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Inference of Population Structure
from Time-Series Genotype Data

Tyler A. Joseph1,* and Itsik Pe’er1,2,3,*

Sequencing ancient DNA can offer direct probing of population history. Yet, such data are commonly analyzed with standard tools that

assume DNA samples are all contemporary. We present DyStruct, a model and inference algorithm for inferring shared ancestry from

temporally sampled genotype data. DyStruct explicitly incorporates temporal dynamics by modeling individuals as mixtures of unob-

served populations whose allele frequencies drift over time. We develop an efficient inference algorithm for our model using stochastic

variational inference. On simulated data, we show that DyStruct outperforms the current state of the art when individuals are sampled

over time. Using a dataset of 296modern and 80 ancient samples, we demonstrate DyStruct is able to capture a well-supported admixture

event of steppe ancestry into modern Europe. We further apply DyStruct to a genome-wide dataset of 2,067 modern and 262 ancient

samples used to study the origin of farming in the Near East. We show that DyStruct provides new insight into population history

when compared with alternate approaches, within feasible run time.
Introduction

The widespread availability of ancient DNA—DNA ex-

tracted from the remains of people who lived thousands

of years ago—has revolutionized our understanding of hu-

man history.1 There are now more than 1,300 sequenced

genomes from ancient humans in the published litera-

ture,2 with the amount of data generated doubling faster

than it can be published.3 Detailed investigation of ancient

DNA datasets has had profound impact on our under-

standing of the movement of people, technology, and

genes throughout history:4–6 we now know that people

thousands of years ago were genetically as different from

each other as modern humans across the globe are today,

and that migration and admixture were commonplace.7

Moreover, the genetic distribution of global populations

today are not necessarily representative of the people

who lived there in the past.8

The newfound complexity in human history, punctu-

ated by numerous migrations and mergers, necessitates

the development of computational tools to investigate

the relationships between people over time. A typical

workflow for the analysis of ancient DNA datasets proceeds

in two steps. First, samples are grouped into genetically

similar units deemed populations. Second, the ancestral re-

lationships between (ancient andmodern) populations are

identified. In the first step, one ubiquitous approach uses

model-based clustering methods9,10 in conjunction with

principal component analysis (PCA11) or multi-dimen-

sional scaling,12 and a grouping is chosen in a way that

is parsimonious between results. Often, groups of samples

arise naturally out of the data, and these exploratory

analyses can be suggestive of historical relationships. In

the second step, expert domain knowledge (e.g., cultural

affiliations among artifacts, archaeological evidence) is
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combined with results from the first step to generate hypo-

theses regarding the relationships between populations.

These hypotheses can be formally tested using simula-

tions, f- and D-statistics,13–15 or fitting admixture

graphs.14

Ancient DNA, however, poses several challenges to

traditional analysis pipelines. In contrast with data from

modern individuals—where all individuals are sampled at

approximately the same time—ancient DNA datasets

contain individuals from multiple periods in history.

This is potentially problematic when methods implic-

itly assume all sampled individuals are contemporary.

For instance, popular model-based clustering ap-

proaches such as structure9 and its modern extensions

ADMIXTURE10 and fastSTRUCTURE16 assume that allele

frequencies in populations remain fixed. Ancient DNA da-

tasets clearly violate this assumption because frequencies

randomly fluctuate over time due to genetic drift. More-

over, such ancestry approaches suffer from conceptual

issues as the interpretation of fixed allele frequencies in-

ferred from time-series data is unclear. Accurately assessing

the genetic relationship between ancient samples is crucial

because sampled individuals are not chosen through care-

ful study design, but rather by the chance process of bone

sample survival in a condition that facilitates extraction of

usable DNA.8 Thus, there is a need for methods and tools

whose assumptions more closely match the specifications

of the data.

To address these issues, we present DyStruct (Dynamic

Structure): a model-based clustering method to infer

shared ancestry from time-series genotype data.17 DyStruct

builds on model-based clustering approaches pioneered by

structure-like models and extends them to time-series data

by leveraging the close connection between population

structure models in population genetics and latent
, USA; 2Department of Systems Biology, Columbia University, New York, NY

27, USA

.)

an Journal of Human Genetics 105, 317–333, August 1, 2019 317

mailto:tjoseph@cs.columbia.edu
mailto:itsik@cs.columbia.edu
https://doi.org/10.1016/j.ajhg.2019.06.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajhg.2019.06.002&domain=pdf


β1l
td β2l

td βKl
td...

xdl

...

d1θ

d2θ

dKθ

t1 t2 td tD... ...

Loci

Individuals
Genotype Matrix

Time Stamps

Populations

Lo
ci

Time

D1θ
D2θ

DKθ

...

Populations

Individuals

βKl1 βKl2 βKlT...

βkl1 βkl2 βklT...

Fr
eq

ue
nc

y

Time
Allele Frequencies

dθ

Genetic Ancestry

Figure 1. Schematic of DyStruct’s Model
K populations are modeled as collections
of allele frequencies at L loci that drift
over T time points (left). Each btkl gives
the frequency of allele l in population k
at time point t. Each individual d of D total
individuals is associated with an ancestry
vector, qd ¼ ðqd1; qd2;.; qdKÞ (middle), giv-
ing the proportion of that individual’s
genome inherited from each population,
and time stamp td. Genotypes at a locus l
(red) in an individual d (blue), xdl, are
determined by the individual’s ancestry
proportions and the allele frequencies
across populations when that individual
was alive (yellow). Notation matches that
of the Material and Methods section.
Dirichlet allocation (LDA) in natural language process-

ing.18 This connection has been long appreciated,19 with

multiple inference methods originally associated with

LDA driving methodological advances in population ge-

netics.16,20 DyStruct uses two key methodological develop-

ments from this literature. First, LDA has previously been

extended to time-series data using dynamic topic

models.21 Second, the efficient inference algorithm intro-

duced by teraSTRUCTURE20 facilitates the development

of more sophisticated population structure models by

allowing subsampling of loci along the genome. This

significantly reduces the computational cost per iteration,

allowing less efficient but more expressive model develop-

ment while maintaining reasonable run times. Using

simulations, we show that DyStruct outperforms the cur-

rent state of the art in the presence of genetic drift. We

further present results on two real datasets: one analyzed

by Haak et al.5 to investigate the migration of people

from the Pontic-Caspian steppe into Europe, and one

analyzed by Lazaridis et al.22 to study the genetic makeup

of early farmers in the Near East.
Material and Methods

Model Overview
Figure 1 gives a schematic overview of our model. DyStruct infers

sharedancestry among individualsbymodeling individuals asmix-

tures of latent populations whose allele frequencies drift indepen-

dently over time. The input to DyStruct is an individual by geno-

type matrix, a proposed number of ancestral populations with

population sizes, and the time in generations that each sampled in-

dividual was alive. Pseudo-haploid ancient samples are automati-

cally detected and explicitly modeled in DyStruct. Individuals are

grouped into unique time stamps by generation time. DyStruct

uses time-stamped genotypes to estimate both allele frequencies

at each time stamp across loci and populations and also the genetic

ancestry for each individual. Conceptually, the assumed sampling

process for individuals at a particular time point is the same as

ADMIXTURE. However, we relax the assumption of fixed allele fre-

quencies by allowing distinct allele frequencies across time points.

During parameter inference, changes in allele frequencies are regu-
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larized by effective population size to leverage information across

time. As we demonstrate below, our model performs well even

when the true effective population size is unknown.

As the number of time points increases, so does the number of

inferred parameters and time complexity of the inference proced-

ure. To counteract this effect, we developed an efficient inference

algorithm using stochastic optimization. Briefly, our algorithm

iteratively updates allele frequencies and ancestry estimates by

sampling loci across the genome in a process motivated by

Gopalan et al.,20 which we extended to our model. At each itera-

tion, a random locus is selected. That locus is used to update the

estimated allele frequencies across populations given genotyped

individuals and their previous ancestry estimates. Then, the

ancestry estimates are updated by taking a weighted average of

an estimate from the selected locus alone and the previous esti-

mate. This procedure is repeated until parameter estimates

converge. To incorporate missing data, a common feature of

ancient DNA datasets, allele frequencies at a locus are updated

based only on observed genotypes, and ancestry estimates

updated only for individuals with nonmissing data at that locus.

Using stochastic optimization, as opposed to batch optimization,

reduced the run-time of our algorithm from potentially weeks on

modern-scale datasets (>200,000 loci and >2,000 individuals) to

approximately 24–48 h, while using less than 2 Gb of memory

in all experiments.

Time-Series Model
Suppose we have D individuals genotyped at L loci. Each individ-

ual d ¼ 1,.,D is associated with a time stamp td˛f1;2; .; Tg,
where T is the total number of time points. Let gt be the total

time in number of generations since the first time point t1 (with

g1 ¼ 0). The genotypes of each individual d are given by the vector

xd ¼ ðxd1;xd2;.;xdLÞ, where xdl denotes the number of reference

alleles observed at locus l for that individual.

We assume each sampled individual is a mixture of K unob-

served populations. Let the vector qd ¼ ðqd1; qd2;.; qdKÞ give the

proportion of the genome individual d inherits from each

population k; hence
PK

k¼1qdk ¼ 1. Denote the allele frequency of

the reference allele at locus l in population k at time point t by

btkl. With this notation, we assume the following generative

model:

qd �Dirichletða1;a2;.;aKÞ for d ¼ 1;.;D: (Equation 1)
1, 2019
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(Equation 3)

with initial allele frequencies b0kl and effective population sizes Nk

treated as parameters. The btkl are estimated from data, whileNk are

treated as known and fixed. Ancient DNA samples are typically

pseudo-haploid, as low sequencing depth makes it difficult to

call full diploid genotypes. We explicitly model pseudo-haploid

individuals by setting the sample size parameter of the binomial

as either nd ¼ 2 or nd ¼ 1 depending on whether an individual is

diploid or pseudo-haploid.

Note that the variance for drift is different than the variance ob-

tained under Wright-Fisher or using a diffusion approximation.

Traditionally, the variance of btkl
�� bt�1

kl is

Var
�
bt
kl j bt�1

kl

� ¼ bt�1
kl

�
1� bt�1

kl

�ðgt � gt�1Þ
2Nk

:

However, the appearance of allele frequencies in the variance

leads to difficulties in deriving an inference algorithm.We approx-

imate the variance by taking the average variance over possibly

allele frequencies:

Var
�
bt
kl j bt�1

kl

�
z
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12Nk

¼
Z 1

0

bt�1
kl

�
1� bt�1

kl
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2Nk

dbt�1
kl :

Intuitively, this is similar to assuming a uniform prior over bt�1
kl in

the variance and taking the expectation.
Inference
We infer parameters through the posterior distribution. As

the posterior distribution under our model is not available

in closed form, we use stochastic variational inference23 to

learn an approximation to the posterior distribution pðq1:D;
b1:T
1:K;1:L

���x1:D;1:LÞzqðq1:D;b1:T
1:K;1:LÞ. Briefly, variational inference ap-

proximates an intractable posterior distribution pð, jXÞ by a trac-

table distribution qð , ; rÞ indexed by variational parameters r.

The r are then optimized to minimize the Kullback-Leibler (KL)

divergence, a measure of dissimilarity between two distributions,

between the true and approximate posterior. Performance of vari-

ational inference depends in part on how well the approximate

posterior can capture the true posterior. Intuitively, this means

the approximated posterior should be close in form to the true

posterior.

We use variational Kalman filtering21 to construct an approxi-

mate posterior for the btkl that captures the temporal dependencies

in our model. The variational approximation takes the form

q
�
bt
kl j bt�1

kl

� ¼ Normal

�
bt
kl j bt�1

kl ;
gt � gt�1

12Nk

�

q
�bbt

kl j bt
kl; ; n

�
¼ Normal

�bbt

kl j bt
kl; n

2
�

where bbt

kl are additional pseudo-observations that are treated as

variational parameters. Following Blei and Lafferty,21 we fixed

the parameter n2 and set it to a fixed value n2 ¼ 0:001 for all exper-
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iments. Given the pseudo-observations, standard Kalman filtering

and smoothing equations24 can be applied to compute the mar-

ginal posterior

q
�
bt
kl j bb1

kl;.; bbT

kl

�
;

which is used as an approximation for the true posterior on allele

frequencies. The variational approximation for the ancestry

vectors is

q
�
qd; bqd

�
¼ Dirichlet

�
qd j bqd

�
:

Taken altogether, the variational posterior is given by

q
�
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�YK
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(Equation 4)

The variational objective function is

L
�
b0
1:K;1:L;

bb1:T

1:K;1:L
bq1:D;x1:D;1:L

�
¼ Eq

h
log p

�
b1:T
1:K;1:L; q1:D;x1:D;1:L

�i
� Eq

h
logq

�
q1:D;b

1:T
1:K;1:L

�i
:

Optimizing L with respect to b0kl gives maximum likelihood esti-

mates of the model parameters. Optimizing L with respect to the

variational parameters bbt

kl and
bqd gives an approximate posterior

close to the true posterior.

We adapt the stochastic variational inference algorithm derived

by Gopalan et al.20 for use with our time-series model to optimize

L. This allows us to iteratively update the variational parametersbqd by subsampling loci along the genome (see Appendix A for

more details). Parameter estimates are updated until convergence.

After convergence, point estimates for qd are obtained by taking

the expectation under the posterior. For a Dirichlet random vari-

able, this is

q�dk : ¼Eq½qdk� ¼
bqdkPK
k0¼1
bqdk0 : (Equation 5)

Note that the bqd are parameters of a Dirichlet distribution and

do not necessarily sum to 1.

Model Choice (K)

We use a held-out dataset to compare across runs and different

values of K. This dataset is constructed by randomly selecting

entries in the genotype matrix, which are treated as missing

during parameter inference. We compute the log likelihood of

the held-out genotypes conditioned on the current point esti-

mates of btkl and qd, which we denote the ‘‘conditional log like-

lihood.’’ Formally, suppose we have selected a held-out set of

individual-locus pairs H3fðd; lÞ : d ¼ 1; .D; l ¼ 1; .Lg. After
convergence, we evaluate the conditional log likelihood on

the held-out set,

LH :¼
X

ðd;lÞ˛H
logp

�
xdl j qd;b

td
kl

�
¼
X

ðd;lÞ˛H
log

 
Binomial

 
xdl j nd ;

XK
k¼1

qdkb
td
kl

!!
:

The best-supported model is the one that achieves the greatest

conditional log likelihood. We note that the conditional log

likelihood here is equivalent to the log likelihood ADMIXTURE

if we treat the samples at each time point separately. We choose
an Journal of Human Genetics 105, 317–333, August 1, 2019 319



this for our model evaluation procedure because it does not

depend on choice of population size or number of time points,

both of which influence the variational objective.

In-Model Simulations
In-model simulations were performed with 10,000 loci simulated

under a discrete time Wright-Fisher model. Specifically, given an

allele frequency at time t (pt), the allele frequency at time t þ 1

(ptþ1) was determined by

Xt � Binomial
�
2N; pt

�
ptþ1 ¼ Xt

2N

Initial frequencies were drawn from an Uniform(0.2,0.8) distri-

bution. For admixed individuals we used the following model:

qd �Dirichlet

�
1

K
1K

�
for individuals d ¼ 1;.D (Equation 6)

xdl �Binomial

 
2;
XK
k¼1

qdkp
td
k

!
for loci l ¼ 1;.;L:

We defined two simulation scenarios to investigate model per-

formance. In the ‘‘mixture’’ scenario, all samples were admixed.

That is, we drew admixture proportions qd according to Equation

6. In the ‘‘merger’’ scenario, ancient samples were unadmixed and

modern samples were admixed. For unadmixed individuals, we set

qd to an indicator vector denoting that individual’s population

and sampled genotypes as above. For admixed samples, we again

drew admixture vectors according to Equation 6. We note that

this is equivalent to sampling from an admixed population at

the time of admixture.

We generated 100 individuals from each time point. All simula-

tions used an effective population size of N ¼ 2,500 for all

populations.

Data Sparsity and Pseudo-haploid Samples

Ancient DNA datasets contain sparse, pseudo-haploid, ancient

samples, where the sample size of ancient samples is small

compared to the sample size of modern samples. To evaluate

model performance under these conditions, we simulated 2 popu-

lations at 5 time points spanning 400 generations with N ¼ 2,500

for both the mixture and merger scenarios. At each ancient time

point, we simulated 20 pseudo-haploid samples and simulated

300 modern samples at the final time point. For ancient samples

we varied the percentage of missing data from 0% to 90%, select-

ing loci uniformly at random without replacement, while modern

samples had full data.

Choosing K

We evaluated our ability to infer the correct value of K under both

the mixture and merger scenarios, simulating 100 individuals at

each of 5 time points spanning 400 generations with N ¼ 2,500.

For the mixture scenario, we simulated K ¼ 4 and ran DyStruct

from K ¼ 2,.,6. For the merger scenario, we simulated K ¼ 3

and ran DyStruct from K ¼ 2,.,5. For both scenarios, we con-

structed a hold-out set of 5,000 genotypes.

Out-of-Model Simulations
Coalescent simulations were performed using msprime.25 In the

coalescent merger scenario, we simulated two populations that

split 3,000 generations ago and merged 200 generations ago.

The population size before the merger was set to 2N ¼ 2,500 and
320 The American Journal of Human Genetics 105, 317–333, August
after the merger to 2N ¼ 5,000. We simulated 10,000 independent

gene genealogies with a mutation rate parameter of 10�8 per

generation. To convert haploid gene genealogies to diploid

genealogies, we combined random pairs of gene genealogies. 50

diploid individuals were sampled from each population 10 gener-

ations before the merge (210 generations back in time), and 100

diploid individuals were sampled from the modern admixed

population. We varied the contributions from each ancient

population by adjusting the probabilities that a lineage in the

modern population had an ancestor in one of the ancient popula-

tions. This procedure is analogous to adjusting the mixture pro-

portions in the modern population. The mixture proportions we

explored were .125–.875, .25–.75, .375–.625, and .50–.50.

In the coalescent split scenario, we simulated three modern

populations descended from a single ancestral population. We

simulated two population splits, one 3,000 generations ago and

the other 1,500 generations ago. We used a fixed population size

of 2N ¼ 5,000 for all populations. In contrast with the above, we

simulated a 10 megabase region with a recombination rate of

10�8 per generation and a mutation rate of 2 3 10�8 per genera-

tion, and we selected 10,000 evenly spaced gene genealogies for

each sampled individual. 100 individuals were sampled from

each modern population. 50 ancient individuals were sampled

from the population that underwent the second split 50 genera-

tions prior.

Choosing K

We ran DyStruct using K ¼ 2, 3 on the coalescent merger scenario

and K ¼ 2, 3, 4 on the coalescent split scenario, using a hold-out

set of 5,000 genotypes.
Real Datasets
We downloaded the real dataset analyzed by Haak et al.5 and ran

DyStruct and ADMIXTUREwith K¼ 2,.,5 on two separate subsets

of the data: one of 80 ancient samples and 296 modern West Eur-

asians, and another of the same 80 ancient samples and 17 mod-

ern Oceanians (see Figure 6 for sample labels and subsets). The

ancient samples included newly reported individuals sampled by

Haak et al.,5 other ancient samples from the literature,26–29 and

modern samples from the Human Origins panel.4,14 After LD

pruning (see below), 149,104 loci remained for analysis in the

West Eurasian dataset and 174,984 remained for analysis in the

Oceanian dataset. We set N ¼ 10,000 for DyStruct. To evaluate

model fit across K (see Model Choice (K)), we used a hold-out set

of 7,455 genotypes for the West Eurasian dataset and a hold-out

set of 8,749 genotypes for the Oceanian dataset, equivalent to

approximately 5% of the total number of loci in each dataset.

We also downloaded and analyzed the real dataset analyzed by

Lazaridis et al.,22 which included individuals from the Human

Origins panel, newly reported ancient samples, and other ancient

samples from the literature.4,5,30–34 The final dataset consisted of

2,067 modern and 262 ancient individuals. After LD pruning

(see below), 293,130 loci remained for analysis. We ran

ADMIXTURE and DyStruct from K ¼ 2,.,14. DyStruct was run us-

ing N ¼ 10,000 for all populations. To evaluate model fit across K

(see Model Choice (K)), we used a hold-out set of 14,657 geno-

types, about 5% the number of observed loci .

For all datasets, we first LD pruned loci using Plink v1.0735 with

the options –indep-pairwise 200 25 0.4 . Generation times were

computed by taking the midpoint of carbon date estimates, or cul-

ture date estimates, and converted to generation times assuming a

25-year generation time. Generation times were binned using the
1, 2019



Figure 2. Performance of DyStruct,
ADMIXTURE, and Ohana on Simulated
Data for Two Historical Scenarios and
Two Sampling Schemes
Top: individuals are mixtures of two
ancestral populations (the ‘‘mixture’’ sce-
nario). Bottom: ancient individuals are
sampled solely from one of two ancestral
populations that merge at present, and
modern samples from the present-day
admixed population (the ‘‘merger’’ sce-
nario). Models were compared by
computing the root-mean-square-error
(RMSE) on ancestry estimates between
the simulated ground truth and the
output from both models. Diagrams
above each plot show the historical sce-
nario simulated, and black circles denote
approximately when individuals are
sampled. The x axis displays total simula-
tion time between the first and last sam-
ple (1 coalescent unit ¼ 2N generations
for simulated N ¼ 2,500). The y axis
gives the mean RMSE across models
(vertical lines denote 1 standard error
estimated from 10 replicates). DyStruct
was run with varying population sizes

to explore model performance when the true size is unknown. DyStruct’s ancestry estimates improve when individuals are
more densely sampled in time, while ADMIXTURE’s remain similar. Both models outperform Ohana.
script bin_sample_times.py, which constructs a sliding window of

50 generations and merges all generation times within a window

to the mean of times in each bin. After preprocessing, there were

7 time points spanning 324 generations for the West Eurasian

and Oceanian datasets from Haak et al.5 and 10 time points span-

ning 519 generations for the Lazaridis et al.22 dataset.

PCA was performed using the smartpca program11 on the

publicly available subset of 860 modern West Eurasians analyzed

by Lazaridis et al.,22 using the options lsqproject: YES and nu-

moutlieriter: 0. Ancient samples were projected onto the principle

components of the modern Eurasians.
Results

In-Model Simulations

We first evaluated DyStruct using synthetic data simulated

under a discrete-time Wright-Fisher model for two histori-

cal scenarios. In the ‘‘mixture’’ scenario, individuals were

modeled as mixtures of populations whose allele fre-

quencies drifted independently over time. In the ‘‘merger’’

scenario, older ancient individuals were drawn unadmixed

from ancient populations that merged at the last time

point to form an admixed modern population. Individuals

were also sampled from the admixed modern population.

As the merger scenario is reflective of realistic dynamics

between ancient and modern populations, we were partic-

ularly interested in our model’s ability to detect when

modern admixed individuals share ancestry with ancient

unadmixed ones. We varied the density of samples in

time and number of populations and ran DyStruct under

several effective population sizes as the true population

size for each population is likely unknown at runtime.
The Americ
For all simulations, we also ran ADMIXTURE and

Ohana.36 We compared model performance by computing

the root-mean-square-error (RMSE) between the ground

truth ancestry estimates and those provided by each

respective model.

Figure 2 displays DyStruct, ADMIXTURE, and Ohana’s

performance on simulations using two ancestral popula-

tions withN¼ 2,500. DyStruct outperformedOhana across

all our simulations. ADMIXTURE outperformed Ohana on

9 of the 16 simulations we performed and had similar

RMSE on the remaining simulations. When the true effec-

tive size is provided as input to DyStruct (input is denoted

by Nk), it outperformed ADMIXTURE across all but one

simulation scenario where there was little genetic drift.

Notably, even when the incorrect population size is pro-

vided to DyStruct, it outperformed ADMIXTURE on the

majority of simulations. With Nk ¼ 5,000, DyStruct’s

mean RMSE was lower than ADMIXTURE’s on 14 out of

16 simulation scenarios; with Nk ¼ 10,000, it was lower

on 11 out of the 16 simulation scenarios. When an un-

der-estimate of the true population size was provided (Nk

¼ 1,250), DyStruct outperformed ADMIXTURE across on

all simulations. However, we found that setting Nk lower

than this made DyStruct susceptible to local optima

when genetic drift was the largest under the denser sam-

pling scheme (simulation time ¼ 0.16 coalescent units;

Figure S1). Because ADMIXTURE performed better than

Ohana, we choose to focus on comparing DyStruct to

ADMIXTURE for the remainder of our analysis.

As expected, DyStruct’s ancestry estimates significantly

improved with denser sampling over time (Figure 2, right).

When individuals were sampled at 5 time points opposed
an Journal of Human Genetics 105, 317–333, August 1, 2019 321



Figure 3. Model Performance for
Choosing K under Two In-model Simula-
tion Scenarios
Boxplots of the difference in the condi-
tional log likelihood from the log likeli-
hood of the true K. The conditional log
likelihood was computed on 5,000 held
out genotypes (y axis) across 10 for
different choices of K (x axis). The highest
log likelihood is chosen as the ‘‘true’’ K. For
the mixture scenario, the correct K (dashed
vertical line) is identified 10 out of
10 times. For the merger scenario, the
correct K is identified 9 out of 10 times.
to 2, DyStruct’s RMSE substantially improved across all sce-

narios. DyStruct’s mean RMSE appeared more stable across

time when denser sampling for themixture scenario, while

ADMIXTURE’s mean RMSE increased over time. When

sampling more populations, as opposed to more time

points, DyStruct and ADMIXTURE’s performance were

similar to the two population case (Figure S2).

Choosing K

We next investigated DyStruct’s ability to identify the

correct number of ancestral populations (K) in our sim-

ulations. For each simulation, we held out a set of

5,000 genotypes, and computed the log-likelihood on

the hold out set conditioned on estimated model pa-

rameters (see Material and Methods). The value of K

with the highest log-likelihood was chosen as the

best-supported model.

Under the mixture scenario, we performed 10 simula-

tions with K ¼ 4, and ran DyStruct from K ¼ 2,.,6. The

best-supported model across all 10 simulations was K ¼ 4

(Figure 3A). Under the merger scenario, we performed 10

simulations with K ¼ 3, and ran DyStruct from K ¼
2,.,5. The best supported model was K ¼ 3 in 9 out of

10 of our simulations (Figure 3B). Across both sets of sim-

ulations, we observed an increase in log-likelihood up to

the true value of K, and afterward the held-out log-likeli-

hood leveled off.

Data Sparsity and Pseudo-haploid Samples

Ancient DNA samples often have low sequencing coverage

and low sequencing depth. In practice, samples are often

represented as pseudo-haploid—where only a single allele

is observed instead of a genotype, and encoded by a 0 or

2—and have a significant amount of missing data. Further-

more, ancient DNA datasets are unbalanced in that

substantially more modern samples are sequenced than

ancient ones. We thus evaluated DyStruct’s robustness to

sparse, pseudo-haploid, and unbalanced datasets. For

both the mixture and merger scenarios, we simulated

ancient pseudo-haploid individuals, varying the amount

of missing data, and using an approximately 3.75 times

larger set of modern samples, reflecting the balance of

samples in the Haak et al.5 dataset (consisting of ancient

samples and modern Europeans, see Entry of Steppe

Ancestry into Europe).
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Figure 4 displays the RMSE on ancient and modern

samples for DyStruct and ADMIXTURE. Notably,

ADMIXTURE’s RMSE on ancient samples (median RMSE

range 0.089–0.10 on the mixture scenario; 0.11–0.13 on

the merger scenario) is significantly higher than on mod-

ern ones (median RMSE range 0.010–0.011 on the mixture

scenario; 0.011–0.012 on the merger scenario). In contrast,

under the mixture scenario, DyStruct’s RMSE on ancient

samples (median RMSE range 0.028–0.065) was only

slightly higher than modern samples (median RMSE range

0.020–0.023). We observed an increase of �0.038 in me-

dian RMSE from the lowest to the highest amount of

missing data. The effect was most apparent at the greatest

degrees of missingness (80% missing and 90%, respec-

tively). Under the merger scenario, the RMSE on ancient

samples was lower (median RMSE range 0.014–0.031)

than on modern samples (median RMSE range 0.028–

0.036), in contrast with the results of the mixture scenario.

This is likely because ancient samples in the merger sce-

nario only have a single ancestral component which

DyStruct is accurately able to detect. We also observed a

small increase in RMSE at high levels of missing data (an

increase in median RMSE of 0.018 between from the best

to the worst RMSE). Nonetheless, the DyStruct outper-

formed ADMIXTURE on ancient samples for all explored

simulation parameters. ADMIXTURE had a lower RMSE

on modern samples than DyStruct, but the difference

was slight; the greatest difference in median RMSE

across scenarios was 0.024. Taken altogether, our results

suggest that DyStruct accurately estimates ancestry com-

ponents on pseudo-haploid data with varying degrees of

missingness.

Out-of-Model Simulations

We next tested DyStruct using coalescent simulations.

DyStruct assumes that populations are independent over

time without population splits or mergers. Thus, coales-

cent simulations allow us evaluate how DyStruct performs

when its modeling assumptions are violated. We per-

formed coalescent simulations under a population merger

scenario and a population split scenario, and we sampled

individuals from various points along the population phy-

logeny. For the ‘‘coalescent merger’’ scenario, we simulated
1, 2019
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Figure 4. DyStruct and ADMIXTURE’s Performance on Sparse Pseudo-haploid Samples
Boxplots of rootmean square error (y axis) between the ground truth ancestry andmodel estimates for ancient andmodern samples. The
fraction ofmissing SNPs varied across ancient samples (x axis), whilemodern samples had full data. Ancient samples are psuedo-haploid,
where only a single allele is observed at each locus and encoded by 0 or 2. DyStruct’s ancestry estimates on ancient samples are more
accurate than ADMIXTURE across degrees of missing data.
two populations that split approximately 3,000 genera-

tions in the past (approximately the time of the human

out-of-Africa migration) that subsequently mixed 200 gen-

erations ago (approximately the time of the entry of steppe

ancestry into Europe) to form a single modern population.

We varied the contribution of each ancestral population by

adjusting the probability that a lineage in the modern

population has an ancestor in one of the ancestral popula-

tions (see Material and Methods). For the ‘‘coalescent

split,’’ we simulated three modern populations that split

from a single ancestral population approximately 3,000

generations ago. Two of the modern population subse-

quently split 1,500 generations ago. We then ran DyStruct

on the sampled individuals, varying K, and qualitatively

compared ancestry estimates to the true underlying popu-

lation history because coalescent simulations do not

provide per sample ancestry estimates for a quantitative

evaluation. In principle, one could count the number of

coalescent events in each population for the coalescent

merger scenario for comparison. However, this is more

complicated for the coalescent split scenario because not

all lineages will coalesce before each population split,

and thus multiple lineages from different populations

remain in all ancestral populations.

Figure 5 displays DyStruct’s mean ancestry estimates for

each K, averaging across samples then across simulation

replicates, for the coalescent merger scenario with 50%

mixing proportions and the coalescent split scenario. For

the coalescent merger scenario, DyStruct was able to detect

that the modern population is a mixture of the two

sampled ancestral populations. At K ¼ 2, the modern

population appears as a mixture of the two ancestral

populations. Ancient samples from each population are

assigned to distinct ancestry components, while the

modern samples appear as mixtures of the two ancient

populations. At K ¼ 3, assignment for the ancient samples
The Americ
remains the same, while the modern population inherits

approximately 25% of its ancestry from the ancient popu-

lation and the remainder from a novel cluster. Results were

qualitatively similar to ADMIXTURE, but the fraction of

shared ancestry between ancient and modern samples at

K ¼ 3 was much lower (Figure S3). When adjusting the

contribution of the ancient populations to the modern,

the results remain similar (Figures S4 and S5). At K¼ 2, esti-

mated mixture proportions closely reflect simulated

mixture proportions, with a slight overrepresentation of

the major contributing population (Figures S4 and S5).

Under the coalescent split scenario, DyStruct identifies

a contribution from the ancestral population into its

modern descendants across all K. At K ¼ 2, DyStruct

clusters populations by the oldest split, placing the

ancestral population and its descendants in a single cluster.

At K ¼ 3, DyStruct assigns modern samples from each pop-

ulation to their own clusters, while the ancient samples

appear as a mixture of its two modern descendants. We

note that by forcing the four sampled populations into

three clusters, it is necessary to identify one (or more) of

the populations as admixed. In some cases, one of the

modern populations appeared as admixed in addition

to the ancestral population (Figure S6). At K ¼ 4, the

ancient population receives its own cluster. Notably, its

modern descendants appear admixed between their

own clusters and the ancestral cluster. This pattern

does not appear in ADMIXTURE (Figures S3 and S7),

which gives each sampled population their own indepen-

dent clusters. Thus, ADMIXTURE does not identify a

contribution of the ancient population to its descendants

at K ¼ 4.

In all cases, the reported means were representative of

our simulation replicates as a whole (Figures S4, S6, S8,

and S9), as the standard deviation in ancestry estimates

across replicates was low.
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Figure 5. DyStruct’s Performance on Coalescent Simulations
Diagrams on the left depict the historical scenario simulated.
Colored circles denote where in the population phylogeny indi-
viduals were sampled. Arrows and notches below each diagram
give the generation time of sampled individuals and historical
events. Pie charts on the right give the mean ancestry estimates
for each population across 10 replicates.
(A) At K¼ 2, DyStruct can accurately detect the contribution of the
ancient populations to the modern one. Ancient samples are as-
signed nearly a single ancestry component (color), while modern
samples appear as admixed between ancient populations. At K¼ 3,
DyStruct assigns a new cluster to the modern population, but still
identifies shared ancestry from its ancestral contributors.
(B) At K ¼ 2, DyStruct identifies the oldest split in the phylogeny.
At K ¼ 3, DyStruct splits the ancient population by clusters corre-
sponding to its two descendants. At K ¼ 4, the ancient population
gets its own cluster, but DyStruct still identifies shared ancestry be-
tween it and its two descendant populations.
Choosing K

We further investigated our model fit procedure to identify

the best K for both the coalescent merger and coalescent

split scenarios. While there is technically no correct K for

these scenarios, we wanted to examine how different pop-

ulation relationships changed support for different K. For

the coalescent merger scenario, difference in log likelihood

for K¼ 2 and K¼ 3 was slight (Figure S10), suggesting both

are equally well supported, and possibly that we are at the

plateau observed in the in-model simulations. With a

50-50 contribution from both populations, the scenario

presented in Figure 5, the best supported K was K ¼ 3 in

9 of the 10 simulations. For a 37.5-62.5 split, K ¼ 3 was

the best supported K in all 10 simulations. For a 25-75 split,

K¼ 3 was the best supported in 8 out of 10 simulations. For

a 12.5-87.5 split, K ¼ 3 was the best supported in 6 out of

10 simulations. Under the coalescent split scenario, K ¼
4 was best supported in 9 out of 10 simulations, K ¼ 3

was best supported in the remaining simulation, and

none of the simulations supported K ¼ 2 (Figure S11).
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Entry of Steppe Ancestry into Europe

To explore performance on real data, we investigated a da-

taset of ancient and modern humans studied by Haak

et al.5 In their analysis, the authors used ancient DNA

from early farmers, Yamnaya steppe herders, hunter-gath-

erers, and later ancient samples to study the movement

of early peoples into Europe. Reasoning that movement

of genes can mirror movement of people, culture, and

technology, the authors compared ancient and modern

people to investigate the source of Indo-European lan-

guages. The authors detected a migration event from the

steppe into Europe around 4,500 years ago and found

strong support for a model of modern Europeans as a

mixture of three ancestral groups: early farmers, steppe,

and hunter-gatherers. Their results suggested the steppe

as a likely origin of Indo-European languages.

We applied DyStruct and ADMIXTURE to two subsets of

their data. First, as a positive control we wanted to see

whether our model could detect ancient admixture in

modern Europe. We ran both models with K ¼ 3 on a sub-

set of hunter-gatherers, Yamnaya steppe herders, early

farmers, later ancient samples, along with a subset of mod-

ern Europeans analyzed by Haak et al.5 (Figure 6A). We

chose K ¼ 3 because it corresponded to the three popula-

tions identified by the authors of the study. Interestingly,

DyStruct identifies hunter-gatherers (red), Yamnaya steppe

(blue), and early farmers (teal) as distinct clusters (with the

exception of the eastern hunter-gatherers Samara and

Karelia), while in ADMIXTURE the Yamnaya appear ad-

mixed between hunter-gatherers and a blue ancestry

component. Hence, DyStruct gives distinct cluster to the

three contributing populations identified by Haak et al.5

Ancestry estimates on modern populations substantially

differ as well. Notably, DyStruct assigns majority farmer

ancestry and little steppe ancestry to modern Sardinians

and modern populations from the Iberian Peninsula,

consistent with Haak et al.5 and Olalde et al.6 who found

that little steppe ancestry penetrated this far south in Eu-

rope. In ADMIXTURE, both these groups appear to have

substantial portions of the blue ancestry, which roughly

corresponds to the steppe group. In practice this indicates

that interpreting the blue component as steppe ancestry

would lead to an incorrect conclusion.

Notably, DyStruct and ADMIXTURE differ in how they

identify the relationship between eastern hunter-gatherers

(Samara and Karelia) and the Yamnaya, who are known to

share ancestry.1 DyStruct assigns the Yamnaya their own

cluster, and identifies the eastern hunter-gatherers as ad-

mixed between the hunter-gatherer cluster and the steppe

cluster. ADMIXTURE identifies Yamnaya as a mixture be-

tween all hunter-gatherers and the blue ancestry compo-

nent. Interestingly, at K ¼ 4 ADMIXTURE does cluster

the Yamnaya into their own group and identifies shared

ancestry between the Yamnaya at the eastern hunter-

gatherers (Figure S12). However, it does so at the expense

of eliminating their contribution into modern popula-

tions—the largest ancestry component in all modern
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Figure 6. DyStruct and ADMIXTURE’s
Ancestry Estimates on Ancient Samples
and a Subset of Modern Europeans and
Two Modern Oceanian Populations
(A)Modern samples are ordered by approx-
imately increasing steppe ancestry (blue)
from DyStruct’s estimates. DyStruct (top)
identifies three ancient clusters: hunter-
gatherers (red), Yamnaya steppe (blue),
and early farmers (teal). Modern European
populations appear as mixtures of these
three groups, with modern Sardinians
and individuals from the Iberian Peninsula
sharing the least amount of steppe
ancestry. In ADMIXTURE (bottom), the
Yamnaya appear as a mixture of hunter-
gatherers and a blue component without
a clear interpretation. Hunter-gatherer
ancestry is absent frommanymodern sam-
ples, and all modern populations appear to
have more steppe ancestry than inferred
by DyStruct.
(B) DyStruct correctly identifies when
modern samples do not share ancestry
with ancient ones. When there is no
shared ancestry between ancient and
modern populations, and thus little shared
ancestry across time, DyStruct and
ADMIXTURE’s estimates are similar. Both
models identify two clusters of ancient
samples: hunter-gatherers (red) and early
farmers (teal). Yamnaya share ancestry
with both ancient groups.
samples does not correspond to any of the three ancient

populations.

We additionally compared model fit and results for

different values of K (Figures S12 and S13). At K ¼ 2, the

best supported K according to our model choice procedure

(Figure S11), DyStruct and ADMIXTURE identify two clus-

ters: hunter-gatherers and European farmers. The Yamnaya

in DyStruct cluster completely with the hunter-gatherer

group, but appear admixed in ADMIXTURE, and their

contribution to modern populations differ. At K ¼ 4 and

K ¼ 5, DyStruct and ADMIXTURE identify different rela-

tionships between samples (Figure S12). At K ¼ 4, DyStruct

splits the modern Basque population into its own cluster

and clusters the Yamnaya and hunter-gatherers together,

while ADMIXTURE identifies a new cluster mostly associ-

ated with the modern samples. Interestingly, both models

split the Neolithic samples into two clusters for higher K,

but at different values of K (K ¼ 4 for DyStruct and K ¼ 5

for ADMIXTURE).

As anegative control,we tested that bothmodels correctly

identify distinct modern populations that do not share

ancestry with ancient samples. To this end, we ran DyStruct

andADMIXTUREwithK¼ 3on the same set of ancient sam-
The American Journal of Human G
ples, but included twomodern Ocean-

ian populations instead of modern Eu-

ropeans (Figure 6B). Encouragingly,

DyStruct assigns modern Oceanian

populations to their own cluster
(blue). Two ancient clusters are identified: hunter-gatherers

(red) and early farmers (teal). The Yamnaya appear to share

ancestry with both these clusters, the majority of which

comes from the hunter-gatherer group. As expected, when

there is little shared ancestry over time, both DyStruct and

ADMIXTURE produce similar results.

We again compared model fit and results for different

values of K (Figures S14 and S15). At K ¼ 2, again the best

supported K (Figure S13), both DyStruct and ADMIXTURE

split ancient and modern samples into their own groups.

At K ¼ 4, ADMIXTURE breaks the Yamnaya into their own

cluster, and at K ¼ 5 ADMIXTURE separates Papuan’s from

Australians. In contrast, atK¼4DyStruct separates Papauns

from Australians and splits the Neolithic group at K ¼ 5.

Origin of Farming in the Near East

Wenext conducted a larger experimentusing2,067modern

individuals from the Human Origins dataset, along with

262 ancient individuals, analyzed by Lazaridis et al.22 In

their study, the authors used genomic data from ancient

samples to investigate the origin of farming in the Near

East. One question the authors asked was whether farming

technology entered the Near East due to population
enetics 105, 317–333, August 1, 2019 325
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Figure 7. Model Comparison between DyStruct, ADMIXTURE, and PCA on samples analyzed from Europe and the Near East
Left: DyStruct and ADMIXTURE’s ancestry estimates on ancient samples when run with K ¼ 10 on 2,329 ancient and modern samples
analyzed. Within population samples are ordered by major contributing cluster. Right: Projection of ancient samples onto the principal
components of 860modernWest Eurasians. DyStruct identifies five clusters consistent with PCA: European hunter-gatherers (dark blue),
Anatolian/European farmers (dark green), Natufians/Neolithic Levant (dark yellow), Caucasus hunter-gatherers (light green), and
Neolithic Iran (brown). In ADMIXTURE, Neolithic Levant, and European farmers appear admixed.
replacement, similar in spirit to the findings of Haak et al.,5

or whether farming technology was adopted by the people

already living in these areas. The authors foundgenetic con-

tinuity between early hunter-gatherers in Iran and the

Levant the later farmers occupying these regions, suggest-

ing that farming technology entered these areas without

substantially displacing the people already there.

We ran both Dystruct and ADMIXTURE from K ¼
2,.,14 for ancient and modern samples combined, and

compared the results (Figures S16 and S17). To better

understand how each model captures the genetic relation-

ships between sampled ancient individuals, we also

performed a PCA by projecting ancient samples onto the

principal components of 860 modern West Eurasians,

motivated by the analysis performed by Lazaridis et al.22

Figure 7 displays the PCA (right) and results on ancient

samples for K ¼ 10 (left). We chose K ¼ 10 because it high-

lights the difference in conclusions drawn from DyStruct

and ADMIXTURE. The best supported K was K ¼ 12

(Figure S18). We emphasize that no single K can capture

all genetic relationships between ancient and modern

populations because any K forces a complex population

history into a small number of ancestral components.

Thus, it is important to systematically investigate each
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value of K in turn, not only the one best supported by

the model.

DyStruct identifies five clusters consistent with the PCA:

European hunter-gatherers (dark blue in Figure 7), Anato-

lian/European farmers (dark green), Natufians/Neolithic

Levant (dark yellow), and Mesolithic/Neolithic Iran

(brown), and Caucasus hunter-gatherer (light green).

Notably, early hunter-gatherers in the Levant (the Natu-

fians) cluster with later Neolithic samples in the region,

and Mesolithic hunter-gatherers in Iran cluster with

Neolithic Iran, reflecting genetic continuity in these re-

gions. In addition, early farmers from Anatolia cluster

with later European farmers. This is consistent with the

conclusions of Lazaridis et al.,22 who found the later

samples were genetically similar to their earlier counter-

parts. In ADMIXTURE, European farmers appear admixed.

In addition, ADMIXTURE does not break out Natufians

and Levatine farmers into their own group, and they

instead appear admixed between the Anatolian farmer

component and a light green component.

We note that Lazaridis et al.22 find genetic continuity

between Caucasus hunter-gatherers and Neolithic Iran.

In addition, they find support for a model of

Chalcolithic Iran as a mixture of Neolithic Iran, Caucasus
1, 2019
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Figure 8. Estimates on Modern Samples in the Human Origins Dataset for DyStruct and ADMIXTURE at K ¼ 10
Ancient populations identified by DyStruct appear as circles above the plot. Ancestry estimates for the contribution of European farmers
and the steppe appear substantially different between the twomodels. Moreover, the unambiguous cluster assignment for Neolithic Iran
and Neolithic Levant facilitate their interpretation as ancient contributors to modern populations. Populations with no contribution
from ancient samples are correctly identified, and estimates obtained by both models on these samples are similar.
hunter-gatherers, and Levatine farmers. This pattern is

partially lost in DyStruct at K ¼ 10, but it is more apparent

at different values of K. For instance, at K ¼ 12 Caucasus

hunter-gathers, Mesolithic/Neolithic Iran, and Chalco-

lothic Iran all have the same ancestral components at

different ancestry proportions. This again highlights the

importance of considering results across K. Indeed, results

on ancient samples highlight several important distinc-

tions between DyStruct and ADMIXTURE (Figure S16).

For instance, at K ¼ 4, DyStruct breaks Mesolithic

Iran (Iran_HotuIIIb) and Neolithic Iran into their own

clusters. At K ¼ 5, DyStruct identifies two major clusters

among ancient samples: European hunter-gatherers/

steppe (dark blue in Figure S16) and early farmers

(dark green). In contrast, at K ¼ 5, ADMIXTURE

clusters hunter-gatherers (dark green), but the remaining

samples appear admixed between the hunter-gatherer

group and a dark green component. Each of these provide

information about the genetic relationship among

samples and suggest hypotheses to test with downstream

analysis.

Figure 8 displays DyStruct and ADMIXTURE’s ancestry

estimates on modern samples for K ¼ 10. There are several

notable differences between the two models. In DyStruct,

modern European populations have substantial shared

ancestry with earlier European farmers. This pattern is

not apparent in ADMIXTURE. In addition, DyStruct iden-

tifies a genetic contribution from the Caucasus hunter-

gatherer to populations across North African, the Middle

East, Europe, and Asia, while ADMIXTURE does not. Inter-

estingly, DyStruct identifies shared ancestry between the

Neolithic Iran group, Neolithic Levant group, and modern

populations in North Africa and the Middle East, possibly

reflecting a known back-migration from Eurasia into North

Africa.22 The contribution of the Neolithic Levant group is

not as obvious in ADMIXTURE because these samples

appear admixed between a dark green component shared

with European farmers and a light green component. On
The Americ
modern populations with no ancient contributions, both

models report similar results.
Run Time

We investigated the run time of DyStruct using the

subset of ancient samples and modern Europeans from

Haak et al.5 and Lazaridis et al.22 datasets (Table 1).

Because Dystruct needs to infer more parameters than

ADMIXTURE (allele frequencies per time point), longer

run-time is unavoidable. On the smaller dataset from

Haak et al.,5 DyStruct ran in less than 4.5 h for each K ¼
2,3,4,5. On the largest dataset, DyStruct took longer to

run, but still maintained a reasonable runtime and is

thus feasible for practice purposes.
Discussion

We have presented DyStruct, a model and inference algo-

rithm for inferring shared genetic ancestry between

ancient and modern samples. By explicitly incorporating

temporal dynamics, DyStruct places emphasis on explain-

ing later samples asmixtures of earlier populations, leading

to results that are suggestive of underlying population his-

tories. Thus, DyStruct’s utility is in suggesting hypotheses

of historical relationships among populations. Indeed,

we showed on synthetic data that DyStruct outperforms

ADMIXTURE when individuals are sampled over time,

and we showed on real data that both models suggest

different historical relationships. Encouragingly, when

later samples do not share ancestry with earlier ones, the

results of both models are comparable.

There are several limitations to our approach. We

assumed (1) a fixed number of populations, (2) that

populations evolved independently, and (3) that the rate

of drift (equivalently the effective population size) was

constant across all populations. We investigated the effect

of each of these assumptions using simulations. Using
an Journal of Human Genetics 105, 317–333, August 1, 2019 327



Table 1. Running Time Comparison between Dystruct and
ADMIXTURE

Dataset K
DyStruct Run
Time (hr)

ADMIXTURE Run
Time (hr)

Haak Europe 2 2.32 0.16

Haak Europe 3 3.15 0.30

Haak Europe 4 3.53 0.38

Haak Europe 5 4.32 0.66

Lazaridis 4 30.3 1.87

Lazaridis 6 36.52 3.54

Lazaridis 8 35.88 2.38

Lazaridis 10 42.55 2.99

Running time in hours for DyStruct and ADMIXTURE on ancient samples and
modern Europeans from Haak et al.5 (376 samples; 149,104 loci; 7 time points)
and ancient and modern samples from Lazaridis et al.22 (2,329 samples;
293,130 loci; 10 time points). Each program was run on a multicore machine,
setting the number threads to K.
coalescent simulations, we demonstrated that when the

number of populations is not fixed (1) and populations

not independent (2), DyStruct is able to detect meaningful

historical relationships among samples. Using Wright-

Fisher simulations, we demonstrated that estimated

parameters by DyStruct do not substantially change even

when the effective population size provided to DyStruct

is an order of magnitude off (3). Indeed, DyStruct outper-

formed ADMIXTURE when given the ‘‘incorrect’’ effective

population size. This suggests that none of these limita-

tions severely impact model performance.

We demonstrated using simulations that ancestry

estimates by ourmodel are robust to choice of effective pop-

ulation size (Ne). Nonetheless, Ne is required as input to

DyStruct and needs to be specified. Estimates of the ances-

tral effective population size of humans at neutral loci using

nucleotide diversity are consistent across studies. The stan-

dard reference37 puts Ne ¼ 10,000, while more recent esti-

mates based on a 10 kb noncoding region on chromosome

22,38 and 49 approximately independent 1 kb noncoding

segments39 putNe at 10,000 and10,400, respectively.While

these estimates ignore recent population expansion and

population substructure, they are reasonable estimates for

input to DyStruct, where the results do not substantially

depend on Ne. We therefore recommend running DyStruct

withNe¼10,000onhumans andestimatingNeusingnucle-

otide diversity and coalescent theory for other study sys-

tems (e.g., see Charlesworth40).

A fundamental limitation of all population structure

models is the assumption that there exists some fixed num-

ber of discrete clusters. This problem is exacerbated when

individuals are sampled over time from populations from

complex histories. We noted in our coalescent simulations

that there is no clear choice for the correct number of clus-

ters. For instance, in the coalescentmerger simulations one

could argue that eitherK¼ 2orK¼ 3 is correct, or thatK¼ 2,

K¼ 3, orK¼ 4 is correct for the coalescent split simulations.
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This ambiguity is reflected in the difficulty of our model

choice procedure, and more generally any model choice

procedure, in consistently picking the same K. Indeed,

Pritchard et al.9 argued that any choice of Kmay not reflect

‘‘real’’ populations and that value of the best-supportedK it-

selfmaynotbebiologically interesting, and they emphasize

the utility of population structure models as exploratory

tools. Indeed, they emphasize exploring results across K.41

This is the viewweadopthere.Weargue that there is no sub-

stitute for carefully examining results acrossK, synthesizing

domain knowledge and results fromother exploratory tools

to generate testable hypotheses for downstream analysis.

The measure of any exploratory tool is the ability to

generate hypotheses that are likely to be validated by

more fine-grained analysis.

We found that DyStruct was suggestive of historical rela-

tionships supported by the literature. On the dataset

analyzed by Haak et al.,5 DyStruct models modern Euro-

peans as mixtures of ancient hunter-gatherers, steppe

herders, and early farmers. This was consistent with the

conclusions of the authors of that study. Notably, DyStruct

detected this relationship in an unsupervised manor,

without having to preassign samples to populations. How-

ever, we observed DyStruct and ADMIXTURE sometimes

‘‘oversplit’’ ancient samples. This was apparent at K ¼ 4

for DyStruct and K ¼ 5 for ADMIXTURE on dataset of

ancient samples and modern Europeans, where European

farmers were split into two separate groups. On the dataset

analyzed by Lazaridis et al.,22 DyStruct identified two novel

clusters when compared to ADMIXTURE: a cluster of early

hunter-gatherers in the Levant with later farmers in the

area, and a cluster corresponding to Caucasus hunter-

gatherers. Thiswas consistentwithour PCAand the conclu-

sions by Lazaridis et al.22 Moreover, by assigning different

clusters and mixture proportions to ancient samples,

DyStruct was better able to identify their contributions to

modern populations. For instance, the contribution of

earlier European farmers to modern European populations

was absent across much of our results from ADMIXTURE.

Our results on real data suggest that DyStruct tends to

assign a single ancestral component to ancient samples

when it can better explain their contribution to modern

ones. As a consequence, admixture within ancient samples

is sometimes missed in favor of ancient admixture into

modern populations. In practice this means that admix-

ture within ancient samples will be more apparent at

lower K where there are fewer ancestral components,

with DyStruct successively splitting off ancient clusters

with increasing K. Nonetheless, a major benefit of

assigning ancient samples to singular clusters is that the

clusters have clear interpretations as populations whose

relationship can be further investigated using more fine-

grained tools. In this way, DyStruct is ideal for the types

of exploratory analysis necessary for clustering samples

into populations and suggesting hypotheses of population

histories. Furthermore, that some genetic relationships will

be omitted is not a limitation unique to DyStruct. All
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population structure models will miss genetic relation-

ships because they reduce complex historical relationships

to a small number of ancestral components.

It is interesting that despite DyStruct’s limitations, it

appears to accurately describe population relationships on

real data. Becauseofubiquitousmigration inhumanhistory,

the relationship between populations is complex, with new

populations formed frommergers ofmultiple ancestral pop-

ulations. It is possible that DyStruct is capturing an approx-

imation to this reality, one that tree-based approaches are

inadequate to detect. Future work should explore this possi-

bility, focusing on extending DyStruct’s model to more so-

phisticated historical relationships. In this way, DyStruct is

a first step toward model-based approaches that capture

the complexity in human history.
Appendix A: Variational Inference for DyStruct

Here we derive a variational inference algorithm to

approximate the posterior distribution under DyStruct’s

model. For clarity, we first derive a variational inference al-

gorithm using coordinate ascent, then show how the coor-

dinate ascent procedure can be modified for stochastic

optimization.
Computing the ELBO

The ELBO—the objective function in variational infer-

ence—is given by
L¼ Eq

h
logp

�
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�i
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logq
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: (Equation A5)

It is optimized with respect to the variational parameters

fbq1:D; bb1:T

1:K;1:Lg. As written, the ELBO does not have a

closed form due to the log sum terms that appear in Equa-

tion A3:
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where nd ¼ 1 if individual d is pseudo-haploid and nd ¼ 2 if

individual d is diploid. Following Gopalan et al.,20

we optimize a surrogate lower bound by introducing

auxiliary variational parameters fdl ¼ ðfdl1;.;fdlKÞ and

zdl ¼ ðzdl1;.; zdlKÞ whose vector components sums to 1.

An application of Jensen’s inequality shows
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Hence, we still maintain a lower bound on the log likeli-

hood. The auxiliary parameters are optimized to provide

a tight lower bound. Fixing all other parameters, the con-

strained optimization problem can be solved using an

application of Lagrange multipliers:

fdlkfexp
�
Eq½logqdk� þ Eq

	
logbtd

kl
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(Equation A6)
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: (Equation A7)

The first term in both equations is an expectation of a

sufficient statistic and therefore has a closed form,

Eq½logqdk� ¼ JðbqdkÞ �J

�P
k

bqdk�, where J is the Digamma

function. The two expectations in the second terms can be

approximated by taking second-order Taylor expansion.

Let ~mt
kl be the mean of btkl and let ~vtkl be the variance. Taylor

expanding around ~mt
kl and 1� ~mt

kl, respectively, gives us
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Optimizing bqd
Note that the qðqd j bqdÞ satisfy the mean field assumption:

the qd in the variational posterior are independent. There-

fore they have optimal coordinate ascent updates of the

form42

q�ðqdÞfexp
�
Eq

	
logp

�
qd j btd

kl ;xd;1:L

�
�
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where we have used several conditional independencies to

simplify the complete conditional of qd. Using the surro-

gate lower bound on the ELBO, we can compute q�ðqdÞ
in closed form,

bqdk ¼ak þ
XL
l¼1

xdlfdlk þ ðnd � xdlÞzdlk; (Equation A8)

matching the expression in Gopalan et al.20
Optimizing bbt

kl

We optimize the variational parameters of the state space

model, bbt

kl, using variational Kalman filtering.21 Recall

that we approximate the posterior distribution on allele

frequencies by introducing pseudo-observations bqtkl. The
variational state space model is

q
�
bt
kl j bt�1

kl ; n
� ¼ Normal

�
bt
kl j bt�1

kl ;
gt � gt�1

12Nk

�

q
�bbt

kl j bt
kl

�
¼ Normal

�bbt

kl j bkl; n
2
�
:

InvariationalKalmanfiltering, thevariationaldistribution
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Specifically, because we have a Gaussian state space with

Gaussian observations in the variational posterior, we

know the marginal posterior of btkl. Furthermore, the mean
~mt
kl andvariance ~mt

kl canbe computed using a forward recur-

rence (Kalman filtering) then backward recurrence (Kalman

smoothing). Following the notation in Blei and Lafferty,21

the forward (filtered) means and variances are given by
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kl ¼ mT
kl and ~vTkl ¼ vTkl.

The variational parameters bbT

kl are optimized with

respect to the ELBO, hence we need the partial

derivatives of the marginal means ~mt
kl with respect to bbt

kl.

These can be obtained using the forward-backward recur-

rence as in Blei and Lafferty.21 We will show the recurrence

for initial frequencies btkl, which are not maximized in Blei

and Lafferty,21 and note that the other partial derivatives

can be obtained similarly. The recurrence is
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We optimize the bbkl with respect to a single locus in a sin-

gle population at time using a conjugate gradient algo-

rithm, constraining the parameters to lie in the interval

(0,1). The terms in the ELBO with respect to locus l in pop-

ulation k are
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where we define ~v0kl ¼ 0, ðs0kÞ
2 ¼ 1, and m0

kl ¼ ~m0
kl ¼ b0kl for

notational convenience. The inequality follows from using

the auxiliary lower bound. Taking partial derivatives with

respect to the pseudo-outputs gives us
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The full algorithm iterates between optimizing the local

parameters, fdlk, and zdlk using Equations A6 and A7, and

updating the bb1:T

kl numerically, then updating global pa-

rameters bqd according to Equation A8. The procedure is

repeated until convergence.
Inference Algorithm

We can perform stochastic variational inference through a

slight modification to the coordinate ascent algorithm

presented above.23,42 Stochastic variational inference com-

putes noisy estimates of the optimal global parameters by

stochastically subsampling data points and using the

optimal local parameters to update the global parameters.

The optimal global parameters are a weighted average of

the previous global parameters, with the newly computed

global parameters. Following Gopalan et al.,20 the n þ 1

stochastic variational inference update for the global pa-

rameters bqd is

bqnþ1

dk ¼ak þ ð1� εnÞbqndk þ εnLðxdlfdlk þ ðnd � xdlÞzdlkÞ
(Equation A9)

where εn is the step size for iteration n and L is the number
of loci. Provided the step size meets certain criteria, the al-

gorithm is guaranteed to converge. See Hoffman et al.23 or

Blei et al.42 for more details.

Algorithm 1. DyStruct’s inference algorithm

1: Input: Genotypes x1:D;1:L; Sample Times td; Popula-

tion Size Nk ¼ N for all populations.

2: while bqd have not converged

3: Pick l � Uniformð1;LÞ
4: while fdl and zdl have not converged

5: Update auxiliary parameters fdl and zdl for d¼
1,2,.,D according to Equations A6 and A7.

6: Update allele frequency parameters bb1:T

kl for k¼
1,2,.,K using the numerical optimization

routine described in the section Optimizing bbt

kl.

7: end while

8: Update global parameters bqd for d ¼ 1,2,.,D

according to Equation A9

9: end while

Extensions to Missing Data

The above algorithm holds only for complete data. A small

modification is required for missing data, where not every
The Americ
sample has an observed genotype at every locus. Rather

than a single global step size εt , we maintain a step size

for every individual εmd
where md is the number of itera-

tions for individual d. When a locus is subsampled, we

update global ancestry estimates only for individuals

with observed genotypes at that locus, and the step size

for those individuals. We further replace the parameter L

with Ld, the number of loci for each observed in each

individual.

Pseudo-haploid Detection

In pseudo-haploid samples only one allele of a genotype is

observed. For use in traditional analysis pipelines that

require genotype data, genotypes for pseudo-haploid sam-

ples are coded by 0 if the reference allele is observed or 2 if

the nonreference allele is observed. DyStruct detects

pseudo-haploid samples by scanning observed genotype

data for heterozygous genotypes. Presence of a heterozy-

gous genotype indicates that a sample is not pseudo-

haploid, while absence of heterozygous genotypes across

observed loci indicates a sample is pseudo-haploid with

high probability (for a modest number of loci). For

example, given a diploid sample, the probability that no

heterozygous genotypes are observed out of L loci isQL
l¼11� 2blð1� blÞ (bl is the allele frequency at locus l).

Even if all nonreference alleles are rare, say bl ¼ 0:01

(which implies most genotypes are homozygous) at L ¼
1,000 the probability that no heterozygous genotype is

observed is ½1� 2ð0:01Þð0:99Þ�1000 ¼ 2:063 10�9. Thus,

on realistic sized datasets (i.e., L> 10,000), diploid samples

are extremely unlikely to be mislabeled.

Convergence to Local Optima

We observed on real data that DyStruct was sometimes

susceptible to local optima. Through experimentation we

found that trying multiple initializations (5), running

DyStruct over the data once for each initialization, and

picking the run with the largest objective function allevi-

ated this problem. While the first epoch through the data

is the most expensive because it requires convergence of

parameters from scratch, this strategy still incurred less

additional computational cost compared to re-running

DyStruct 5 times. DyStruct thus uses multiple initializa-

tions by default, which can optionally be disabled.
Supplemental Data

Supplemental Data can be found online at https://doi.org/10.

1016/j.ajhg.2019.06.002.
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Web Resources

Code to replicate experiments, https://github.com/tyjo/

dystruct-experiments

DyStruct, https://github.com/tyjo/dystruct

Real dataset analyzed by Haak et al.,5 https://reich.hms.

harvard.edu/sites/reich.hms.harvard.edu/files/inline-

files/Haak2015PublicData.tar.gz

Real dataset analyzed by Lazaridis et al.,22 https://reich.

hms.harvard.edu/sites/reich.hms.harvard.edu/files/

inline-files/NearEastPublic.tar.gz
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nik, A., et al. (2018). The Beaker phenomenon and the

genomic transformation of northwest Europe. Nature 555,

190–196.

7. Nielsen, R., Akey, J.M., Jakobsson, M., Pritchard, J.K., Tishkoff,

S., and Willerslev, E. (2017). Tracing the peopling of the world

through genomics. Nature 541, 302–310.

8. Pickrell, J.K., and Reich, D. (2014). Toward a new history and

geography of human genes informed by ancient DNA. Trends

Genet. 30, 377–389.

9. Pritchard, J.K., Stephens, M., and Donnelly, P. (2000). Infer-

ence of population structure using multilocus genotype data.

Genetics 155, 945–959.
332 The American Journal of Human Genetics 105, 317–333, August
10. Alexander, D.H., Novembre, J., and Lange, K. (2009). Fast

model-based estimation of ancestry in unrelated individuals.

Genome Res. 19, 1655–1664.

11. Patterson, N., Price, A.L., and Reich, D. (2006). Population

structure and eigenanalysis. PLoS Genet. 2, e190.

12. Malaspinas, A.-S., Tange, O., Moreno-Mayar, J.V., Rasmussen,

M., DeGiorgio, M., Wang, Y., Valdiosera, C.E., Politis, G., Wil-

lerslev, E., and Nielsen, R. (2014). bammds: a tool for assess-

ing the ancestry of low-depth whole-genome data using

multidimensional scaling (MDS). Bioinformatics 30, 2962–

2964.

13. Green, R.E., Krause, J., Briggs, A.W., Maricic, T., Stenzel, U.,

Kircher, M., Patterson, N., Li, H., Zhai, W., Fritz, M.H.-Y.,

et al. (2010). A draft sequence of the Neandertal genome. Sci-

ence 328, 710–722.

14. Patterson, N., Moorjani, P., Luo, Y., Mallick, S., Rohland, N.,

Zhan, Y., Genschoreck, T., Webster, T., and Reich, D. (2012).

Ancient admixture in human history. Genetics 192, 1065–

1093.

15. Peter, B.M. (2016). Admixture, population structure, and

F-statistics. Genetics 202, 1485–1501.

16. Raj, A., Stephens, M., and Pritchard, J.K. (2014).

fastSTRUCTURE: variational inference of population structure

in large SNP data sets. Genetics 197, 573–589.

17. Joseph, T.A., and Pe’er, I. (2018). Inference of population

structure from ancient DNA. Internat. Conf. Res. Com-

putational Mol. Biol., 90–104. https://doi.org/10.1007/978-

3-319-89929-9_6.

18. Blei, D.M., Ng, A.Y., and Jordan, M.I. (2003). Latent

dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022.

19. Blei, D.M. (2012). Probabilistic topic models. Commun. ACM

55, 77–84.

20. Gopalan, P., Hao, W., Blei, D.M., and Storey, J.D. (2016).

Scaling probabilistic models of genetic variation to millions

of humans. Nat. Genet. 48, 1587–1590.

21. Blei,D.M., andLafferty, J.D. (2006).Dynamic topicmodels. Proc.

Int. Conf. Mach. Learn., 113–120. https://doi.org/10.1145/

1143844.1143859.

22. Lazaridis, I., Nadel, D., Rollefson, G., Merrett, D.C., Rohland,

N., Mallick, S., Fernandes, D., Novak, M., Gamarra, B., Sirak,

K., et al. (2016). Genomic insights into the origin of farming

in the ancient Near East. Nature 536, 419–424.

23. Hoffman, M.D., Blei, D.M., Wang, C., and Paisley, J.W. (2013).

Stochastic variational inference. J. Mach. Learn. Res. 14, 1303–

1347.

24. Kalman, R.E. (1960). A new approach to linear filtering and

prediction problems. J Basic Eng-T ASME 82, 35–45.

25. Kelleher, J., Etheridge, A.M., and McVean, G. (2016). Efficient

coalescent simulation and genealogical analysis for large sam-

ple sizes. PLoS Comput. Biol. 12, e1004842.

26. Keller, A., Graefen, A., Ball, M., Matzas, M., Boisguerin, V.,

Maixner, F., Leidinger, P., Backes, C., Khairat, R., Forster, M.,

et al. (2012). New insights into the Tyrolean Iceman’s origin

and phenotype as inferred by whole-genome sequencing.

Nat. Commun. 3, 698.

27. Gamba, C., Jones, E.R., Teasdale, M.D., McLaughlin, R.L.,

Gonzalez-Fortes, G., Mattiangeli, V., Domboróczki, L., K}ovári,
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