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Abstract

The purpose of this review is to introduce differential equations as a simulation tool in the 

biological and clinical sciences. This modeling technique is very mature and has been a preferred 

tool of physiologists and bioengineers, and of quantitative scientists in general, to describe and 

predict the behavior of complex interacting systems. However, this methodology has not been 

widely used within clinical medicine, due to a lack of familiarity with highly quantitative methods, 

and a greater acquaintance with statistical modeling approaches based on inference and empirical 

data analysis. We will describe various aspects of equation-based modeling, including underlying 

assumptions, strengths and weaknesses, and provide specific examples of simple models. We 

conclude that the usefulness of quantitative modeling, including equation-based models, is 

ultimately linked to the quality and abundance of observation obtained on the system being 

modeled. Equation-based modeling, though potentially an integrative approach, is complementary 

to and extends the potential of traditional statistically-based approaches to inference.

Introduction

The science of predicting the time evolution of complex systems and the derivation of rules 

that will dictate, given the state of a system now, the state of the system at some future time 

are integral parts of many fields of scientific enquiry, such as physics, atmospheric science, 

mathematics and engineering. Such rules can be represented through several mathematical 

formalisms. Although clinical scientists have developed a degree of familiarity with 

statistical approaches, alternative modeling approaches may present distinct advantages 
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depending on the hypotheses under investigation and the nature of the predictions to be 

examined.

The purpose of this communication is to provide a non-technical review of a well-

established modeling platform, namely differential equations, that harnesses the powerful 

tools of calculus to analyze the time-dependent behavior of dynamical systems. A salient 

advantage of using differential equations as a mathematical platform for models comprised 

of a large number of interacting components where there exist some a priori knowledge as to 

the nature of those interactions is that simulation and analysis can predict what may follow 

as time evolves or as the characteristics of particular system components are varied. This 

mathematical tool is particularly helpful in the case where these predictions are not already 

obvious to clinical or biological researchers, or where particular outcomes are expected, but 

the mechanisms underlying outcomes cannot be directly intuited.

Differential equations have been used abundantly by modelers from quantitative fields. Yet, 

the modeling framework that they provide is largely unknown to basic and clinical scientists. 

We will briefly describe this framework, provide examples relevant to critical care, and 

discuss its strengths and weaknesses.

Dynamical systems

A dynamical system is composed of components interacting through a set of explicit rules. 

The interactions encapsulated in these rules dictate how the states of the components evolve 

in time, and so the notion of time evolution is key when thinking about such a system. As an 

example, if one were to consider a set of chemical species mixed in a confined space, the 

components are the chemical species, the rules are the possible chemical reactions and the 

rates at which they occur, and the states of the components relate to their concentrations over 

time. Differential equations provide a language for the expression of such evolution rules. 

Many primary or calculated useful physiologic quantities, such as cardiac output and 

vascular resistance, are related in a static fashion. In other words, one can relate these 

quantities by means of algebraic equations of varying complexity. The equations resulting 

from drawing an analogy between electrical circuits and the circulation have led to 

additional appealing concepts in critical care, such as peripheral vascular resistance, vascular 

capacitance, and airway resistance. However, the clinician is clearly aware that these 

quantities change over time as the “system” adapts to changing external and internal 

conditions such as fluid shifts, local concentration of effectors, or drug dose. This paper will 

concentrate on differential equations as a tool for describing, and making predictions about, 

such temporal changes, as has long been recognized by scientists of the physical and 

biological sciences.

Difference and differential equations

Difference equations and iterative maps occur naturally in mathematical biology. An 

important problem is how the population size of a given species, for example dividing cells 

or bacteria, varies from one time point to another time point. Let xn be the population of a 

species at time n and xn+1 the population at time n +1. The change in population size during 
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the interval between these times is given by the following growth equation, also known as 

the logistic map:

xn + 1 = rxn 1 − xn ,

where x0 represents the initial population at time 0, r is a positive number corresponding to 

an overall growth rate, and the last negative term represents increased competition as the 

population grows (over limited shared resources for example).

Models composed of such equations, which treat time as evolving in discrete steps, are 

similar to the cellular automata or agent-based models, in which the rules of the biology are 

included in the mapping.1 There is no obstacle to including several interacting variables, or 

even values from multiple different time steps, within a difference equation. While the 

principle is simple, the resulting simulations are often not intuitive, giving rise to interesting 

emergent behaviors. The natural extension of difference equations is to consider the case 

where the time steps become infinitely small. In this limit, the left hand side of the 

prediction equation consists of not the value of a variable at the next time step, but rather the 

velocity at which the variable evolves. Continuous logistic growth, for example, is described 

by the extension of the discrete logistic map, given by the following ordinary differential 

equation:

dx(t)
dt = rx(t)(1 − x(t)),

where x(t) denotes population size at time t, the derivative dx(t) / dt the rate of change of x(t) 
and t itself can be any positive number. The use of discrete time in modeling reproduction is 

correct for ecology models wherein new organisms are born in synchrony. A discrete model 

becomes less appropriate when no natural time step exists at the population level, such as 

bacterial division, where division time varies across the population.

As an example, let us consider the modeling of a host-parasitoid as a system of two 

difference-equations. The system

Hn + 1 = λHn f Hn, Pn ,
Pn + 1 = cHn 1 − f Hn, Pn ,

is derived by letting Hn represent the density of host species in generation n, Pn the density 

of parasitoids in generation n, f = f (Hn, Pn ) the fraction of hosts not parasitized (1-f is 

therefore the fraction of hosts parasitized), λ the host reproductive rate, and c the average 

number of viable eggs laid by a parasitoid on a single host. These equations outline a general 

framework for host-parasitoid models. Assuming that parasitoids search for hosts 

independently and randomly and that their searching efficiency is constant, one derives, 

using the Poisson probability distribution, a specific expression for f Hn, Pn = p(0) = e
−aPn.
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The host reproductive rate λ is assumed to depend on Hn to avoid diverging oscillations. 

With the choice λ(Hn ) = exp(r(1 – Hn / K)), which is obtained by assuming that in the 

absence of parasitoids, the host population grows to some limited density, the system has 

one steady-state (H, P). The stability depends on the parameter r and the quantity H /K. For 

fixed values of H /K = 0.4 and small values of r, the steady-state is stable. Any initial value 

spirals in towards the steady-state and will eventually reach it. Beyond a critical r value, the 

steady-state becomes unstable and stable oscillatory behavior becomes possible. Therefore, 

dependent on the host reproductive rate r, the model predicts different dynamical behavior in 

the host-parasitoid system. This agrees with the behavior of many host-parasitoid systems 

observed in nature2. The extend to which such analyses can be applied to the dynamics of 

human infections is unclear, but recurrent infections are well described clinically.

Ordinary differential equations

Many of the best known computational models for biological processes that evolve 

continuously in time are expressed as sets of coupled ordinary differential equations 

(ODEs). ODEs are of the form: 
dxi
dt = F x1, …, xn, λ1, …, λp, t , i =1,...,n, and describe how 

individual system variables xi evolve over time. F is a function of some subset of the 

variables in the model. Systems where F is free of an explicit dependence on the 

independent variable, typically time, are called autonomous. The function F and the 

parameter vector λ= (λ1,...,λp ) encode some simplified version of the biology of the system 

being modeled. For example, this typically includes information with regard to the presence 

of specific interactions among components of the system and the relative strength of those 

interactions, quantified by model parameters. These models are based on the premise that 

the system involved is “well-mixed” and that there are sufficiently many components (e.g. 

proteins, cells, small molecules) so that their numbers can be regarded as continuous 

quantities. Although many of these assumptions are not strictly true within very small spatial 

domains, such as individual cell, ODE models have provided a great deal of insight into the 

behavior of complex, interacting systems. Numerical methods and software tools for solving 

ODEs are mature, very reliable, often freely available, and easily implemented on personal 

computers. Furthermore, ODE models are amenable to formal mathematical analysis. While 

it may not be possible to write down formulas that express the solutions to differential 

equations as explicit functions of time, this computational framework allows one to 

determine a good approximation of the possible qualitative behaviors that the system can 

manifest, depending on particular choices of initial conditions and model parameter values.

Qualitative behaviors of autonomous ODE systems may include convergence to equilibrium 

points or steady states, which are states at which all variables remain constant, periodic 

oscillations, as well as many more complicated time courses. A more technical description 

of the qualitative behaviors of autonomous ODE systems can be found in Appendix A. For a 

fixed parameter set, a system of ODEs may have more than one possible equilibrium, each 

of which may be stable (in a variety of mathematically defined ways) or unstable. To every 

stable equilibrium corresponds a basin of attraction, which refers to the set of initial 

conditions that will ultimately evolve to this equilibrium. These basins can change with 
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changes in parameters; indeed, equilibria and other interesting solutions can be born or cease 

to exist as parameters vary.

For example, the logistic ODE described above has two equilibria which are stable or 

unstable dependent on the parameter r. For r<0 the equilibrium x=0 is stable and the 

equilibrium x=1 is unstable. But if r is increased and the system is considered for r>0 the 

equilibrium x=0 becomes unstable and the equilibrium x=1 becomes stable. That means 

every solution of the logistic ODE converges to 0 for r<0 and to 1 for r>0 independent from 

the initial conditions and the system changes its stability behavior at r=0. This characteristic 

change in a system’s behavior is called a bifurcation. Correspondingly, one can a priori 
segment the parameter space into regions with qualitatively different equilibrium structures.

As another example, the viral kinetics of influenza A during infection within an individual 

can be modeled using a simple 3-dimensional ODE System3,4, which incorporates viral 

growth, target cell limitation and the interferon response:

dT(t)
dt = − βT(t)V(t),

dI(t)
dt = βT(t)V(t) − δI(t),

dV(t)
dt = pI(t) − cV(t),

where T(t) is the number of uninfected target cells, I(t) is the number of infected cells, and 

V(t) is the infectious viral titer (or total number of free viral particles or concentration of 

viral particles per unit volume of tissue) at time t. It is assumed in this model that infection is 

initiated by introduction of virus into the upper respiratory tract at a concentration equivalent 

to V0 viral particles per unit volume of tissue. Susceptible cells become infected by virus at 

rate βT(t)V(t), where β is the rate constant quantifying the probability that the interaction 

between a healthy cell and a viral particle results in infection of the cell. Infected cells, I(t), 
increase viral titers at an average rate of p per cell and die at a rate of δ per unit time, where 
1 δ is the average life span of an infected cell. Free virus is cleared at a rate of c per unit time. 

The effects of immune responses are not explicitly described in this simple model, but they 

are implicitly included in the death rate of infected cells (δ) and the clearance rate of virus 

(c). Such simple systems may still admit complex solutions and several equilibria, 

depending on the choice of parameters. Evolved versions of such models provide specific 

predictions regarding infection dynamics, treatment strategies and therefore, when 

sufficiently validated, could be of potential use in disease diagnosis and optimizing therapy 

in individual patients.5,6.

We often focus on using autonomous differential equations for modeling biological or 

physiological systems, because we want to understand the general behavior of the given 

system under some form of equilibrium or steady conditions. After this initial analysis, we 

are interested in how the system behaves when it is subjected to a time-dependent event or 

intervention, representing, for example, discretionary manipulations such as sequential 

insults, therapeutic interventions, or time-dependent changes in the properties of the system. 

For instance, in the context of the acute inflammatory response, Day et al. used a 4-
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dimensional non-autonomous system of differential equations to describe a time-dependent 

disturbance consisting of repeated endotoxin administration, as had been given previously in 

a variety of experiments.7 Similarly, we have simulated the impact of the timing and 

duration of an antitumor necrosis factor antibody in sepsis8, and of various vaccine and 

antibiotic combinations in anthrax infection.9

How to model systems with spatial structure

When spatial structure plays an important role in the behavior of a system, ODEs may still 

provide a useful modeling tool if the system can be considered as a collection of interacting 

“well-mixed” compartments. A key aspect of the modeling process is the characterization of 

the transfer of information from one compartment to the next, such as occurs via molecular 

diffusion across membranes or cellular trafficking between tissues. As long as the factors 

driving inter-compartmental exchange can be reasonably modeled mathematically, ODEs 

remain a viable and relatively simple option for characterizing spatially structured systems. 

As an example, pharmacokinetic models are routinely used to guide drug dosing and predict 

elimination in various clinical situations.10,11 A representative pharmacokinetic model is 

depicted in figure 1 where drug is administered in a depot compartment and diffuses 

following concentration gradients to a central and a peripheral compartment. Ad(t) 
represents the amount of drug in the depot compartment, Ac(t) the amount of drug in the 

central compartment and Ap(t) the amount of drug in the peripheral compartment. The rate 

constant kcp describes the diffusion of the drug from the central compartment into the 

peripheral compartment and kpc the diffusion from the peripheral into the central 

compartment, while kel is the elimination constant and ka is the infusion rate of the drug. 

The differential equations that describe the transport of drug across compartments and drug 

elimination, assuming first order kinetics in each of the compartments, are:

dAd(t)
dt = − kaAd(t),

dAc(t)
dt = kaAd(t) + kpcAp(t) − kcpAc(t) − kelAc(t),

dAp(t)
dt = kcpAc(t) − kpcAp(t) .

Such systems of equations are providing researchers and clinicians with valuable insight in 

drug dosing, monitoring and design.12,13

In some settings, the particular geometry of a system is crucial in dictating behavior. For 

example, the geometry of a nerve axon needs not to be considered for an approximate 

analysis of action potential propagation, but this geometry is key in determining the precise 

influence of gradual changes in axon width on propagation characteristics. Similarly, the 

geometric properties of the arterial tree dictates how stress, pressure waves and flow 

propagates within the arterial system14,15, and detailed modeling of the pulmonary structure 

has prove useful in understanding air flow, pulmonary pressures and drug deposition within 

the bronchial tree.16,17 Other examples of relevance to acute care include clot growth18 and 

alveolar gas exchange (Figure 2).19 ODEs provide an insufficient description when 

continuous aspects of geometry are important or the “well-mixed” assumption is obviously 
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at odds with the nature of the system at hand. The mathematical formalism appropriate to 

model these systems is that of partial differential equations (PDEs).

PDEs and ODEs are often complementary modeling tools and may co-exist in analysis of 

the same system, especially when one is attempting to include several scales of description. 

PDEs are much more computationally demanding than ODEs, with simulations of PDEs 

often requiring a larger computing platform than personal computers. As with ODEs, formal 

mathematical theory has been developed for many types of PDEs. Unfortunately, this theory 

is more complicated, and often farther removed from insights about the dynamic structure of 

the underlying system than is the theory for ODEs. Many of the PDEs relevant to detailed 

biological modeling are too complex for analytical treatment and therefore the output that 

can be feasibly obtained from such models is limited to numerical simulations. However, 

mathematical theory may be useful in selecting appropriate numerical simulation methods 

and may facilitate accuracy and efficiency of simulations, even when this theory cannot give 

any direct information about possible model behavior.

A fundamental example of a PDE is the classical diffusion equation, which describes the 

density fluctuations in a diffusing quantity. It is also used in population genetics to describe 

the “diffusion” of alleles in a population. It is given in the form

∂ϕ
∂t = ∇ ⋅ D(ϕ)∇ϕ( r , t),

where ϕ( r , t) is the density of the diffusing material (such as a molecular species) as a 

function of space and time, r  is the spatial coordinate, t is time, ∂ϕ/ ∂t is the rate of change 

(partial time derivative) of the density at r , D is the collective diffusion coefficient, and the 

symbol ∇ represents a vector differential operator with respect to space, a generalization of 

the common derivative. If the diffusion coefficient depends on the density then the equation 

is nonlinear. If D is a constant, then the equation reduces to the following linear equation:

∂ϕ
∂t = D∇2ϕ( r , t) .

Another example of a system of PDE’s with important biological relevance is given by the 

classical model of chemotaxis. A widely studied chemotactic phenomenon is that exhibited 

by the slime mold Dictyostelium discoideum, in which single-cell amoebae move towards 

regions of high concentrations of cyclic-AMP that is produced by the amoebae themselves. 

Interesting wave-like movement and spatial patterning are observed experimentally in this 

context.

A general reaction diffusion-chemotaxis equation is given by

∂n
∂t = f (n) − ∇ ⋅ nχ(a)∇a + ∇ ⋅ D∇n,

where a(x, t) is the attractant concentration, n(x,t) the number of cells, D the diffusion 

coefficient of the cells, f(n) represents the growth term for the cells and χ(a) is a function of 
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the attractant concentration. Since the attractant a(x, t) is a chemical, it also diffuses, and its 

behavior is typically modeled by

∂a
∂t = g(a, n) + ∇ ⋅ Da∇a,

where Da is the diffusion coefficient of a and g(a,n) is the kinetics/source term, which may 

depend on n and a. In the slime mold model of Keller and Segel20, g(a, n) = h×n – k ×a, 

where h and k are positive constants. Here h×n represents the spontaneous production of the 

attractant and is proportional to the number of amoebae n, while −k × a represents decay of 

attractant activity: there is an exponential decay if the attractant is not produced by the cells. 

When f (n) = 0 and the chemotactic term χ(a) is a positive constant χ0, one obtains the 

following nonlinear system

∂n
∂t = D∂2n

∂x2 − χ0
∂

∂x n∂a
∂x ,

∂a
∂t = hn − ka + Da

∂2a

∂x2 .

Analysis of this model suggests that the initiation of slime mold aggregation can be viewed 

as an instability in the spatially uniform and temporally constant state. Extensions of this 

work showed that, through a sequence of stability changes, such reaction-diffusion models 

can exhibit an impressive sequence of morphogenetic behavior such as pulse relaying, spiral 

waves, target patterns, cell streaming and sorting, slug locomotion, and tissue buckling.21 

Such phenomena are common in biology. In particular spiral waves are of considerable 

practical importance in a variety of medical situations, particularly in cardiology and 

neurobiology.

How to model uncertainty

ODEs and PDEs are deterministic models. A given set of initial and/or boundary conditions 

will always lead the same outcome in these models. However, there exists some degree of 

noise, or stochasticity, due to unaccounted effects such as temperature fluctuation, variability 

in molecular interactions, and a wide variety of other factors, in all physical systems. 

Mathematically, external noise refers to fluctuations created in an otherwise deterministic 

system by the application of a random force, whose stochastic properties are supposed to be 

known. Some dynamical systems, by the nature of the interactions that are described, are 

very robust to noise, while others are much more sensitive. In addition to these structural 

considerations, the number of cells or molecules in a system also contributes to the 

importance of stochastic effects in sculpting its behavior. The smaller the scale of 

description, the greater the potential impact of noise. In situations where the inclusion of 

noise in a model is appropriate, and where the nature of this noise is reasonably well 

understood, stochastic differential equations (SDE) provide a mathematical framework for 

doing so. Due to the importance of stochasticity in the outcomes of many cellular processes, 

there has been a great deal of interest in applying stochastic simulation methods in 

simulating processes involving small number of molecules.22,23,24,25 Most of these methods 
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rely on the Gillespie algorithm26,27, which yields an exact simulation of a stochastic reaction 

process. There are extensions of the original algorithm which provide the core for a number 

of recent simulation tools.28

As an example, consider a simulation of the auto-regulatory network of a single gene,29 

where x(t) represents the concentration (or number) of mRNA molecules and y(t) the 

concentration (or number) of protein molecules at time t. The rate equations of x(t) and y(t) 
describe the evolution of the mean values of the concentrations (or numbers) of mRNA and 

protein molecules. The dynamics of the system can be expressed as

dx(t)
dt = − γx(t) + ky(t) + k0 + ω(t),

dy(t)
dt = k′x(t) − γ′y(t) + ξ(t),

where the parameters γ and γ′ represent the decay rates of the mRNA and protein 

molecules, respectively, k’ represents the translation rate of the protein, k0 denotes the 

fundamental transcription rate of mRNA molecules when y = 0, and the parameter k = 0, > 

0, < 0 corresponds to absence of feedback regulation, positive feedback and negative 

feedback, respectively. In the simplest case, the fluctuations are introduced by Gaussian 

white-noise sources ω(t) and ξ(t). This system will differ in behavior from the noise-free 

system ( (ω,ξ) = (0,0) ) in that, even when the system is close to an equilibrium state of the 

deterministic dynamics, there is a finite probability at any given time that the system will 

spontaneously transition to the basin of attraction of a different stable equilibrium, because 

of the stochastic influences. This is of great biological and clinical significance, since such 

stochastic phenomena may explain why, in a large population of similar cells (or 

individuals), one may see different states of activation (or disease severity) despite similar 

initial conditions. An SDE model might explain such observations, while the equivalent 

ODE would be contrived to “choose” an expected outcome for the “average” cell or 

individual. This will result in the SDE system having a qualitatively different behavior than 

the corresponding ODEs. For example, the coupled reaction system, A+ 2X ↔ 3X and A 
↔ X, with suitable reaction constants, has 3 steady equilibria, 2 stable and one unstable. 

ODE modeling of this problem will result in a behavior that depends on initial conditions, 

leading to one of the two steady state solutions. Regardless of initial conditions, the solution 

of the SDE system flips back and forth between the two steady states (Figure 3). Similar 

methods can be applied to spatial systems, leading to stochastic PDEs (SPDE).

In contrast to the deterministic behavior of a whole population, the dynamics of single 

individuals within a biological population is usually stochastic. Therefore, one uses 

stochastic processes to model single individual behavior and SDEs or SPDEs to model a 

whole population with stochastic influences, like the autoregulatory network of a single gene 

described above. For instance, single ion channel recordings are modeled by using stochastic 

processes.30 The ionic current through an individual ionic channel of a cell membrane 

cannot be represented as evolving deterministically,due to stochastic changes in channel 

states; thus, models of small numbers of channels should be stochastic in nature. While the 

ensemble average over many experiments on small numbers of channels is deterministic and 

reproduces the same properties that are seen in macroscopic, population-level 
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measurements., Single-channel recordings contain more information, about variance and 

other statistical properties, than does the ensemble average.

To describe a channel with n possible states (open, closed, inactivated, etc.), a stochastic 

variable S(t) ∈1,2,...,n is defined, such that S(t)=i if the channel is in state i at time t. Further, 

if kij (independent of time) is the rate constant for transitions from state i to state j, then the 

probability that the channel changes from state i to state j in the time interval (t,t+dt) is kij dt. 
We write

P S t + dt = j S t = i = ki jdt .

Here, P[x | y] is the probability of x given y. The probability that the channel does not 

change state in the time interval (t, t+dt) is given by

P S t + dt = i S t = i = 1 − Kidt,

where Ki = ∑ j = 1, j ≠ i
n ki j. The probability that the channel stays in state i for time t is given 

by

P Mi(t) S(0) = i = e
−Kit .

Since the work of Hodgkin and Huxley31, the traditional view of a NA+ channel has been 

that it activates quickly and inactivates slowly. However, single-channel analysis has shown 

that this interpretation of macroscopic data is not always correct. It turns out that the rate of 

inactivation of some mammalian NA+ channels is faster than the rate of activation.32 

Although this reversal of activation and inactivation rates is not correct for all NA+ channels 

in all species, the result overturned some traditional ideas of how NA+ channels work.

More recently, alternative methods have been used to represent biological uncertainty. The 

basis idea is to associate with a given, given the uncertainty in mechanisms and variability of 

the data, an ensemble of models.33,8,34 Models included in the ensemble vary both in their 

structure and parameters. Expected behavior is then expressed statistically, much like a more 

conventional stochastic model. Yet, the stochasticity included in ensemble modeling is better 

characterized.

Strengths and pitfalls of equation-based models

Differential equations, as a modeling approach, have enormous appeal. They 1) provide an 

intuitive means to translate mechanistic concepts into a mathematical framework, 2) can be 

analyzed using a large body of existing techniques, 3) can be numerically simulated easily 

and inexpensively on a desktop computer, 4) provide both qualitative and quantitative 

predictions, and 5) allow for the systematic incorporation of higher levels of complexity and 

uncertainty (Figure 4). Furthermore, this modeling framework integrates existing knowledge 

embodied within the structure of the model, yet admits the flexibility of being data-driven 
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and stochastic. Critics are entirely justified in pointing out that equation-based models 

usually depend on a large number of parameters that quantify biological interaction, and that 

specifying these parameters is a difficult task (see below). However, these parameters are 

explicit. Therefore, knowledge gaps are readily identified, unlike alternative modeling 

approaches. Further, the speed of computation of differential equation-based models allows 

for massive experimentation with parameters that may not be determined experimentally, 

leading to the development of hypotheses on the roles of individual parameters, reflecting 

the presence and relative importance of biological processes or interactions, that can drive 

subsequent experimental investigations.35,36

In some cases, biological systems may be so fragmented that the use of differential 

equations may be impractical. For example, the dissemination of an infectious disease in a 

city, where health care service points, schools, restaurants, and churches all represent 

privileged areas of disease transmission, would be difficult to simulate with equation-based 

models. Realistic simulations must take into account individual behavior and the precise 

geographic location of each of those areas. In such situations, agent-based models certainly 

represent a more practical simulation platform than PDEs.37,38

Calibration and validation of equation-based models

A model is deemed valid if the predictions furnished correspond to empirical data. Less 

strictly, a model may also be qualitatively valid if it correctly reproduces expected qualitative 

system behavior under a wide range of conditions. Model calibration is the process of 

adjusting the model parameters such that the output from the model optimally matches the 

observed set of data. The process of calibrating a statistical regression model is 

straightforward, as long as the number of observations is sufficient. However, there are 

several difficult issues that relate to the calibration and validation of complex non-linear 

dynamical models, and of equation-based models in particular. First, an equation-based 

model should display biological fidelity, and thus be structurally valid. In other words, the 

biology embodied in the equations must be rooted in empirical evidence. This entails the 

inclusion in the model of specific biological processes and their quantification. The level of 

detail included in such models depends entirely on the scale of description for which a 

particular model is intended. Interestingly enough, less detailed models might be more 

difficult to specify, because individual molecular or cellular species may be replaced by 

more abstract physiologic functions, which may be difficult to associate with empirical 

readouts.

Quantifying biological processes and interactions is clearly a formidable challenge to 

modelers, even when empirical observations exist. For example, models commonly 

necessitate the quantification of molecular half-lives. Empirical data describing an observed 

half-life in the circulation may be inaccurate in describing the duration of the biological 

effect of a particular component. A model describing the proinflammatory effects of 

lipopolysaccharide on vascular endothelium should use a serum half-life, provided provision 

is made for recirculation and the processes triggered by endotoxin binding are themselves 

modeled. However, if the downstream effects of the interaction of a molecule with a target 
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cell receptor are not specifically included in the model, then the modeler needs to include an 

appropriate estimate of the biological half-life of these downstream processes as well.

This simple example should illustrate the great care that must be taken in ascribing values to 

parameters, irrespective of the modeling framework adopted. At best, these parameter values 

should serve as a starting point to further fitting of the model to empirical data, or to known 

qualitative behaviors in the absence of empirical data. A number of very sophisticated 

algorithms have been proposed and are commonly used to adjust parameters to produce 

optimal fits to empirical data.39 The process differs fundamentally from statistical settings, 

in which there are clear prescriptions as to how to achieve model fits and unique solutions 

typically exist. Because mechanistic models often include many parameters with unclear 

biological values, the problem of fitting models to empirical data is high dimensional, 

computationally intensive, and typically admit many equally well-fitting solutions. 

Therefore, modelers have typically not produced quantitative model validation, except for 

biologically simplified systems.40 A clear research objective resides in the production of 

new theoretical and computational methods to conduct quantitative fits and to provide 

ensembles of candidate models41,42, together with the congruent development of 

experimental paradigms that will provide optimal data streams to accomplish this task. 

Indeed, the range of predictions of a mechanistic model extends well beyond defined sets of 

experimental conditions or clinical interventions 24,27. This situation is in sharp contrast to 

statistical models, which cannot offer predictions beyond the empirical construct under 

which calibrating observations were gathered.

Conclusions and future directions

Equation-based modeling offers distinct practical advantages as a modeling platform, 

including potential for inclusion of biological detail, suitability for simulation, and ease of 

parameter manipulation for predictive purposes, but it is not the preferred approach for 

simulating the stochastic interactions of small numbers of agents or the dynamics of highly 

fragmented systems. This modeling platform is one of several tools that will be utilized by 

interdisciplinary teams of expert modelers, basic scientists, and clinicians. While biological 

scientists should work to improve experimental designs and the reliability and quantity of 

empirical evidence available, much theoretical work needs to be done by quantitative 

scientists to facilitate the analysis of complex systems and to develop improved parameter 

estimation techniques. The expected output of this work will be an improved translation of 

basic knowledge into clinical care and prevention approaches, as well as the design of new 

therapies 27–29.

Quantitatively predictive mathematical models depend exquisitely on the availability of high 

quality empirical data. Therefore, hypothesis driven, reductionist investigations, examining 

and quantifying biological processes in highly controlled environments, remain the key 

foundation of any effort at gaining insight into complex biology through modeling36. As the 

scientific community is marshalling an unprecedented effort to encourage, support, fund and 

implement interdisciplinary translational science, there still exists a deep divide in the peer-

reviewed literature between the modeling community and the clinical and basic sciences 

communities. This divide originates from a critical lack of collaborative efforts, a paucity of 
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standards that would appeal to the scientific communities involved in the interdisciplinary 

effort36 (such as a lack of understanding by experimentalists of the type of data required for 

modeling), and, rightly or wrongly, a lack of perceived incremental usefulness of the 

modeling exercise to clinical translation in general. Thus, an opportunity is missed in that 

the potential of reductionist science is not optimally exploited by complementary efforts of 

highly-interactive interdisciplinary teams.
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Appendix A

Possible behavior in autonomous systems

Solutions to a one-dimensional autonomous ordinary differential equation cannot oscillate. 

That is, in an oscillatory solution x(t), there exists some interval of x values through which 

the solution increases over one time interval and decreases over a different time interval. If 

x’= f(x) is a one-dimensional ODE, then f (x) takes a fixed value at each x, and such an 

oscillation is not possible.

Alternatively, in a two-dimensional system

x′ = f (x, y),
y′ = g(x, y),

(1)

it is possible that for a fixed x, there are y values y1 ≠ y2 such that f (x, y1) < 0 < f (x, 

y2),allowing the possibility of oscillations.

In two-dimensional systems of the form (1), there are several classic results that ensure or 

rule out the existence of periodic oscillatory solutions, satisfying x(t + T ) = x(t), y (t + T ) = 

y(t) for some fixed T > 0, for all t. There are other, more complex solutions, however, such 

as chaotic dynamics that can only occur in an autonomous system that includes three or 

more dimensions.

The classical Hodgkin-Huxley (HH) equations31, describing action potential generation in a 

giant axon extracted from the squid nervous system and treated experimentally in a way that 

eliminates spatial effects, offer an interesting case study. The original HH model consists of 

a four-dimensional autonomous system of ODE’s, representing the temporal evolution of 

variables (v,m,h,n). Here, v denotes the voltage across the cell membrane, while (m,h,n) 

quantify the degree to which ions can pass through voltage-gated sodium and potassium 

channels in the membrane.

Because the sodium channel activation variable m responds quickly to changes in voltage, it 

is often approximated by a function of v. Further, an empirical linear relation, such as h ≈ 
0.8 – n, has been observed to hold along typical model solutions43. These approximations 
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have long been used to justify reduction of the HH model to a two-dimensional system in (v, 
h) or (v, n), which actually reproduces qualitative features of action potentials and even 

quantitative dependence on applied current rather well.

Nonetheless, recent work has shown that when additional dimensions are restored to the 

model, chaotic dynamics near the action potential threshold, as well as mixed mode 

oscillations, consisting of various patterns of alternating small oscillations and large 

excursions in voltage, can arise44,45. Such solutions may have important implications for 

transitions between quiescence and repetitive activity patterns in neurons, as their input 

levels vary.
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Fig. 1. 
A pharmacokinetic model. Drug is administered in a depot compartment and diffuses 

following concentration gradients to a central and peripheral compartment.
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Fig. 2. 
Alveolar gas exchange. The mathematical formalism appropriate to model this system is that 

of partial diferential equtions (PDEs).
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Fig. 3. 
Solution of the SDE system, which describes the couple reaction, A + 2X ↔ X and A ↔ 
X, with suitable reaction constants. If flips back and forth between 2 stable steady states 

independent of initial conditions.

Daun et al. Page 19

J Crit Care. Author manuscript; available in PMC 2019 August 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Differential equations, as a modeling approach, allow for the systematic incorporation of 

higher levels of complexity and uncertainty.
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