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A catalog of genetic loci associated with kidney function from
analyses of a million individuals

A full list of authors and affiliations appears at the end of the article.

Abstract

Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic
complications. Through transancestry meta-analysis of genome-wide association studies of
estimated glomerular filtration rate (eGFR) and independent replication (n7= 1,046,070), we
identified 264 associated loci (166 new). Of these, 147 were likely to be relevant for kidney
function on the basis of associations with the alternative kidney function marker blood urea
nitrogen (7= 416,178). Pathway and enrichment analyses, including mouse models with renal
phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was
associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization
analyses of associations with eGFR among 783,978 European-ancestry individuals and gene
expression across 46 human tissues, including tubulo-interstitial and glomerular kidney
compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted
missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide
a comprehensive priority list of molecular targets for translational research.

CKD is a major public health issue, with increasing incidence and prevalence worldwide?.
Its associated burden of disease encompasses metabolic disturbances, end-stage kidney
disease and multi-systemic complications such as cardiovascular diseasel=*. CKD is a
leading cause of death® and has shown one of the highest increases in disease-attributable
mortality over the last decade?. Nevertheless, public and clinical awareness remain low?,
Moreover, clinical trials in nephrology are still under-represented®, which has resulted in a
scarcity of therapeutic options to alter disease progression and high costs for health
systems’. A major barrier to developing new therapeutics is the limited understanding of the
mechanisms underlying kidney function in health and disease, with the consequent lack of
therapeutic targets.
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Genome-wide association studies (GWAS) and exome-chip studies of the glomerular
filtration rate estimated from serum creatinine (eGFR), the main biomarker to quantify
kidney function and define CKD, have identified nearly 100 eGFR-associated genetic loci®
in samples of European®-15, Asian16-19 and multiple20 ancestry. However, similarly to other
complex traits and diseases, identifying causal genes and molecular mechanisms implicated
by genetic associations is challenging and has only been successful for a few kidney-
function-associated loci?122, Advanced statistical fine-mapping approaches and newly
emerging multi-tissue gene expression data provide new opportunities for prioritizing
putative causal variants, effector genes and target tissues from the results of large-scale
GWAS meta-analyses.

We therefore conducted a trans-ancestry GWAS meta-analysis in the CKD Genetics
(CKDGen) Consortium (7= 765,348) and replicated findings in the Million Veteran
Program (MVP; 1= 280,722)23, for a combined sample size of greater than 1 million
participants. The first aim of this study was to identify new globally important loci for
kidney function through maximizing statistical power (Supplementary Fig 1). Results from
GWAS of the complementary kidney function marker blood urea nitrogen (BUN; n=
416,178) were used to prioritize the eGFR-associated loci on the basis of those most likely
to be relevant for kidney function. A genetic risk score (GRS) for low eGFR was used to test
relevance for clinically diagnosed CKD among 452,264 independent individuals. The second
aim was to characterize replicated eGFR-associated loci through complementary
computational approaches, including various enrichment and network analyses, fine-
mapping, and colocalization with gene expression in 46 tissues and protein levels
(Supplementary Fig 1). We focused this aim on European-ancestry individuals, as fine-
mapping based on summary statistics requires linkage disequilibrium (LD) reference panels
whose sample size scales with that of the GWAS24. The resulting list of prioritized variants
and genes provides a rich resource of potential therapeutic targets to improve CKD treatment
and prevention.

Discovery trans-ancestry meta-analysis.

We performed 121 GWAS encompassing 765,348 individuals of European (7= 567,460),
East Asian (7= 165,726), African-American (n= 13,842), South Asian (n= 13,359) and
Hispanic (7= 4,961) ancestry (median age, 54 years; 50% female; Supplementary Table 1).
The median of the study-specific mean eGFR values was 89 ml min~1 per 1.73 m?
(interquartile range, IQR: 81, 94). GWAS were based on genotypes imputed from Haplotype
Reference Consortium?2® or 1000 Genomes Project26 reference panels (Methods and
Supplementary Table 2). Following study-specific variant filtering and quality-control
procedures, we performed a fixed-effects inverse-variance-weighted meta-analysis, finding
no evidence of unmodeled population structure (LD score regression intercept = 1.04;
genomic control factor A5-= 1.05). After variant filtering, 8,221,591 SNPs were used for
downstream analysis (Methods).

We discovered 308 loci containing at least one eGFR-associated SNP at genome-wide
significance (Methods), of which 200 were new and 108 contained an index SNP reported
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by previous GWAS of eGFR (Fig. 1 and Supplementary Table 3). Regional association plots
are shown in Supplementary Fig 2. The minor alleles across index SNPs showed both
decreasing and increasing effects on eGFR, with larger effects observed for lower-frequency
SNPs (Fig. 1, inset). The 308 index SNPs explained 7.1% of the eGFR variance, nearly
doubling recent GWAS-based estimates®, and 19.6% of eGFR genetic heritability (/2 =
39%, 95% credible interval = 32%, 47%), estimated in a participating general-population-
based pedigree study (Methods and Supplementary Fig 3). The effects of index SNPs were
largely homogeneous across studies (Fig. 2a and Supplementary Table 3) and ancestry
groups (Supplementary Table 4 and Supplementary Note 1).

Replication and meta-analysis of more than 1 million individuals.

Association

We assessed replication in an independent trans-ancestry GWAS meta-analysis of eGFR
performed among 280,722 MVP participants?3. Effect estimates, available for 305 of the 308
SNPs, showed almost perfect directional consistency (302/305 SNPs, 99%) and very strong
correlation with the discovery results (Fig. 2b). For these 305 SNPs, we performed a meta-
analysis of the 1,046,070 discovery and replication samples. Replication was met by 262
SNPs (Fig. 1, Methods and Supplementary Table 3). Of the three SNPs not available in
MVP, the index SNPs at SHROOM3 (P = 3.5 x 107120) and SH3YL 1 (P=1.2 x 10711) were
also considered to be replicated on the basis of previous evidence!®27, resulting in a total of
264 replicated SNPs (166 new). Of these, 74 SNPs were genome-wide significant in MVP
alone (Supplementary Table 3).

of eGFR loci with BUN and CKD.

To evaluate whether associations with creatinine-based eGFR were probably related to
kidney function or potentially to creatinine metabolism, we assessed the association of the
264 eGFR-associated index SNPs with BUN, an alternative marker of kidney function that is
inversely correlated with eGFR. Trans-ancestry meta-analysis of 65 GWAS for BUN (n=
416,178; Supplementary Table 1) showed no evidence of unmodeled population structure
(Agc=1.03; LD score regression intercept = 0.98) and yielded 111 genome-wide-
significant loci (15 known, 96 new; Supplementary Fig 4 and Supplementary Table 5).

Of the 264 replicated eGFR index SNPs, 34 and 146 showed genome-wide-significant and
nominally significant (£ < 0.05) association with BUN, respectively (Supplementary Table
6). SNP effects were inversely correlated (/=—0.65; Fig. 2c). Relevance to kidney function
was classified as ‘likely” for 147 eGFR index SNPs with inverse, significant associations
with BUN (one-sided £< 0.05); ‘inconclusive’ for 102 eGFR index SNPs not associated
with BUN (P= 0.05); and ‘unlikely’ for 15 eGFR index SNPs showing concordant,
significant association with BUN (one-sided P < 0.05; Supplementary Table 6). This
comparative analysis of complementary biomarkers supports the idea that signals at the
majority of eGFR-associated loci probably reflect kidney function.

Next, we investigated the effects of the eGFR index SNPs on CKD in CKDGen studies (1=
625,219, including 64,164 CKD cases; Methods). GWAS meta-analysis of CKD identified
23 genome-wide-significant loci, including 17 likely relevant for kidney function
(SDCCAGS8, LARPA4B, DCDC1, WDR72, UMOD-PDILT, MYO19, AQP4, NFATCI,
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PSD4, HOXDS8, NRIP1, SHROOMS3, FGF5, SLC34A1, DABZ, UNCXand PRKAGZ,
Supplementary Table 6). The majority of replicated eGFR index SNPs (224 of 264) were
associated with CKD (one-sided £ < 0.05; Fig. 1, inset), including 130 likely relevant for
kidney function (Supplementary Table 6).

Finally, we tested whether a GRS based on the combined effect of the 147 eGFR index SNPs
likely relevant for kidney function was associated with clinically diagnosed CKD and CKD-
related outcomes in the UK Biobank (7= 452,264; Methods). A lower GRS, reflecting
genetically lower eGFR, was associated with higher odds ratios (ORs) of chronic renal
failure, glomerular diseases, acute renal failure and hypertensive diseases (Fig. 2d and
Supplementary Fig 5). The OR of chronic renal failure per 10% lower GRS-predicted eGFR
was 2.13 (95% CI = 1.90, 2.39; A= 8.1 x 10738). A significant protective association with
urolithiasis may reflect a reduced ability to concentrate urine at lower eGFR.

Genetic correlations of eGFR and BUN with other phenotypes.

We assessed genome-wide genetic correlations (7,) of eGFR associations with each of 748
complex traits and diseases (Methods)28. We observed 37 significant correlations (P< 6.7 x
107° = 0.05/748; Supplementary Fig 6 and Supplementary Table 7). After serum creatinine,
the largest negative correlations were observed between eGFR and serum citrate (7, = -0.27)
and urate (7,=-0.23), followed by anthropometric traits including lean mass and physical
fitness (for example, 7,=—0.20 for left hand grip strength). While the inverse correlation with
muscle-mass-related traits probably reflects higher creatinine generation leading to lower
creatinine-based eGFR, the correlations with citrate and urate levels probably reflect reduced
filtration function, as does the positive correlation with GFR estimated from cystatin C
(r4=0.53).

A very similar pattern of genetic correlations was observed for BUN (Supplementary Table
7), but the genetic correlations with muscle-mass-related traits were generally lower than for
eGFR. The largest genetic correlation for BUN was observed with CKD (7, = 0.47), as
compared to creatinine-based (7, = -0.29) and cystatin C-based (7, = -0.26) eGFR.

In summary, significant genetic correlations with eGFR reflect the two biological
components that govern serum creatinine concentrations: its excretion via the kidney and its
generation in muscle. The fact that genetic correlations between BUN and muscle-mass-
related traits are generally lower than was observed for eGFR underscores the value of using
genetic associations with BUN to help prioritize eGFR-associated loci most likely to be
relevant for kidney function.

Functional enrichment and pathway analyses.—To identify molecular mechanisms
and tissues of importance for kidney function, we assessed the enrichment of the eGFR and
BUN genetic associations by using tissue-specific gene expression, regulatory annotations,
and gene sets and pathways (Methods). First, we used eGFR-associated SNPs (P< 5 x 1078)
to explore enriched pathways, tissues and cell types on the basis of gene expression data
with DEPICT?°, We identified 16 significantly enriched physiological systems, cell types
and tissues highlighting several aspects of kidney function, physiology and disease. The
strongest enrichment was observed for urogenital and renal physiological systems and
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tissues (kidney, kidney cortex and urinary tract; false-discovery rate (FDR) < 0.05;
Supplementary Fig 7a,b). Pathway and gene set enrichment analysis identified three highly
correlated and strongly associated meta gene sets (P< 1 x 1075, FDR < 0.05), including
some relevant to the kidney such as polyuria, dilated renal tubules and expanded mesangial
matrix, as well as signaling and transcription, and energy metabolism (Supplementary Fig
7c). Tissue and cell-type enrichment analysis of BUN-associated SNPs associated at P< 5 x
1078 highlighted a very similar pattern (Supplementary Fig 8) but without enrichment for
muscle tissues, further supporting the use of BUN to prioritize the loci most likely to be
related to kidney function.

Second, we used stratified LD score regression3 on the genome-wide eGFR and BUN
summary statistics to identify cell-type groups with enriched heritability on the basis of data
from diverse cell-type-specific functional genomic elements. The strongest enrichment for
eGFR was observed for the kidney (13.2-fold), followed by the liver (7.3-fold) and adrenal/
pancreas (5.7-fold enrichment; Supplementary Table 8). The kidney was also the most
enriched cell-type group for BUN (11.5-fold enrichment; Supplementary Table 8).

Finally, by using a complementary approach, we assessed enrichment of eGFR-associated
variants in genes in which disruption results in kidney phenotypes in genetically
manipulated mice3L. From the Mouse Genome Informatics (MGI) database, we selected all
genes for which disruption causes abnormal GFR (7= 24), abnormal kidney physiology (7=
453) or abnormal kidney morphology (n7= 764) and interrogated their human orthologs in
the eGFR summary statistics (Methods). We identified significant associations in ten genes
linked to abnormal GFR in mice (enrichment A= 8.9 x 1074), 55 linked to abnormal kidney
physiology (enrichment A= 1.1 x 1074) and 96 linked to abnormal kidney morphology
(enrichment 2= 1.8 x 107>; Fig. 3 and Methods). Of these, 25 genes represent new eGFR
candidate genes in humans; that is, they have not previously been reported to contain
genome-wide-significant eGFR-associated SNPs or map near known loci (Supplementary
Table 9). The existing mouse models may pave the way for experimental confirmation of
these findings.

Fine-mapping and secondary signal analysis in European-ancestry individuals.

Conditional and fine-mapping analyses were restricted to European-ancestry participants, for
whom data to construct a large enough LD reference panel were publicly available
(Methods). Meta-analysis of 85 European-ancestry CKDGen GWAS identified 256 genome-
wide-significant loci (Supplementary Table 10). Replication among 216,518 European-
ancestry MVP participants confirmed 228 SNPs, including 227 index SNPs that met
replication criteria and the SHROOM?3index SNP (Methods and Supplementary Table 10).
Of these 228 SNPs, 221 mapped to one of the 264 replicated loci from the trans-ancestry
analysis (<500 kb up- or downstream of the trans-ancestry index SNP), and the remaining 7
showed P< 3.3 x 1078 in the trans-ancestry discovery analysis. BUN GWAS meta-analysis
of CKDGen European-ancestry studies (n7=243,029) allowed us to classify 122 SNPs as
likely relevant for kidney function, 90 as inconclusive and 16 as unlikely (Supplementary
Table 10).
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To conduct statistical fine-mapping of the 228 eGFR loci, we first performed summary-
statistics-based conditional analysis and identified 253 independent genome-wide-significant
SNPs (Supplementary Table 11) mapping to 189 regions (Methods). For each independent
variant, we computed a 99% credible set32, with a median set size of 26 SNPs (IQR: 6, 60).
We observed 58 small credible sets (<5 SNPs), including 20 single-SNP sets: EDEMS3,
CACNALS, HOXD11, CPS1, DAB2, SLC34A1, LINC01512, LARP4B, DCDCI,
SLC25A45, SLC6A13, GATM, CGNL1, CYP1A1, NRG4, RPL3L, UMOD-PDILT,
SLC47A1 and two independent sets at BCL2L 14 (Fig. 4 and Supplementary Table 11). Of
the 58 small credible sets, 33 were likely relevant for kidney function and contain genes and
SNPs that can now be prioritized for further study (Supplementary Table 11).

Credible set SNPs were annotated with respect to their functional consequence and
regulatory potential. Missense SNPs with >50% posterior probability (PP) of driving the
association and/or mapping to a small credible set are of particular interest because they
directly implicate the affected gene. Such missense SNPs were identified in 11 genes
(SLC47A1, RPL3L, SLC25A45, CACNALS, EDEM3, CPS1, KLHDC7A, PPM1J, CERSZ,
C9and SLC22AZ, Supplementary Table 12), of which CACNALS, RPL3L, CERS2and C9
were likely relevant for kidney function (Fig. 4a). The majority of the 11 variants had a
combined annotation-dependent depletion (CADD) score greater than 15, indicating
potential deleteriousness33. Several identified genes are plausible biological candidates for
driving the association signal (Table 1). For example, the missense p.(Ala465Val) SNP in
SLC47A1 (PP > 99%) alters the encoded multidrug and toxin extrusion protein (MATEL), a
transport protein responsible for the secretion of cationic drugs, toxins and internal
metabolites including creatinine across brush border membranes, including kidney-proximal
tubules. The fact that S/c47al-knockout mice have higher blood levels of both creatinine and
BUNS34 argues against a sole effect on creatinine transport.

To evaluate the regulatory potential of SNPs from small credible sets in the kidney, we
annotated them to open chromatin regions identified from primary human tubular and
glomerular cell cultures3®, as well as from publicly available kidney cell types (Methods).
We identified 72 SNPs mapping to one of these annotations, which may thus represent
causal regulatory variants (Supplementary Table 12). A particularly interesting finding was
the intronic rs77924615 SNP in PD/LT, which showed PP > 99% of driving the association
at the UMOD locus and mapped to open chromatin in all evaluated resources (native kidney
cells, ENCODE and Roadmap kidney cell types; Fig. 4b).

Gene prioritization: colocalization with gene expression.

We performed colocalization analyses for each eGFR-associated locus with gene expression
in cfsacross 46 tissues, including kidney glomerular and tubulo-interstitial compartments
(Methods). PP > 80% of colocalization in at least one kidney tissue was observed for 17
transcripts mapping to 16 of the 228 replicated loci (Fig. 5), pointing toward a shared
underlying SNP associated with both eGFR and gene expression and implicating the gene
encoding the colocalized transcript as the effector gene for the locus.

New insights emerged on several levels: first, UMOD is a well-established causal gene for
CKD and can therefore be used to evaluate our workflow. In the tubulo-interstitial
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compartment, we observed a shared underlying variant associated with higher UMOD gene
expression and lower eGFR (Fig. 5), in agreement with previous GWAS of urinary
uromodulin concentration, in which alleles associated with lower eGFR at UMOD' were
associated with higher urinary uromodulin concentrations3®. The lead SNP at this locus was
rs77924615, highlighted above as the candidate causal regulatory variant mapping to an
intron of PD/LT (upstream of UMOD). The association with differential UMOD but not
PDILT gene expression supports UMOD as the causal gene and rs77924615 as a regulatory
SNP.

Second, new biologically plausible candidates emerged. For example, our results suggest
KNGI1and FGF5 as effector genes in the respective eGFR-associated loci (Fig. 5 and
Supplementary Table 13). KNG1 encodes the high-molecular-weight kininogen, which is
cleaved to bradykinin. Bradykinin influences blood pressure, natriuresis and diuresis and can
be linked to kidney function via the renin-angiotensin-aldosterone system3’. FGF5encodes
fibroblast growth factor 5, and the index SNPs for eGFR or highly correlated SNPs (/2 > 0.9)
have been identified in multiple GWAS of blood pressure, atrial fibrillation, coronary artery
disease, hematocrit and multiple kidney-function-related traits (Supplementary Table 13).
The eGFR index SNP rs1458038 (PP > 50%, CADD score = 14.8; Supplementary Table 13)
colocalized with the eGFR signal only in the tubulo-interstitial kidney portion (Fig. 5),
supporting its regulatory potential in controlling the expression levels of FGF5in this
compartment. Both KNGZ1 and FGF5index SNPs were associated with BUN and CKD and
are thus probably related to kidney function.

Third, for loci that showed colocalization of eGFR signals with gene expression in kidney
and multiple other tissues, in some cases the allelic effect direction on gene expression was
concordant across all tissues (for example, METTL 10), whereas in other cases it differed by
tissue (for example, SH3YL1; Fig. 5). These observations were also reflected broadly across
all transcripts with evidence of colocalization in any tissue (Supplementary Fig 9) and
highlight tissue-shared and tissue-specific signals38-39.

Finally, trans expression quantitative trait locus (#rans-eQTL) annotation of the index SNPs
in whole and peripheral blood identified a reproducible link of rs10774625 (12924.11) with
several transcripts (Methods, Supplementary Table 14 and 15, and Supplementary Note 2).

Colocalization with uromodulin protein levels in urine.

The UMOD locus is of particular clinical interest for CKD research?!: rare UMOD
mutations cause autosomal dominant tubulo-interstitial kidney disease*®, and common
variants at UMOD give rise to the strongest eGFR and CKD GWAS signals!®. We therefore
performed conditional analyses based on European-ancestry-specific summary statistics and
found two independent variants: rs77924615, mapping upstream of PD/LT, and rs34882080,
mapping to an intron of UMOD (Fig. 6a). SNP association with the urinary uromodulinto-
creatinine ratio (UUCR) in one participating cohort (Fig. 6b) matched the eGFR association
pattern. Colocalization of the conditional eGFR and UUCR associations was evaluated
separately for rs34882080 (Fig. 6¢) and rs77924615 (Fig. 6d). Both regions showed high
probability of a shared underlying variant driving the respective associations with eGFR and
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UUCR levels (PP = 97% and 96%, respectively), further supporting rs77924615 as a causal
regulatory variant and UMOD as its effector gene.

A summary of the various gene characterization results for replicated loci from the
European-ancestry analysis is shown in Supplementary Table 16, to facilitate selection of the
most promising candidates for further experimental studies.

Discussion

This trans-ancestry study is fivefold larger than previous GWAS meta-analyses for eGFR
and identified 264 replicated loci, 166 of which are reported here for the first time. By also
analyzing BUN, an established complementary marker of kidney function, we highlight
eGFR-associated loci that are likely to be important for kidney function as opposed to
creatinine metabolism and provide a comprehensive annotation resource. Clinical relevance
is supported by associations of a GRS for low eGFR with higher odds of clinically
diagnosed CKD, CKD-related phenotypes and hypertension. Enrichment analyses confirm
the kidney as the main target organ. Colocalization of associations with eGFR and gene
expression in the kidney implicates specific target genes for follow-up. Conditional analyses,
fine-mapping and functional annotation at 228 replicated eGFR-associated loci among
European-ancestry participants implicate single potentially causal variants at 20 loci.

Most previous GWAS meta-analyses for eGFR have been limited to a single ancestry group®
and did not prioritize causal variants or effector genes in associated loci. Although
underpowered to uncover new loci, one previous trans-ancestry study used fine-mapping,
resolving one signal to a single variant?9, rs77924615 at UMOD-PDILT, which is also
identified in our study. At this locus, we further characterized the relationship between the
causal variant, UMOD expression in the target tissue and uromodulin protein levels. This
increase in resolution—from a locus to a single potentially causal variant with its effector
gene, protein and target tissue— represents a critical advance over 10 years of eGFR
GWAS? and is a prerequisite for translational research.

The complementary multi-tissue approaches, including enrichment analyses based on gene
expression, regulatory annotations, and gene sets and pathways, highlight the kidney as the
most important target organ. However, relatively few kidney-specific experimental datasets
are publicly available. For example, the kidney is not well represented in the Genotype-
Tissue Expression (GTEX) Project and is not included in its tissue-specific eQTL datasets38,
emphasizing the value of open-access resources and in-depth characterization of uncommon
tissues and cell types. We were able to specifically investigate the kidney by using a recently
published eQTL dataset from glomerular and tubulo-interstitial portions of microdissected
human kidney biopsies*?, kidney-specific regulatory information from the ENCODE and
Roadmap Epigenomics resources, and by obtaining regulatory information from primary
cultures of human glomerular and tubulo-interstitial cells3®.

Functional follow-up studies of potentially causal variants should benefit from prioritized
loci that show clear evidence supporting one or a few SNPs driving the association signal.
The fine-mapping workflow allowed us to prioritize several SNPs at single-SNP resolution
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or at a resolution of <5 SNPs, some of which may have broader clinical relevance. For
example, the OCT2 protein encoded by SLC22AZ2transports several cationic drugs such as
metoprolol, cisplatin, metformin and cimetidine across the basolateral membrane of renal
tubular cells*2. The prioritized missense SNP encodes p.(Ser270Ala), a known
pharmacogenomic variant that alters the transport of these drugs and their side effects, such
as cisplatin-induced nephrotoxicity*3. Along the same lines, the prioritized SNP encoding
the p.(Ala465Val) substitution in the transporter MATEL encoded by SLC47A1 may affect
the ability to secrete drugs and other toxins from proximal tubular cells into the urine** and
hence alter CKD risk.

Strengths of this project include the large sample size with dense genotype imputation,
standardized and automated phenotype generation and quality control, and independent
replication, as well as the advanced and comprehensive downstream bioinformatics analyses.
Further strengths are the use of BUN to prioritize eGFR-associated loci likely relevant for
kidney function and to provide genome-wide BUN summary statistics as an annotation
resource for other studies of eGFR. Moreover, we evaluated a GRS for eGFR for association
with clinically diagnosed CKD in a large independent study. Among the limitations, non-
European populations are still under-represented in our study, as in many other genomic
efforts#>. Statistical fine-mapping using trans-ancestry data with different LD structures can
potentially narrow association signals. However, a sufficiently large reference dataset to
compute ancestry-matched LD structure for summary-statistics-based fine-mapping was
only available for European ancestry, highlighting the potential of future large-scale efforts
with trans-ancestry fine-mapping and the need to generate data from non-European-ancestry
populations, thereby enabling such endeavors. Finally, several SNPs had small effective
sample sizes in some subpopulations, which might have affected the ability to assess
between-ancestry heterogeneity and potentially underestimated true heterogeneity.

We estimated GFR from serum creatinine, as done in clinical practice and observational
studies, because direct measurement of kidney function is invasive, time-consuming and
burdensome. Under the assumption that genetic associations supported by multiple markers
are less likely to reflect marker metabolism, we used BUN to prioritize eGFR-associated loci
likely to be relevant to kidney function. Blood creatinine, urea and cystatin C concentrations
are influenced not only by glomerular filtration but also by the synthesis, active secretion
and reabsorption of these molecules, as illustrated by loci detected in our study: for example,
the GATM locus was associated with eGFR but not with BUN, in agreement with the
function of the encoded protein as a rate-limiting enzyme in creatine synthesis#6.
Conversely, the SLC14A2locus was associated with BUN but not with eGFR, in line with
the function of the encoded protein as a urea transporter®”. Even so, lack of association for a
SNP with one kidney function marker based on a combination of Pvalue and effect direction
may not necessarily mean that the locus is not relevant to kidney function. Our
categorization of the eGFR loci into three classes on the basis of direction of effect and
significance of BUN association should be interpreted with caution, with ‘likely” and
‘unlikely’ reflecting uncertainty of the assignment. Factors complicating the comparison of
eGFR and BUN associations at the locus level are differential statistical power, differential
ancestry distribution and potential allelic heterogeneity. Further large-scale studies with
multiple kidney function markers measured in the same individuals are therefore warranted.
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To identify broadly representative and generalizable association signals, we focused on
SNPs that were present in the majority of the participating studies. This choice might have
limited our ability to uncover new variants or to fine-map low-frequency or population-
specific variants, which represents a complementary avenue of research. Moreover, even
with well-powered fine-mapping approaches, potentially causal SNPs need to be confirmed
as functional variants in experimental studies. Although colocalization with gene expression
can help prioritize effector genes, these associations are based on measures from a single
time point and hence cannot answer whether changes in gene expression precede or follow
changes in kidney function.

In summary, we have identified and characterized a large number of loci associated with
eGFR and prioritized potential effector genes, driver variants and target tissues. These
findings will help direct functional studies and advance the understanding of kidney function
biology, a prerequisite to develop novel therapies to reduce the burden of CKD.

Online content

Methods

Overview.

Any methods, additional references, Nature Research reporting summaries, source data,
statements of code and data availability and associated accession codes are available at
https://doi.org/10.1038/s41588-019-0407-x.

We set up a collaborative meta-analysis based on a distributive data model and quality-
control procedures. To maximize phenotype standardization across studies, an analysis plan
and a command line script (https://github.com/genepi-freiburg/ckdgen-pheno) were created
centrally and provided to all participating studies (mostly population-based studies;
Supplementary Table 1). Data processing, analysis and troubleshooting instructions were
distributed to all studies via a wiki system (https://ckdgen.eurac.edu/mediawiki/index.php/
CKDGen_Round_4_EPACTS_analysis_plan). Automatically generated summary files were
checked centrally. Upon phenotype approval, studies ran their GWAS and uploaded results
and imputation quality (1Q) information to a common calculation server. GWAS quality
control was performed with GWAtoolbox5% and custom scripts to assess ancestry-matched
allele frequencies and variant positions. All studies had their own research protocols
approved by the respective local ethics committees. All participants in all studies provided
written informed consent.

Phenotype definition.

Each study measured serum creatinine and BUN concentrations as described in
Supplementary Table 1. Creatinine values obtained with a Jaffé assay before 2009 were
calibrated by multiplying by 0.95 (ref.61). Studies on adults (>18 years of age) estimated
GFR with the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation®2,
by using the R package nephro83. Studies on individuals who were 18 years old or younger
used the Schwartz formula®4. eGFR was winsorized at 15 and 200 ml min~1 per 1.73 m2,
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CKD was defined as an eGFR below 60 ml min~ per 1.73 mZ2. In studies reporting blood
urea measurements, BUN was derived as blood urea x 2.8, with units expressed as mg dI~2.

Genotyping and genotype imputation.

Genotypes were imputed on the basis of the Haplotype Reference Consortium v1.1 or 1000
Genomes Project phase 3 v5 (1000Gp3v5) ALL or phase 1 v3 (1000Gp1v3) ALL panel.
Imputed variants were coded as allelic dosages accompanied by the corresponding 1Q scores
(IMPUTE?2? info score, MACH/minimac RSQ or as applicable) and annotated on the NCBI
b37 (hg19) reference build (see Supplementary Table 2 for study-specific genotyping arrays,
haplotype phasing and genotype imputation methods).

Genome-wide association studies. Each study fitted sex- and age-adjusted linear regression
models to log(eGFR) and BUN. Regression residuals were regressed on SNP dosage,
assuming an additive genetic model. Study site, genetic principal components, relatedness
and other study-specific features were accounted for in the study-specific models as
appropriate (Supplementary Table 2). Logistic regression models were fitted for CKD.

Trans-ancestry GWAS meta-analysis.

Studies contributed 121 GWAS summary statistics files for eGFR (total post-quality-control
n=1765,348), 60 GWAS files for CKD (total post-quality-control n= 625,219, including
64,164 CKD cases) and 65 GWAS files for BUN (total post-quality-control 7= 416,178).
Ancestry-specific details for eGFR, CKD and BUN are given in Supplementary Table 1.

Before meta-analysis, study-specific GWAS files were filtered to retain only variants with
IQ score > 0.6 and minor allele count (MAC) > 10, and genomic control (GC) correction
was applied in the case where GC factor Agc > 1. Fixed-effects inverse-variance-weighted
meta-analysis was performed with METALS®, which was adapted to increase the precision
of effect estimates and their standard errors (seven decimal places instead of four).

After meta-analysis of 43,994,957 SNPs, only SNPs present in 250% of the GWAS files and
with total MAC = 400 were retained. Across ancestry groups, this yielded 8,221,591 variants
for eGFR (8,834,748 in European ancestry), 8,176,554 variants for BUN (8,358,347 in
European ancestry) and 9,585,923 variants for CKD. Post-meta-analysis GC correction was
not applied (LD score regression intercept ~ 1 in all analyses of eGFR, BUN and CKD)®.
The genome-wide significance level was set at 5 x 1078, Between-study heterogeneity was
assessed with the /2 statistic®”. For CKD, variants with £ > 95% were removed to moderate
the influence of single large studies. Variants were assigned to loci by selecting the SNP
with the lowest Pvalue across the genome as the index SNP, defining the corresponding
locus as the 1-Mb segment centered on the index SNP, and repeating the procedure until no
further genome-wide-significant SNPs remained. The extended major histocompatibility
complex (MHC) region was considered as a single locus. A locus was considered to be new
if not containing any variant identified by previous GWAS of eGFR.

Nat Genet. Author manuscript; available in PMC 2019 August 19.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Wauttke et al.

Page 13

Meta-regression analysis of trans-ancestry GWAS.

For eGFR, we evaluated ancestry-related heterogeneity by using the software Meta-
Regression of Multi-Ethnic Genetic Association (MR-MEGA, v0.1.2)%8 with study-specific
GWAS results. Meta-regression models included three axes of genetic variation. Genomic
control correction was applied to the meta-regression results. The 308 genome-wide-
significant index SNPs from the trans-ancestry GWAS meta-analysis were tested for
ancestry-related heterogeneity of the allelic effects at a significance level of 0.05/308 = 1.6 x
104 (referring to the corresponding Pvalue as Pyc-het)-

Variance explained and genetic heritability.

The proportion of phenotypic variance explained by the index SNPs was estimated as
ﬁz(M), with B being the SNP effect, p the effect allele frequency and var the variance

var
of the sex- and age-adjusted log(eGFR) residuals (assumed to be 0.016 on the basis of data
from 11,827 European-ancestry participants of the population-based ARIC study)®. Genetic
heritability for age- and sex-adjusted log(eGFR) was estimated with the R package
MCMCgImm®® on the Cooperative Health Research in South Tyrol (CHRIS) study’?, a
participating pedigree-based study with 186 pedigrees of up to five generations (n=
4,373)"1, We fitted two models with and without inclusion of the identified index SNPs
(304/308), running 1 million MCMC iterations (burn-in = 500,000)71.

Comparison with and replication of results in the MVP.

The eGFR-associated SNPs identified in the discovery GWAS meta-analyses were tested for
replication in a GWAS from the MVP23, an independent trans-ancestry study with
participants recruited across 63 US Veterans Administration (VA) medical facilities. Written
informed consent was obtained and all documents and protocols were approved by the VA
Central Institutional Review Board. After genotyping and quality control, genotypes were
phased and imputed on the 1000Gp3v5 reference panel. Serum creatinine was assessed up to
1 year before MVP enrollment by isotope dilution mass spectrometry. GFR was estimated
by using the CKD-EPI equation? after excluding subjects on dialysis, transplant patients,
amputees, individuals on HIV medications and those with creatinine values of <0.4 mg dI~1.
GWAS of eGFR on SNP dosage were performed by fitting linear regression models adjusted
for age at creatinine measurement, age2, sex, body-mass index and the first ten genetic
principal components, by using SNPTEST v2.5.4-beta’2. All GWAS were stratified by self-
reported ancestry (79.6% white non-Hispanic, 20.4% black non-Hispanic), diabetes and
hypertension status. Results were combined across strata by fixed-effects inverse-variance-
weighted meta-analysis in METALS3. This analysis encompassed a total of 280,722
individuals across all strata, of whom 216,518 were non-Hispanic whites (European
ancestry). The MVP is described more extensively in the Supplementary Note 3.

Of the 308 eGFR index SNPs identified in the CKDGen trans-ancestry analysis, 305 variants
or their good proxies were available in the MVP GWAS (proxies were required to have /2 >
0.8 with the index SNP and were selected by maximum 72 followed by minimum distance in
the case of ties). Replication testing of the 256 European-ancestry-specific index SNPs was
restricted to the MVP European-ancestry GWAS. CKDGen and MVP meta-analysis results

Nat Genet. Author manuscript; available in PMC 2019 August 19.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Wauttke et al.

Page 14

were pooled via sample-size-weighted meta-analysis of zscores with METAL®5. In both the
trans-ancestry and European-ancestry-specific analyses, replication was defined by one-
sided £< 0.05 in the MVP and genome-wide significance of the CKDGen and MVP meta-
analysis result.

Assessment of relevance to kidney function with BUN.

We used genetic associations with BUN to assess replicated eGFR-associated SNPs with
respect to their potential relevance to kidney function. Support for kidney function relevance
was categorized as ‘likely’ for all eGFR index SNPs with an inverse, significant (one-sided P
< 0.05) association with BUN for a given reference allele, ‘inconclusive’ for eGFR index
SNPs whose effect on BUN was not different from0 (£= 0.05) and ‘unlikely’ for all eGFR
index SNPs with a concordant, significant (one-sided £ < 0.05) association with BUN for a
given reference allele.

Genetic risk score analysis in the UK Biobank dataset.

To test the combined effect of eGFR-associated SNPs on outcomes related to clinically
diagnosed CKD, a GRS-based association analysis was conducted on the basis of summary
GWAS results, as described previously”3:74. Genetic association results with diseases were
obtained for 452,264 UK Biobank participants available in the GeneAtlas’® database for
glomerular diseases (ICD-10 codes N00-NO08; 2,289 cases); acute renal failure (N17; 4,913
cases); chronic renal failure (N18; 4,905 cases); urolithiasis (N20-N23; 7,053 cases);
hypertensive diseases (110-115; 84,910 cases); and ischemic heart diseases (120-125; 33,387
cases). Asthma (J45; 28,628 cases) was included as a negative control. The log(estimated
OR) value provided by the GeneAtlas PheWAS interface was used as the effect size, and its
standard error was calculated from the corresponding effect size and Pvalue. When OR =1,
the standard error was imputed by the median value of the remaining associations of the
trait. Of thel47 eGFR index SNPs from the trans-ancestry GWAS meta-analysis that were
replicated and showed likely relevance to kidney function, 144 were available in the UK
Biobank dataset, and 259 of all 264 replicated trans-ancestry GWAS meta-analysis SNPs
were available. The effect of the GRS association () corresponds to the OR for the disease
depending on the relative change in eGFR, for example, OR = 1.108 for a 10% change in
eGFR. Alternatively, exp(f) can be interpreted as the OR for the disease per unit change in
log(eGFR).

Genetic correlations with other complex traits and diseases.

Genome-wide genetic correlation analysis was performed to investigate evidence of co-
regulation or shared genetic basis between eGFR and BUN concentrations and other
complex traits and diseases, both known and not known to correlate with eGFR and BUN.
We estimated pairwise genetic correlation coefficients (7g) between the results of our trans-
ancestry meta-analyses of eGFR and BUN and each of 748 precomputed and publicly
available GWAS summary statistics for complex traits and diseases available through LD
Hub v1.9.0 by using LD score regression?®. An overview of the sources of these summary
statistics and their corresponding sample sizes is available at http://Idsc.broadinstitute.org/.
Statistical significance was assessed at the Bonferroni-corrected level of 0.05/748 = 6.7 x
1075,
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Pathway and tissue enrichment analysis.

We used DEPICT v1 release 194 to perform DEPICT analysis??, including pathway/gene set
enrichment and tissue/cell-type analyses as described previously®19. All 14,461 gene sets
were reconstituted by identifying genes that were transcriptionally co-regulated with other
genes in a panel of 77,840 gene expression microarrays’6, from mouse knockout studies,
and molecular pathways from protein-protein interaction screening. In the tissue and cell-
type enrichment analysis, we tested whether genes in associated regions were highly
expressed in 209 MeSH annotation categories for 37,427 microarrays (Affymetrix U133
Plus 2.0 array platform). For both eGFR and BUN, we included all variants associated with
the trait at 2< 5 x 1078 in the trans-ancestry meta-analysis. Independent variant clumping
was performed by using PLINK 1.9 (ref.”?) with 500-kb flanking regions and /2> 0.01 in the
1000Gp1v3 dataset. After excluding the MHC region, DEPICT was run with 500 repetitions
to estimate the FDR and 5,000 permutations to compute P values adjusted for gene length by
using 500 null GWAS. All significant gene sets were merged into meta gene sets by running
an affinity propagation algorithm?’® implemented in the Python scikit-learn package (http://
scikit-learn.org/). The resulting network was visualized with Cytoscape (http://
cytoscape.org/).

Enrichment of heritability by cell-type group.

We used stratified LD score regression to investigate important tissues and cell types on the
basis of the trans-ancestry eGFR and BUN meta-analysis results. Heritability enrichment in
ten cell-type groups was assessed by using the default options of stratified LD score
regression described previously30. The ten cell-type groups were collapsed from 220 cell-
type-specific regulatory annotations for the four histone marks H3K4mel, H3K4me3,
H3K9ac and H3K27ac. Enrichment in a cell-type category was defined as the proportion of
SNP heritability in that group divided by the proportion of SNPs in the same cell-type group.

Analysis of genes causing kidney phenotypes in mice.

A nested candidate gene analysis was performed with GenToS’® to identify additional
genetic associations that were not genome-wide significant. Candidate genes that when
manipulated cause kidney phenotypes in mice were selected with the comprehensive MGI
phenotype ontology in September 2017 (abnormal renal glomerular filtration rate (MP:
0002847); abnormal kidney morphology (MP:0002135); abnormal kidney physiology (MP:
0002136)). The human orthologs of these genes were obtained, when available, with the
Human-Mouse: Disease Connection webtool (http://www.informatics.jax.org/
humanDisease.html). Statistical significance was defined as Bonferroni correction of a type |
error level of 0.05 for the number of independent common SNPs across all genes in each of
the three candidate gene lists plus their flanking regions, derived from an ancestry-matched
reference population. The GWAS meta-analysis summary statistics for eGFR were queried
for significantly associated SNPs mapping to the selected candidate genes. Enrichment of
significant genetic associations in genes within each candidate list was computed from the
complementary cumulative binomial distribution”®. GenToS was used with default
parameters on each of the three candidate gene lists, with the 1000 Genomes phase 3 release
2 ALL dataset as reference.
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Independent variant identification in the European-ancestry meta-analysis.

To identify additional independent eGFR-associated variants within the European-ancestry-
specific and replicated loci, approximate conditional analyses were performed on the basis
of genome-wide discovery summary statistics that incorporated LD information from an
ancestry-matched reference population. These analyses were restricted to participants of
European ancestry because an LD reference sample scaled to the size of our meta-analysis
could only be constructed from publicly available data for European-ancestry individuals??,
for which we randomly selected 15,000 UK Biobank participants (dataset ID 8974).
Individuals who withdrew consent and those not meeting data cleaning requirements were
excluded, keeping only those who passed a sex-consistency check, had a >95% call rate and
did not represent outliers with respect to SNP heterozygosity. For each pair of individuals,
the proportion of variants shared identical by descent (IBD) was computed with PLINKEO.
Only one member of each pair with an IBD coefficient >0.1875 was retained. Individuals
were restricted to those of European ancestry by excluding outliers along the first two
principal components from a principal-component analysis seeded with the HapMap phase 3
release 2 populations as reference. The final dataset to estimate LD included 13,558
European-ancestry individuals and 16,969,363 SNPs.

The basis for statistical fine-mapping was the 228 1-Mb genome-wide-significant loci
identified in the European-ancestry meta-analysis, clipping at chromosome borders.
Overlapping loci as well as pairs of loci whose respective index SNPs were correlated (/2 >
0.1 in the UK Biobank LD dataset described above) were merged. A single SNP was chosen
to represent the MHC region, resulting in a final list of 189 regions before fine-mapping.
Within each region, the GCTA COJO Slct algorithm8? was applied to identify independent
variants by using a stepwise forward selection approach. We used the default collinearity
cutoff of 0.9 (sensitivity analyses showed no major influence of alternative cutoff values;
data not shown). We deemed an additional SNP as independently genome-wide significant if
the SNP’s Pvalue conditional on all previously identified SNPs in the same region was <5 x
1078,

Fine-mapping and credible sets in the European-ancestry meta-analysis.

Foreach region containing multiple independent SNPs and for each independent SNP in such
regions, approximate conditional analyses were conducted with the GCTA COJO-Cond
algorithm to generate approximate conditional association statistics conditioned on the other
independent SNPs in the region. By using Wakefield’s formula implemented in the R
package gtx82, we derived approximate Bayes factors (ABFs) from conditional estimates in
regions with multiple independent SNPs and from the original estimates for regions with a
single independent SNP. Given that 95% of the SNP effects on log(eGFR) fell within the
range —0.01 to 0.01, the standard deviation prior was chosen as 0.0051 on the basis of
formula (8) in the original publication32. Sensitivity analyses showed that results were robust
when higher values were used for the standard deviation prior (data not shown). For each
variant within an evaluated region, the ABF obtained from the association S values and their
standard errors for the marginal (single-signal regions) or conditional (multi-signal regions)
estimates was used to calculate the PP for a SNP of driving the association signal (‘causal
variant”). We derived 99% credible sets, representing the SNP sets containing the variant(s)
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driving the association signal with 99% probability, by ranking variants by their PPs and
adding them to the set until cumulative PP > 99% was reached in each region.

Variant annotation.

Functional annotation of SNPs mapping to credible sets was performed with SNiPA v3.2
(March 2017)83, on the basis of the 1000Gp3v5 and Ensembl v87 datasets. SNiPA was also
used to derive the CADD Phred-like score®4, on the basis of CADD v1.3. The Ensembl VEP
tool®> was used for prediction of the primary effects of SNPs.

Colocalization of eGFR signal and gene expression in cis.

As the great majority of gene expression datasets are generated on the basis of European-
ancestry samples, colocalization analysis was based on genetic associations with eGFR in
the European-ancestry sample and with gene expression (eQTLSs) quantified from
microdissected human glomerular and tubulo-interstitial kidney portions from 187
individuals from the NEPTUNE study*!, as well as the 44 tissues included in the GTEx
Project v6p release38. The eQTL and GWAS effect alleles were harmonized. For each locus,
we identified tissue gene pairs with reported eQTL data within £100 kb of each GWAS
index SNP. The region for each colocalization test was the eQTL cis window defined in the
underlying GTEx and NephQTL studies. We used the coloc.fast function, with the default
setting, from the R package gtx (https://github.com/tobyjohnson/gtx), which is an adaptation
of Giambartolomei’s colocalization method®8. The gtx package was also used to estimate
the direction of effect over the credible sets as the ratio of the average PP-weighted GWAS
effects over the PP-weighted eQTL effects.

Trans-eQTL analysis.

We performed trans-eQTL annotation through LD mapping on the basis of the 1000Gp3v5
European reference panel (/2 cutoff of >0.8). We limited annotation to replicated index SNPs
with fine-mapping PP = 1%. Owing to expected small effect sizes, only genome-wide frans-
eQTL studies of either peripheral blood mononuclear cells or whole blood with 7> 1,000
individuals were considered, resulting in five non-overlapping studies®’-21 (Supplementary
Table 14). For one study®!, we had access to an update with larger sample size (7= 6,645)
obtained by combining two non-overlapping studies (LIFE-Heart®2 and LIFE-Adult®3). To
improve the stringency of results, we focused the analysis on interchromosomal #frans-eQTLs
with <5 x 1078 in 22 studies.

Colocalization with urinary uromodulin concentrations.

Association of genetic variants with UUCR at the UMOD-PDILT locus was evaluated in the
German Chronic Kidney Disease (GCKD) study®*. Uromodulin concentrations were
measured from frozen stored urine by an established ELISA with excellent performance36,
Concentrations were indexed to creatinine to account for urine dilution. Genetic associations
were assessed with the same software and settings as for eGFR association (Supplementary
Table 2). Colocalization analyses were performed with identical software and settings as
described above for the association with gene expression.
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Reporting Summary.

Further information on research design is available in the Nature Research Reporting
Summary linked to this article.

Data availability

Genome-wide summary statistics for this study have been made publicly available at http://
ckdgen.imbi.uni-freiburg.de.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Trans-ancestry GWAS meta-analysis identifies 308 loci associated with eGFR.
Circos plot. The red band corresponds to —logo(#) for association with eGFR () axis

truncated at 30), by chromosomal position. The blue line indicates genome-wide
significance (P=5x1078). Black gene labels indicate new loci, while blue labels indicate
known loci. Non-replicating loci are colored in gray (new) or light blue (known). The green
band corresponds to measures of heterogeneity related to the index SNPs associated with
eGFR. Dot sizes are proportional to /2 or ancestry-related heterogeneity (Pinc-het). The blue
band corresponds to —log(P) for association with CKD (y axis truncated at 20), by
chromosomal position. The red line indicates genome-wide significance (P= 5x1078).
Radial lines mark regions with Pync-net <1.6x107 = 0.05/308 or 2>25%. Inset, effects of all
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308 index SNPs on log(eGFR)by minor allele frequency, colored by the associated OR for
CKD (red scale for OR<1, blue scale for OR>1). The largest effects on CKD were observed
for rs77924615 at UMOD-PDILT (OR = 0.81, 95% confidence interval (CI) = 0.80, 0.83),
rs187355703 at HOXDE (OR = 0.82, 95% CI = 0.77, 0.87) and rs10254101 at PRKAGZ (OR
=1.11, 95% CI =1.09, 1.11). Triangles highlight SNPs that were associated with CKD (one-
sided A<0.05).
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Fig. 2 |. Generalizability with respect to other populations and other kidney function markers.
a, Measures of heterogeneity for the 308 eGFR-associated index SNPs. Each variant’s

heterogeneity quantified as /2 from the trans-ancestry meta-analysis () axis) is compared to
the ancestry-related heterogeneity from meta-regression (—10919(Panc-het); X axis).
Histograms summarize the distribution of the heterogeneity measures on both axes. SNPs
with ancestry-related heterogeneity (Pync-net<1.6%10~4 = 0.05/308) are marked in blue and
labeled; SNPs with /2>50% are labeled. b, Comparison of genetic effect estimates between
CKDGen Consortium discovery (x axis) and MVP replication () axis). Blue font indicates
one-sided A<0.05 in the MVP. Error bars correspond to 95% Cls. The dashed line
corresponds to the line of best fit. Pearson’s correlation coefficient = 0.92 (95% CI = 0.90,
0.94). ¢, The magnitude of genetic effects on eGFR (x axis) as compared to BUN () axis) for
the 264 replicated eGFR-associated index SNPs. Color coding reflects evidence of kidney
function relevance (Methods), which is coded as ‘likely” (blue), ‘inconclusive’ (gray) or
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‘unlikely’ (green). Error bars correspond to 95% Cls. The dashed line corresponds to the
line of best fit. Pearson’s correlation coefficient /=—0.65 (95% CI = -0.72, -0.58). d,
Association of lower genetically predicted eGFR based on a GRS of 147 SNPs likely to be
most relevant for kidney function with ICD-10-based clinical diagnoses for 452,264
individuals from the UK Biobank. Asthma was included as a negative control. Results are
displayed as the OR and 95% CI per 10% lower GRS-predicted eGFR (Methods).
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b c

Fig. 3 |. Human orthologs of genes with renal phenotypes in genetically manipulated mice are
enriched for association signals with eGFR.

a-c, Signals in candidate genes identified on the basis of the mouse phenotypes of abnormal
GFR (a), abnormal kidney physiology (b) and abnormal kidney morphology (c). The y axis
shows —log1g (P) for association with eGFR in the trans-ancestry meta-analysis for the
variant with the lowest Pvalue in each candidate gene. The dashed line corresponds to
genome-wide significance (P = 5x1078), and the solid gray line corresponds to the
experiment-wide significance threshold for each nested candidate gene analysis. Orange,
genome-wide significance; red, experiment-wide but not genome-wide significance; blue, no
significantly associated SNPs. Genes are labeled if they reached experiment- but not
genome-wide significance; black font indicates genes not mapping to loci reported in the
main analysis. Enrichment Pvalues correspond to the observed number of genes with
association signals below the experiment-wide threshold against the number expected on the
basis of the complementary cumulative binomial distribution (Methods).
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Fig. 4 |. credible set size plotted against variant posterior probability for 3,655 sNPs in 253 99%
credible sets according to variant annotation.

a, Exonic variants. SNPs are marked by triangles, with triangle size proportional to CADD
score. Red triangles indicate missense SNPs mapping to small credible sets (<5 SNPSs) or to
sets containing SNPs with high individual PP of driving the association signal (>50%). b,
SNPs with regulatory potential. Symbol color corresponds to regulatory potential as derived
from DNase | hypersensitivity analysis in target tissues (Methods). Annotation was
restricted to variants with PP>1%; SNPs with PP=90% contained in credible sets with <10
SNPs are labeled. Data are plotted as credible set size (x axis) against variant PP() axis).
Blue and green color coding for gene and SNP labels refers to kidney-function relevance and
has the same meaning as in Fig. 2.
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Fig. 5 |. colocalization of eGFR association signals with gene expression in kidney tissues.
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All eGFR loci were tested for colocalization with all eQTLs where the eQTL c¢/s window

overlapped (100 kb) the sentinel genetic variant. Genes with at least one positive

colocalization (PP of one common causal variant (H;)=80%) in a kidney tissue are shown
with the respective sentinel SNP () axis). Colocalizations across all tissues (x axis) are

illustrated as dots, where dot size corresponds to the PP of colocalization. Negative

colocalizations (PP for H;<80%) are gray, while positive colocalizations are colored

according to the predicted change in expression relative to the allele associated with lower

eGFR.
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Fig. 6 |. Colocalization of independent eGFR association signals at the UMOD-PDILT locus with
urinary uromodulin concentrations (UUCR) supports UMOD as the effector gene.

Association plots show association —log,o(~P value) () axis) plotted against chromosomal
position (x axis). a, Approximate conditional analyses among European-ancestry individuals
support the presence of two independent eGFR-associated signals. b, The association signal
for uromodulin (UUCR) levels is similar; /2 = 0.93 between rs34882080 and rs34262842.
¢,d, Colocalization of association with eGFR (top) and uromodulin (UUCR) levels (bottom)
for the independent regions centered on UMOD (c) and PDILT (d) supports a shared

underlying variant in both regions with high PP.
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