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Abstract

We discuss a decision-theoretic approach to building a panel-based, preemptive genotyping program. The method is
based on findings that a large percentage of patients are prescribed medications that are known to have pharmacoge-
netic associations, and over time, a substantial proportion are prescribed additional such medication. Preemptive
genotyping facilitates genotype-guided therapy at the time medications are prescribed; panel-based testing allows pro-
viders to reuse previously collected genetic data when a new indication arises. Because it is cost-prohibitive to con-
duct panel-based genotyping on all patients, we describe a three-step approach to identify patients with the highest
anticipated benefit. First, we construct prediction models to estimate the risk of being prescribed one of the target
medications using readily available clinical data. Second, we use literature-based estimates of adverse event rates, var-
iant allele frequencies, secular death rates, and costs to construct a discrete event simulation that estimates the
expected benefit of having an individual’s genetic data in the electronic health record after an indication has occurred.
Finally, we combine medication prescription risk with expected benefit of genotyping once a medication is indicated
to calculate the expected benefit of preemptive genotyping. For each patient-clinic visit, we calculate this expected
benefit across a range of medications and select patients with the highest expected benefit overall. We build a proof
of concept implementation using a cohort of patients from a single academic medical center observed from July 2010
through December 2012. We then apply the results of our modeling strategy to show the extent to which we can
improve clinical and economic outcomes in a cohort observed from January 2013 through December 2015.
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It is well known that genetic variation can influence
patients’ responsiveness to medications and risk for toxi-
city,1 and more than 250 genetic variants have accumu-
lated within Food and Drug Administration (FDA)
medication label inserts.2 Over the past 10 years, the
popularity of acquiring pharmacogenomic (PGx) data to
guide prescribing has increased significantly, driven by
dramatic reductions in the cost of the technology and
accumulating evidence for clinical utility. Many insurers,
institutions, and organizations are developing programs

to preemptively test their populations for genetic var-
iants, expecting that clinical value and return on invest-
ment will be accrued as the information is used for
delivering care. Previously, we estimated that over a
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5-year timeframe (2005–2010), in a medical home popu-
lation at our institution approximately 65% of patients
were prescribed at least one medication with an FDA
label insert and 23% of patients were prescribed at least
three such medications.3,4 Preemptive genotyping allows
physicians to proactively apply genetic data at the time
of prescribing, and multiplexing (with a panel that con-
tains hundreds to thousands of relevant genetic variants)
permits cost efficiencies when genetic data are reused,
that is, for the second, third, and so on, PGx-guided
therapy.4

Given the large and growing number of PGx opportu-
nities, strategies to identify and test populations to maxi-
mize the potential value of genomic testing are needed.
As of now, it is cost-prohibitive to genotype all patients
in a population of a health system, regardless of clinical
need. We recently described an approach to identify
patients for panel-based, preemptive genotyping that was
founded on the clinical risk of developing an indication
for one of the targeted medications.5 Briefly, we identi-
fied eligible patients by estimating risk of being pre-
scribed any of three medications with known PGx effects
(statin, warfarin, or an antiplatelet) within 3 years of
patients’‘‘medical home’’ date.5 We constructed a single
risk prediction model, and we made genotyping decisions
based on whether or not the risk estimate exceeded a pre-
defined cutoff value. This decision approach was then
implemented within the Pharmacogenomic Resource for
Enhanced Decisions in Care and Treatment (PREDICT)
program, a clinical quality improvement initiative at
Vanderbilt University Medical Center (VUMC).6 The
program incorporated genetic information into the elec-
tronic health record (EHR) and, when appropriate, per-
mitted genotype-guided prescribing.6–8 Thus far, almost
15,000 patients have been genotyped since 2010 as a part
of routine care.

In this article, we extend this previous work to forma-
lize a value-based approach that incorporates the magni-
tude, severity, and cost of the adverse drug reaction
averted by pharmacogenetics. Specifically, we detail 1)
predictive modeling approaches using readily available
clinical data from an EHR to capture patient-level risk

of being prescribed each PGx medication separately; 2) a
discrete event simulation that uses literature-based esti-
mates of variant allele frequencies, adverse event rates,
and secular death rates to estimate the cost and quality-
adjusted life year (QALY) benefit of genotype-guided
therapy after an indication occurs; and 3) a decision-
theoretic approach to combine points (1) and (2) to
develop genotyping rules that optimizes preemptive gen-
otyping value based on user defined utility functions.

Methods

The data for this value-based, preemptive genotyping
program proof of concept were derived from EHRs from
VUMC.

Predicting PGx Medication Prescriptions

In the next several subsections, we detail an approach to
using readily available clinical data from the VUMC
EHR to estimate risk of being prescribed an antiplatelet
medication following a percutaneous coronary interven-
tion (PCI), a statin, and warfarin, and to validate the
models. We focus on antiplatelet medication following a
PCI (e.g., a coronary stent) due to the availability of
compelling evidence of genetic testing efficacy as com-
pared to other indications for antiplatelets where the
benefit is less clear.9,10

Study Cohorts. We included patients with records in the
Vanderbilt Synthetic Derivative (SD)11 and with VUMC
established as their ‘‘medical home’’ (MH). We consid-
ered patients to have a VUMC MH when we observed,
for the first time, the third distinct visit within a 2-year
timeframe to primary care and specialty medical and sur-
gical clinics delivering non-acute care. Patients were
required to be 18 years old on the MH date, and for each
medication considered, they must have had no observed
history of receiving the medication (medication naı̈ve on
the MH date). Those who satisfy MH criteria for the first
time between July 2010 and December 2012 comprise the
training cohort, and those who satisfy the criteria
between January 2013 and December 2015 comprise the
validation cohort. For the purpose of modeling, baseline
characteristics were established on the MH date and were
updated longitudinally on each patient as clinical data
accumulated.

Data Preparation. For the purpose of modeling, we
included independent variables that were readily avail-
able in the EHR including patient demographics (age, sex,
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race, body mass index), vitals (diastolic and systolic blood
pressure), history of chronic medical conditions defined
based on ICD-9 codes (hypertension, type 2 diabetes, cor-
onary artery disease, atrial fibrillation, atherosclerosis, con-
gestive heart failure, dialysis, and cerebrovascular disease),
other medication history (e.g., if modeling statin prescrip-
tions, then include history of antiplatelet and warfarin pre-
scriptions), history of acute cardiovascular events (acute
coronary syndrome, coronary catheterization with revascu-
larization, or coronary artery bypass grafting), number of
clinic visits in the past 6 months (number of cardiology
clinic and non-cardiology clinic visits), and laboratory data
(low-density lipoprotein, high-density lipoprotein, trigly-
cerides, HgbA1C, and creatinine).

Since physician-based prescribing decisions rely on
patient observation and what is available in the EHR,
we used the most recently observed weight and lab data
at each visit when not observed at the current visit.
When, according to the EHR, lab values (e.g., HgbA1C)
had yet to be observed in an individual, we assigned a
value within the normal range reflecting our belief that if
no lab test was ordered, the physician was effectively
assuming a normal value or was not concerned about its
value. In addition to observed or imputed lab values, we
included indicators (yes/no) of whether the lab test was
performed. As the goal of our preemptive genotyping
program was to focus on outpatient visit opportunities
to identify patients suitable for preemptive genotyping,
we updated patient data, at most, once every 6 months.

Modeling Strategy. Since patients were observed for
variable amounts of time and were administratively cen-
sored due to the timing of data acquisition, we used sur-
vival analysis approaches to model, separately, time to
antiplatelet therapy following placement of a coronary
stent, statin drug initiation, and warfarin prescription.
Because we had multiple measurements per subject and
we sought to predict future prescriptions from the time
of each clinic visit, we employed a partly conditional sur-
vival model12 for longitudinal data and we used a resi-
dual survival time scale outcome.12,13 For estimation we
implemented time-varying, Cox proportional hazard
models14 with robust, sandwich standard error esti-
mates15 and random survival forests.16

Cox proportional hazard model. We developed time-
dependent Cox proportional hazard models12,15 using
two strategies: one that does and one that does not
include independent variable interactions. First, we built
a Cox model with all 28 predictors described previously.
For all continuous variables, we used restricted cubic
splines with 5 knots specified at the 5th, 25th, 50th, 75th,

and 95th percentiles to allow for nonlinear associations.
In total, this modeling approach estimated 53 parameters
for each of the three outcome models. Next, we sought
to add two-way interactions. Since it is difficult to detect
interactions between correlated variables and with very
rare variables, we added interactions with the following
approach. First, we conducted a hierarchical cluster
analysis17,18 to identify uncorrelated clusters of variables
after excluding binary variables with prevalence less than
0.05. We then performed principle component analysis,
computed the first principle component for each cluster,
and added all pairwise interactions among the principle
components to the Cox models.19–21 For the antiplatelet,
statin, and warfarin models we estimated 182, 166, and
124 parameters, respectively, across all main effects and
interactions. The difference in the number of parameters
estimated for each outcome is due to the difference in
the patients included in the analyses. Subjects included in
each medication model were required to be naı̈ve to the
medication at the MH date, and so sample sizes for the
three models differed (though there is much overlap). In
total, for the 2010 to 2012 training cohort, 74,607,
45,532, and 75,795 unique patients contributed longitu-
dinal data to the antiplatelet, statin, and warfarin mod-
els, respectively. For the 2013 to 2015 validation cohort,
52,588, 34,373, and 54,495 patients contributed data.

Random survival forests. Random survival forests
(RSF)16 are a popular, ensemble-based, machine-
learning algorithm for variable selection and risk predic-
tion that naturally includes high dimensional interac-
tions, and that reduces model overfitting and prediction
bias by averaging across a number of individual trees.
When constructing our final models, we conducted a
thorough grid search for all common tuning parameters,
and in Appendix I, we show the extent to which predic-
tive model summaries depend on the tuning parameters:
number of trees in the forest (ntree) and the average
number of observations in terminal nodes (nodesize).
Based on a grid search, we found that tuning parameters,
number of candidate predictors randomly selected at
each split (mtry) of a tree, and the maximum number of
splits for continuous variables (nsplit) had a smaller
impact on predictive model performance. We set mtry =
5 (i.e., approximately equal to the commonly used square
root of the number of independent variables) and nsplit
= 10. In Appendix I (Tables A1.1 and A1.2), we show
C-Indices for the training data, the out-of-bag samples,
and the validation data, and in Figure A1.1, we include
calibration curves based on applying the RSFs con-
structed with the training data but applied to the valida-
tion data. When evaluating the performance of RSFs we
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chose ntree = 500 for all medications, and nodesize = 5
for statins and nodesize = 25 for antiplatelets and war-
farin, respectively. When making these decisions, we
balanced model calibration, the standard deviation of
the predictive distribution (with larger values being bet-
ter), and the C-Index.

Model Evaluation. We constructed the Cox models and
RSFs using nonparametric bootstrap samples from the
2010–2012 cohort. We then evaluated each of the models
using the out of bag samples from the 2010–2012 cohort
and the independent 2013–2015 cohort. In this article, we
focus exclusively on evaluation of performance on the
2013–2015 cohort. We examined model calibration and pre-
dictive distributions graphically and captured discrimination
with the C-index21 at 2 years following each clinic visit. All
analyses were performed using the R programming lan-
guage 3.3.0 (R Foundation for Statistical Computing,
Vienna, Austria) with rms,22 randomForestSRC,16,23,24 and
survivalROC25 libraries.

Calculating the Value of Genotyping Using
Discrete Event Simulation

To estimate the incremental value of genotype tailored
therapy over standard prescribing, we defined four dis-
tinct utility functions that represent different approaches
to summarizing adverse outcomes, costs of treatment for
adverse outcomes, and costs of testing. Let Umed, b be the
expected utility associated with therapeutic approach b
once an indication for medication med has occurred, and
let b = std for standard, non-tailored therapy and b =
gtt for genotype tailored therapy. To examine the impact
of genotype tailored therapy, we calculate Umed, std,
Umed, gtt, and DUmed = f (Umed, std,Umed, gtt), where DUmed, a
function of Umed, std, and Umed, gtt, captures the expected
benefit of genotype tailored therapy after an indication
arises. The value DUmed depends on variant allele fre-
quencies, adverse event/failure rates, relative rate reduc-
tions due to genotyping, secular death rates, costs, the
follow-up timeframe, and so on. In this article, we con-
sider the utility functions: all adverse events (AEs),
severe adverse events (SAEs), quality-adjusted life years
(QALY), and net health benefit (NHB). For AE, SAE,
and QALY, DUmed =Umed, std � Umed, gtt is a simple differ-
ence (i.e., the difference in the expected number of AEs).
In contrast, for NHB, DUmed =DQALYmed� DCostmed=l,
where DQALYmed and DCostmed are the difference in
QALYs and costs, respectively, for genotype tailored
therapy compared to standard therapy, and l is a willing-
ness to pay threshold that represents the amount society

is willing to pay per quality-adjusted life year gained. In
this article, we used a willingness to pay threshold equal
to $100,000 ($50,000 is another commonly used value).26

To calculate expected benefits for each utility function
by medication combination, we appeal to discrete event
simulation (DES) methods.27–30 As described in detail in
previously published work31 and using parameters
shown in Appendix II, the underlying DES jointly mod-
els the prescription incidence, health, and mortality out-
comes among patients prescribed antiplatelet therapy, a
statin, or warfarin. The demographic profile of the simu-
lated patient population was matched to the VUMC
MH population based on age and gender. The model
assumes the health sector perspective and incorporates
medical costs, pharmaceutical costs, and clinical out-
comes based on prior randomized trials and on previous
cost-effectiveness studies of antiplatelet therapy, simvas-
tatin, and warfarin. The DES compared a base case sce-
nario under which no genetic testing is used to guide
therapeutic decisions to a genotype-tailored scenario
under which a genetic test is ordered and acted upon
when appropriate. For our DES model outcomes, we
consider a 1-year timeframe after medication prescrip-
tions, as the differential impact of genotype-tailored
therapy versus standard therapy on AEs is concentrated
within the year after initiating therapy.

Decision Analysis for Genotyping

The benefits of genotyping differ according to medica-
tions and indications, with genotype-tailored therapy for
certain ‘‘high-yield’’ drug-gene pairs shown to have a
higher net monetary benefit as compared with other
drug-gene pairs.31 Thus, a naı̈ve approach to the preemp-
tive genotyping decision (i.e., whom to genotype) that
simply averages predicted risks across PGx medications
into a single summary risk score will assign equal weight
to higher and lower value PGx scenarios and will weigh
the overall risk score toward the drug with the largest
indication frequency in the sample. Ideally, a summary
risk score used to make clinical decisions to preemptively
genotype would be based on a value-weighted combina-
tion of predicted risks for each drug type. That is, a pre-
emptive genotyping decision should ideally combine 1)
medication prescription risk with 2) the estimated benefit
of genotype tailored therapy once the indication occurs.

Let rmed be the 2-year prescription risk for medication
med. For the present analyses, we calculated rantiplatelet,
rstatin, and rwarfarin at all patient-clinic visits in the 2013–
2015 cohort using results from the Cox model and RSF
fits that were constructed using the 2010–2012 cohort.
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After running the discrete event simulations, we calcu-
lated expected benefit of genotyping once a medication is
indicated, DUantiplatelet, DUstatin, and DUwarfarin along a
variety of dimensions (e.g., number of SEAs avoided,
NHB, etc.) under the recognition that some health sys-
tems and decision makers may prefer one definition of
value over another. Finally, for each med, Vmed = rmed 3

DUmed is the value of preemptively genotyping for medi-
cation med.

A decision rule that optimizes expected benefit for
panel-based, preemptive genotyping genotypes patients
with the highest total value across all available medica-
tions: Vtotal =Vantiplatelet +VStatin +Vwarfarin: This total
value quantity has intuitive interpretations. For example,
if the utility function represents a sum of all AEs, then
Vtotal is the anticipated number of AEs that would be
avoided under preemptive genotyping. Notably, a patient
who has already been exposed to one or two of the medi-
cations may still benefit from preemptive genotyping. For
example, if a patient had already been exposed to, say,
statins then the total value is calculated with the remain-
ing medications, Vtotal =Vantiplatelet +Vwarfarin, as it is still a
valid measure of expected benefit. We also recommend
setting Vmed = 0 when it is negative, since genotype-
tailored therapy would not be used for the medication.

Results

Patient data used to calculate medication prescription
risk are summarized in Table 1. We study 85,837 patients
(534,962 clinic visits) in the 2010–2012 training cohort,
and 59,953 patients (194,187 clinic visits) in the 2013–
2015 validation cohort. The training cohort tended to be
older (median age 58 v. 55), to have higher rate of type 2
diabetes (21% v. 13.8%), hypertension (60.1% v.
46.1%), congestive heart failure (9.7% v. 6.8%), and
atherosclerosis (24.7% v. 18.8%) than the validation
cohort. However, it had a lower prevalence of cardiac
clinic visits (22.6% v. 25.1%). Figure 1 displays
medication-free, Kaplan-Meier curves14 using the longi-
tudinal training and validation data for the three medica-
tions. Compared with the validation cohort, the training
cohort had a somewhat higher rate of being prescribed
the medications at 2 years. The 2-year risk estimates
[95% confidence intervals] for the training and valida-
tion cohorts were, respectively, 0.022 [0.021, 0.023] and
0.018 [0.017, 0.019] for stent-indicated antiplatelet pre-
scriptions, 0.146 [0.145, 0.148] and 0.126 [0.123, 0.129]
for statin prescriptions, and 0.042 [0.041, 0.043] and
0.035 [0.034, 0.036] for warfarin prescriptions.

Medication Prescription Risk Modeling

Figure 2 displays calibration curves, predictive distribu-
tion summaries, and C-Indices for 2-year risks when
applying models developed using the training cohort
data (2010–2012) to the validation cohort data (2013–
2015). We display summaries for the three medications
and the three modeling approaches (Cox without interac-
tions, Cox with interactions, and RSF). None of the
modeling approaches clearly outperformed the others
across the three medications. The models were quite well
calibrated for the statin and antiplatelet models although
all models, and particularly the Cox without interaction
model, appeared to overestimate warfarin risk at the
upper tail of the distribution. All modeling approaches
also yielded quite similar C-Indices (0.80–0.81 for anti-
platelets, 0.69–0.70 for statins, and 0.69 for warfarin). In
online appendices, we display parameter estimates, confi-
dence intervals, and nomograms using the Cox without
interactions model to enhance readers’ understanding of
independent variable contributions to the risk estimates
(see Appendix I, Figures A1.2–A1.7).

Discrete Event Simulation

For each medication, we conducted a DES using
literature-based values for secular death rates, variant

Figure 1 Kaplan-Meier estimates of medication-free survival
probability using the longitudinal train and validation cohort
data for antiplatelet, statin, and warfarin. The x-axis is the
time since last clinic visit using the residual time scale.
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allele frequencies, AE rates, and costs to estimate the
expected benefit of genotyping in the 1 year following
each medication prescription. We calculated DUantiplatelet,
DUstatin, and DUwarfarin using benefit measures: number of
SEAs avoided, total number of AEs avoided, disutility-
weighted QALY gained, and NHB with a willingness to
pay threshold of $100,000. We assumed that genotype

tailored therapy affected outcomes only by altering the
medication choice (i.e., switching from clopidgrel to tica-
grelor or altering the warfarin dose) in those with action-
able variants. For each of the six scenarios (antiplatelet,
statin, and warfarin indications under standard therapy
and genotype-tailored therapy) we simulated a popula-
tion of 10 million patients to estimate expected costs and

Table 1 Patient Demographics, Vitals, Labs, Medical History, Chronic Medical Conditions, and 2-Year Prescription Event
Rates for the 2010–2012 (Training) and 2013–2015 (Validation) Cohortsa

Train Cohort Validation Cohort

Baseline Longitudinal Baseline Longitudinal

N 85,837 534,962 59,953 194,187
Demographics
Age (years) 55 [29, 75] 58 [33, 77] 52 [26, 73] 55 [28, 75]
Female 58 58 58 57
Race

White 85 85 86 86
Black 12 12 11 11
Other 3 3 3 3

Vitals and labs
BMI (kg/m2) 28 [21, 38] 28 [22, 39] 28 [21, 38] 28 [22, 39]
BP available? (%) 97.4 90.3 97.6 89.7

Diastolic (mm Hg) 74 [60, 90] 74 [60, 89] 74 [60, 90] 74 [60, 89]
Systolic (mm Hg) 118 [ 67, 144] 120 [ 67, 146] 122 [ 82, 147] 123 [ 88, 148]

Lipids available? (%) 17.4 16.2 8.6 9
LDL (mg/dL) 100 [ 72, 132] 100 [ 66, 136] 100 [ 84, 122] 100 [ 77, 127]
HDL (mg/dL) 49 [35, 66] 49 [34, 69] 50 [39, 60] 50 [37, 63]
Triglycerides (mg/dL) 110 [ 66, 197] 111 [ 64, 221] 110 [ 79, 159] 110 [ 73, 182]

HgbA1C available? (%) 5.6 8 5.1 5.3
HgbA1C value (%) 5.2 [4.4, 6.4] 5.3 [4.5, 6.9] 5.1 [4.4, 6.0] 5.2 [4.4, 6.2]

Creatinine available? (%) 42.7 38.6 32.1 30.6
Creatinine (mg/dL) 0.8 [0.6, 1.3] 0.9 [0.6, 1.4] 0.8 [0.6, 1.2] 0.8 [0.6, 1.2]

Medical history and chronic conditions (%)
Type 2 diabetes 14.8 21 10.1 13.8
CAD 4 6 3.1 3.9
Atrial fibrillation 3.2 5 2.2 3.2
Hypertension 49 60.1 37.8 46.1
Congestive heart failure 6.8 9.7 4.9 6.8
Atherosclerosis 18.9 24.7 14.9 18.8
Cerebrovascular event 4.9 7.6 3.1 4.5
Dialysis 10.4 14.1 7.7 10.1
Any acute event 7.5 11.3 6.4 8.6
Cardiac clinic 24.4 22.6 26.9 25.1
Antiplatelet 6.3 9.9 5 6.9
Statins 47 58.6 42.7 50.6
Warfarin 11.7 16.5 9.1 12.2

2-Year event rateb (number of events/Nc)
Antiplatelet 2.3 (1,699/74,607) 2.2 (8,092/426,409) 1.9 (835/52,588) 1.8 (1,883/149,985)
Statin 11.3 (5,041/45,532) 14.7 (26,656/210,254) 14.7 (4,130/34,373) 12.6 (7,584/86,418)
Warfarin 3.7 (2,755/75,795) 4.2 (15,395/424,812) 4.3 (1,949/54,495) 3.5 (3,759/153,105)

BMI, body mass index; BP, blood pressure; CAD, coronary artery disease; HDL, high-density lipoprotein; LDL, low-density lipoprotein.
aContinuous variables are summarized with the 50th [10th, 90th] percentiles and categorical variables with percentages.
bA Kaplan-Meier estimate was used for prescription rate.
cN corresponds to the sample size that is naı̈ve to the medication at the medical home date.
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QALY. Then, for each medication, we calculated the
expected benefit using the difference in expected utility
between the genotype-tailored therapy and the standard
therapy populations. Since metabolizer status is known
to vary by race for CYP2C19 and SLCO1B1, we calcu-
lated DUantiplatelet and DUstatin for white, black, and other
races separately. We did not conduct a race-based calcu-
lation for warfarin therapy due to inadequate data on
specific impact of variants VKORC1 and CYP2C9 on
the time to controlled international normalization ratio
(INR). Instead we used the results from Pirmohamed et
al32 that directly modeled the impact of genotype-
tailored therapy versus standard therapy on time to INR
control. For the purpose of this proof of concept, we
assumed that metabolizer status for those in the ‘‘other’’
race category was similar to Asian populations and we
use values based on Scott et al9 for CYP2C19 and
School of Medicine, Indiana University,33 for SLCO1B1.

Table 2 shows the results of the discrete event simula-
tion for combinations of the utility function, 2-year medi-
cation prescription risks, and race. When using SEAs
and quality-adjusted life day utilities, the expected benefit
of genotype-tailored therapy is far greater for those pre-
scribed antiplatelets than those prescribed statins or war-
farin. For example, while with antiplatelet therapy, we
estimated avoiding 2.6 (white), 3.2 (black), and 5.1 (other
race) SEAs per 1,000 patients genotyped (see DUmed col-
umn), with statin and warfarin therapy, we estimate

avoiding less than 0.15 SEAs in all subgroups. In con-
trast, if considering all AEs together, including nonse-
vere events, we estimate that genotype-tailored therapy
avoids far more statin-related AEs in white and other
races (e.g., compare 19.7 statin-related AEs avoided in
the other race compared to 4.8 and 3.0 antiplatelet-
related and warfarin-related AEs). Table 2 also shows
the 95th, 97.5th, and 99th percentiles of 2-year medica-
tion prescription risk (rmed) and the associated expected
benefit of preemptive genotyping (Vmed = rmed 3 DUmed)
for each medication, utility function, and race. Clearly,
anticipated benefit of genotyping (DUmed) and the 2-
year risk of being prescribed the medication (rmed) both
factor into the anticipated benefit of preemptive geno-
typing Vmed. The NHB was observed to be negative for
all three medications, and so for 1-year timeframe that
we used here and for the medications we studied, we
would not choose to genotype patients based exclu-
sively on the NHB. Such a conclusion could change
with longer follow-up periods and with different medi-
cations. Notably, for each medication and utility func-
tion, the differences in post-medication, expected
benefit (DUmed) among the races are explained by the
difference in the low metabolizer rates (e.g., 0.146 v.
0.290 poor metabolizer prevalence in white versus other
race). This is due to the fact that the discrete event
simulation did not factor race into the DUmed calcula-
tion beyond metabolizer status.

Figure 2 Calibration and distribution for predicted 2-year risks. Risk estimates were calculated by applying Cox main effect model,
Cox interaction model, and RSF to the validation cohort dataset. Each dot stands for the average risk over 300, 173, and 306
observations, which provides 500 dots (bins) for antiplatelet, statin, and warfarin. The ‘‘syringe’’ plot or extended boxplot shows the
1st, 10th, 25th, 50th, 75th, 90th, 99th percentiles, and the standard deviation of the predicted risk distribution is displayed
numerically. The smooth lines and the 95% confidence band were calculated using the locally estimated scatterplot smoothing.
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Application of the Decision Rule to Identify
Patients to Genotype

Since genotyping is still too expensive to perform on all
patients, for this demonstration, we assume we can only
genotype the 1,500 patients in each scenario, and Table 3
shows the extent to which this preemptive genotyping
program could be used to improve outcomes if applied in
the validation cohort. Examining the quality-adjusted life
day utility function, we can see that with the decision rule
to genotype when Vtotal � 19:2, we enrich the sample with
black patients compared to the original cohort (19% v.

11%), and number needed to genotype to gain one qual-
ity adjusted life day is 34. In contrast, the number needed
to genotype under a random sampling scheme is 208.

Figure 3 displays cumulative incidence of being
prescribed each medication among the subset of 1,500
participants genotyped under each decision rule. By com-
paring these values to the cumulative incidence under a
random sampling design, we observe the extent to which
the pool of genotyped patients was enriched with those
who were prescribed medications within 2 years of each
clinic visit. The figure highlights the tradeoffs that are

Table 2 Discrete Event Simulationa

DUmed rmed Vmed

Medication Race SAEb AEc QALD

Two-Year
Prescription Risk in

the 2013–2015
VUMC Cohorts SAEb AEc QALD

Antiplatelets White (CYP2C19 poor
metabolizer prevalence = 0.146)9

2.554 2.427 185.325 0.059 (95th) 0.150 0.143 10.897
0.080 (97.5th) 0.204 0.194 14.836
0.113 (99th) 0.288 0.273 20.876

Black (CYP2C19 poor
metabolizer prevalence = 0.183)9

3.201 3.043 230.309 0.059 (95th) 0.190 0.180 13.635
0.090 (97.5th) 0.288 0.274 20.755
0.144 (99th) 0.460 0.437 33.098

Other (CYP2C19 poor
metabolizer prevalence = 0.290)9

5.073 4.821 360.400 0.023 (95th) 0.115 0.109 8.155
0.036 (97.5th) 0.183 0.174 13.010
0.055 (99th) 0.279 0.265 19.807

Statin White (SLCO1B1 poor/medium
metabolizer prevalence = 0.029/0.282)33

0.144 26.252 8.925 0.233 (95th) 0.034 6.128 2.083
0.284 (97.5th) 0.041 7.448 2.532
0.357 (99th) 0.051 9.369 3.185

Black (SLCO1B1 poor/medium
metabolizer prevalence = 0.000/0.039)33

0.017 2.896 1.015 0.283 (95th) 0.005 0.820 0.288
0.348 (97.5th) 0.006 1.008 0.353
0.437 (99th) 0.007 1.265 0.444

Other (SLCO1B1 poor/medium
metabolizer prevalence = 0.017/0.226)33

0.110 19.742 6.765 0.188 (95th) 0.021 3.709 1.271
0.239 (97.5th) 0.026 4.726 1.619
0.314 (99th) 0.034 6.191 2.121

Warfarin Overall 0.007 2.969 10.843 0.088 (95th) 0.001 0.261 0.953
0.108 (97.5th) 0.001 0.321 1.173
0.138 (99th) 0.001 0.409 1.495

aWe report the expected benefit of genotype-tailored therapy in the year following a prescription per 1,000 patients genotyped (DUmed) by race,

the 95th, 97.5th, and 99th percentiles of 2-year medication prescription risk (rmed) among patients in the 2013–2015 cohort, and the expected

benefit of preemptively genotyping 1,000 patients (Vmed = rmed 3 DUmed) by medication prescription risk and race. We consider utility functions:

severe adverse events (SAEs), all adverse events (AEs), and quality-adjusted life days (QALDs). Net Health Benefit (willingness to pay threshold

set to $100,000) was negative in all scenarios and is not included. For each medication, we simulated 10,000,000 patients with age and gender

distributions that resemble the 2013–2015 validation cohort. We rescaled results so that DUmed and Vmed are both on a ‘‘per 1,000 patients

genotyped’’ scale.
bFor antiplatelets, SAE includes ST event, MI (myocardial infarction), revascularization, major bleed. For statin, SAE includes moderate or

severe myopathy, cerebrovascular event. For warfarin, SAE includes major bleed, stroke, DVT (deep vein thrombosis) event, pulmonary

embolism.
cFor antiplatelets, AE includes serious adverse events and non-serious events including minor bleed. For statin, AE includes serious adverse

events and non-serious mild myopathy events. For warfarin, AE includes serious adverse events and non-serious minor bleeds.
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made when choosing a utility function. Genotyping rules
that seek to minimize SAEs and increase the number of
QALYs both enrich the sample with those prescribed
antiplatelets (top left panel). In contrast, genotyping
rules that seek to reduce all AEs enrich the genotyped
pool primarily with those prescribed statins (top right
panel).

Discussion

This article provides a framework for institutions and
health systems to develop a preemptive genotyping pro-
gram that maximizes societal and institutional value by
integrating the advantages of genotype-tailored therapy
with selection of a health care population that is most
likely to benefit from testing. The framework is applied
retrospectively using data from a single institution to
demonstrate the feasibility and potential utility of the
method. As a three-step process, the framework is more
complex than what is currently implemented at several
institutions including our own.34–39 However, if imple-
mented, it could potentially balance the investment
in testing with the downstream value of improving
prescription-related outcomes.

We evaluated two different predictive modeling
strategies—a Cox survival model and a machine
learning–based RSF—and performance was comparable.
This is consistent with a lack of high-order interaction
terms that are naturally captured with RSFs and can be

explained by noting that medication prescriptions repre-
sent a clinician-made decision. Thus, the predictive mod-
els can only be as complex as clinicians’ ability to
assimilate patients’ clinical profiles. In addition, we
implemented a discrete event simulation to estimate the
expected benefit of genotype-tailored therapy once medi-
cations are prescribed, and we combined the prescription
risk estimates with the expected benefit after prescrip-
tions to derive expected benefit associated with preemp-
tive genotyping. Under this program, for a chosen utility
function, patients with the highest expected benefit
across all medications should be genotyped.

In this demonstration, improvements may be per-
ceived as modest. Observed results will improve with a
larger number of medications with PGx effects, with a
greater focus on high-yield indications for which
genotype-tailored therapy has been shown to be benefi-
cial, with increased targeting of those at highest risk of
medication prescriptions, with longer follow-up times
(both for prescribing and for observing downstream
events), and with a more focused targeting of subgroups
of patients known to have relatively high rates of risk
conferring alleles. Notably, the strategy we propose is
highly adaptable and can be easily modified as new evi-
dence emerges (i.e., medications and medication indica-
tions can be added and removed from all calculations).
Whether health systems can justify implementing pre-
emptive, panel-based pharmacogenomic testing, or
payors agree to fund such testing, may depend on the

Table 3 Extent of Enrichment of the Genotyped Cohorts Using Rules That Genotype When the Total Expected Benefit of
Preemptive Genotyping, Vtotal =Vantiplatelet +VStatin +Vwarfarin, Exceeds the Thresholds Shown

a

White Black Other Overall

Proportion in the 2013–2015 VUMC cohort of 58,499 patients 85.9 11.2 2.9
SAE genotyping rule: Genotype if Vtotal � 0:256
Proportion in a genotyped cohort of 1,500 patients 78.9 19.2 1.9
NNT in a genotyped cohort to prevent one SAE 2,661 2,073 2,130 2,512
NNT in a randomly genotyped cohort to prevent one SAE 16,061 15,207 19,425 16,045

AE genotyping rule: Genotype if Vtotal � 8:488
Proportion in a genotyped cohort of 1,500 patients 99.3 0 0.7
NNT in a genotyped cohort to prevent one AE 91 — 95 91
NNT in a randomly genotyped cohort to prevent one AE 421 2,200 597 468

QALD genotyping rule: Genotype if Vtotal � 19:168
Proportion in a genotyped cohort of 1,500 patients 79.3 19.0 1.7
NNT in a genotyped cohort for one additional QALD 36 28 28 34
NNT in a randomly genotyped cohort for one additional QALD 207 198 264 208

AE, all adverse event derived genotyping rule; QALD, quality adjusted life day derived genotyping rule; SAE, serious adverse event based

genotyping rule.
aWe chose the thresholds for this demonstration project in a manner that genotypes 1,500 patients. For each med, Vmed = rmed 3 DUmed , where

rmed is the estimated 2-year medication prescription risk in the 2013–2015 cohort and DUmed is estimated from the discrete event simulation. We

show the racial makeup of the genotyped pool under each rule and the number needed to genotype (NNT) under each rule and under random

sampling.
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use of both predictive modeling and careful consider-
ation of the economic and clinical benefits of tailored
prescribing.

ORCID iD

Jonathan S. Schildcrout https://orcid.org/0000-0003-2276-
2551

Figure 3 Cumulative incidence of medication prescriptions under four genotyping rules. We selected for genotyping the 1,500
patients in the 2013–2015 dataset who crossed the genotyping threshold for Vtotal for utility functions: serious adverse events only
(red), all adverse events (orange), quality-adjusted life days (blue), and a random selection of 1,500 patients (gray). Once patients
were selected into the genotyping pool, we estimated their cumulative risk of being prescribed each medication over time with
Kaplan-Meier estimates. To be included in the risk set for each figure, patients must have been naı̈ve to the medication at the
medical home date. To be included in the lower right panel, patients must have been naı̈ve to at least one of the medications at
the medical home date. Compared to random selection, all genotyping approaches enriched the pool of genotyped patients with
those who are likely to be prescribed one or more of the medications.
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Supplemental Material

Supplementary material for this article is available on the
Medical Decision Making Policy & Practice website at https://
journals.sagepub.com/home/mpp.
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