F‐Measure; ACC, accuracy; MCC, Matthews correlation coefficient; ROC, receiver operator characteristic curve; PRC, precision‐recall curve; RT, Random tree; LMT, logistic model tree.