Table 5.
Color features | Texture features | Classifier | PREC | REC | SPEC | ACC | F1 | MCC | ROC | PRC |
---|---|---|---|---|---|---|---|---|---|---|
None | All | RT | 0.882/0.851 | 0.875/0.854 | 0.762/0.745 | 0.875/0.854 | 0.878/0.852 | 0.607/0.620 | 0.818/0.800 | 0.850/0.800 |
All | None | RT | 0.936/0.921 | 0.934/0.922 | 0.873/0.864 | 0.934/0.922 | 0.935/0.922 | 0.787/0.800 | 0.903/0.893 | 0.914/0.887 |
All | All | RT | 0.958/0.943 | 0.957/0.944 | 0.911/0.898 | 0.957/0.944 | 0.957/0.943 | 0.859/0.856 | 0.934/0.921 | 0.941/0.916 |
All | Five top | RT | 0.959/0.944 | 0.958/0.944 | 0.918/0.896 | 0.958/0.944 | 0.958/0.944 | 0.863/0.857 | 0.938/0.920 | 0.943/0.916 |
All | Five different | RT | 0.958/0.946 | 0.958/0.946 | 0.912/0.903 | 0.958/0.946 | 0.958/0.946 | 0.861/0.862 | 0.935/0.925 | 0.941/0.920 |
All | All | RF | 0.971/0.957 | 0.970/0.957 | 0.946/0.924 | 0.970/0.957 | 0.971/0.957 | 0.903/0.890 | 0.993/0.985 | 0.992/0.985 |
All | Five top | RF | 0.970/0.955 | 0.969/0.955 | 0.945/0.919 | 0.969/0.955 | 0.969/0.955 | 0.899/0.886 | 0.992/0.984 | 0.990/0.984 |
All | Five different | RF | 0.971/0.956 | 0.970/0.956 | 0.945/0.922 | 0.970/0.956 | 0.970/0.956 | 0.902/0.888 | 0.993/0.984 | 0.991/0.984 |
All | All | LMT | 0.968/0.955 | 0.968/0.956 | 0.940/0.923 | 0.968/0.956 | 0.968/0.955 | 0.894/0.887 | 0.989/0.982 | 0.984/0.983 |
All | Five top | LMT | 0.969/0.954 | 0.968/0.955 | 0.944/0.918 | 0.968/0.955 | 0.968/0.954 | 0.896/0.884 | 0.988/0.982 | 0.979/0.981 |
All | Five different | LMT | 0.968/0.954 | 0.967/0.954 | 0.939/0.920 | 0.967/0.954 | 0.967/0.954 | 0.893/0.883 | 0.988/0.983 | 0.977/0.983 |
‐ | ‐ | ZeroR | 0.665/0.533 | 0.816/0.730 | 0.184/0.270 | 0.816/0.730 | 0.733/0.616 | 0.000/0.000 | 0.500/0.500 | 0.699/0.605 |
PREC, precision; REC, sensitivity or recall; SPEC, specificity; F1, F‐Measure; ACC, accuracy; MCC, Matthews correlation coefficient; ROC, receiver operator characteristic curve; PRC, precision‐recall curve; RT, Random tree; LMT, logistic model tree.