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Skeletal tissue development and regeneration in mammals are intricate, multistep, and
highly regulated processes. Various signaling pathways have been implicated in the
regulation of these processes, including Notch. Notch signaling is a highly conserved,
intercellular signaling pathway that regulates cell proliferation and differentiation, de-
termines cell fate decision, and participates in cellular process in embryonic and adult
tissue. Here, we review recent data showing the regulation of Notch signaling in osteo-
genesis, osteoclastogenesis, and angiogenesis. These processes are cell-contexte
dependent via direct or indirect mechanisms. Furthermore, Notch signaling may be highly
beneficial for efficient coupling of osteogenesis and angiogenesis for tissue engineering
and skeletal repair, which is critical to develop clinically therapeutic options.
(Am J Pathol 2019, 189: 1495e1500; https://doi.org/10.1016/j.ajpath.2019.05.005)
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Notch signaling is a highly conserved, intercellular
signaling pathway system that regulates cell proliferation
and differentiation, determines cell fate decisions, and par-
ticipates in cellular processes in both embryonic and adult
tissue, including skeletal tissue development and regener-
ation.1e3 Notch signaling consists of four parts: ligand,
receptor, DNA binding protein, and downstream transcrip-
tion genes. In humans and mice, there are four single-pass
transmembrane Notch receptors (Notch1e4). These
receptors are initiated after direct binding of ligands Jagged1
or Jagged2, or Delta-like 1, 3, or 4 of neighboring cells.4

This interaction causes proteolytic cleavage of a Notch
receptor via the g-secretase complex; as a result, the Notch
intracellular domain (NICD) is released from the cellular
membrane into the cytoplasm.5 Then the NICD activates
canonical and noncanonical Notch signaling mechanisms.
During canonical Notch signaling the NICD translocates to
the nucleus and binds with CSL transcription factors
[recombination signal binding protein for immunoglobulin
kappa J region (RBPjk)/suppressor of hairless/lag-1] and co-
gy. Published by Elsevier Inc
activators, such as Mastermind-like proteins, forming a
complex that induces the transcription of downstream target
genes.4,6 These genes include basic helix-loop-helix family
transcription factors, such as hairy enhancer of split family
genes (Hes1, Hes5, and Hes7) and HES-related with YRPF
motif family genes (Hey1, Hey2, and HeyL).7

Canonical Notch signaling is identified as a critical
regulator of stem cell proliferation, differentiation, and self-
renewal in the pancreatic, hematopoietic, neural, and skel-
etal muscle systems.8e12 Here, we highlight recent insights
into the physiological role of Notch signaling in regulating
skeletal tissue development and regeneration.
. All rights reserved.
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Notch Signaling in Skeletal Tissue Development

Skeletal tissue development in mammals is intricate,
involving multiple steps and highly regulated processes by
which the collagenous mesenchymal tissues are replaced by
bone. This process is performed during two distinct and
important mineralization types called intramembranous
ossification and endochondral ossification.13,14 Both are
needed to coordinate growth, differentiation, and interaction
of various cells. Endochondral ossification occurs when
cartilage is replaced systematically by bone at a healing
fracture or at the site of epiphyseal growth plates.15 This
process occurs in limb bone and axial bone, such as the
femur, tibia, vertebrae, and pelvis. This is also an important
process during the healing of fractures when treated by cast
immobilization or certain types of internal fixation.16

Intramembranous ossification is characterized by which
mesenchymal tissue is replaced directly by bone and does
not need the step of intermediate cartilage formation.17 This
process occurs most notably in the bones of the skull,
clavicle, and mandible. It also occurs during the healing
Figure 1 Notch signaling in bone tissue development. Notch signaling has dua
not only enhances osteogenic differentiation and the bone mineralization process,
Meanwhile, Notch signaling inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-p
Furthermore, Notch activation in osteocytes can suppress bone resorption and incr
pathway inhibitor 1 (Dkk1), as well as up-regulation of Wnt signaling. Notch1
deficiency can promote this process indirectly by decreasing the osteoprotegerin
Notch1/Jagged1 axis suppresses osteoclastogenesis, whereas the Notch2/Delta-lik
of osteoclast formation by strongly inhibiting the macrophage colony-stimulatin
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process of fractures when the bones are treated by anatomic
open reduction and fixation with a metal plate and screws.16

Notch signaling may interact directly or indirectly with
other signaling pathways such as Wingless-type MMTV
integration site family (Wnt) and bone morphogenetic pro-
tein in osteoblasts, osteocytes, and osteoclasts to regulate
skeletal tissue development18 (Figure 1).

Notch Signaling and Osteogenesis

Osteoblasts are derived from the mesenchymal stromal cells
in the bone microenvironment, and are responsible for the
synthesis and mineralization of bone formation in postnatal
development and adult life.19,20 The role of Notch signaling
in osteogenesis has been examined in several in vitro and
in vivo studies.21e23

In vitro studies have shown that Notch signaling has dual
effects of induction and inhibition on stromal cell osteo-
blastic differentiation, which may depend on cell type, cell
differentiation stage, and the timing of Notch activation.
Tezuka et al21 examined the role of Notch activation in
l effects on osteogenesis and osteoclastogenesis. Notch signaling activation
but also inhibits the osteogenesis by suppressing Wnt/b-catenin signaling.
henylglycine t-butyl ester (DAPT) can enhance the osteogenesis process.
ease bone volume by reducing sclerostin (Sost) and dickkopf WNT signaling
e3 deficiency directly promotes osteoclastic differentiation, and Notch1
(OPG) and receptor activator of nuclear factor kB ligand (RANKL) ratio. The
e (Dll) 1 axis has the opposite effect. Notch activation has a negative effect
g factor (M-CSF).
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Notch in Bone Tissue
various types of osteoblastic cells in vitro. A significant
increase in calcified nodule formation is observed in long-
term cultures when a Notch1 cytoplasmic domain was
delivered by an adenovirus vector to osteoblastic MC3T3-
E1 cells. Consistent with this finding, our study further
showed that Notch ligand Jagged1-mediated primary oste-
oblast mineralization was enhanced through decreased cell
apoptosis in a caspase 3edependent manner.24 A similar
effect also was observed in cultures of primary human bone
marrowederived mesenchymal stem cells (MSCs). When
human bone marrowederived MSCs were transduced with
lentiviral vectors containing either human NICD1 or ligand
jagged1, the cultures showed an enhanced mineralization.
However, when dominant-negative mastermind1 was co-
expressed with NICD1 or jagged1 to inhibit Notch
signaling, the enhanced cell osteogenic differentiation pro-
cess was partially delayed.22 In contrast, when Notch
signaling was activated in stromal cells, a negative effect of
Notch signaling on osteogenic differentiation was observed.
Deregowski et al23 found that Notch1 overexpression in-
hibits osteoblastogenesis in ST-2 stromal cells by sup-
pressing Wnt/b-catenin signaling. Sciaudone et al25 further
showed that overexpression of NICD1 not only impaired the
mature osteoblastic phenotype in MC3T3-E1 cells, but also
enhanced adipogenesis in murine ST-2 stromal cells. Our
previous findings also support this notion by showing
enhanced limb-bud stromal cell osteogenic, adipogenic, and
chondrogenic differentiation when Notch signaling was
reduced by inhibitor N-[N-(3,5-Difluorophenacetyl)-L-
alanyl]-S-phenylglycine t-butyl ester (DAPT). This strongly
suggests that the Notch pathway is a general suppressor of
stromal differentiation that does not bias lineage
allocation.26

To further confirm these in vitro effects, a variety of
Notch gain-of-function and loss-of function mouse models
have been developed. Transgenic mice overexpressing
NICD1 driven by the 2.3-kb fragment of the collagen type 1
a1 promoter in committed osteoblastic cells causes severe
osteosclerosis owing to the increased proliferation of
immature osteoblasts.27 Tao et al28 further reported that
Notch inhibition by selective deletion of Notch nuclear
effector Rbpjk in mice osteoblasts completely suppressed
Notch-induced osteosclerotic and growth-retardation phe-
notypes, indicating that the effect of Notch signaling in
osteoblasts depends solely on Rbpjk activity. Although
conditional null Notch1 mice under the control of the
osteocalcin promoter had no obvious skeletal phenotype,
deletion of both Notch1 and Notch2 in osteoblasts showed
increased alkaline phosphatase activity, suggesting a
possible rescue by Notch2 in Notch1 null mice.29 More
importantly, in vivo data generated from conditional Notch
gain-of-function and loss-of function specific in MSCs from
our laboratory clearly show for the first time that the RBPjk-
dependent Notch signaling pathway is a crucial enhancer of
MSC proliferation and suppressor of differentiation during
skeletal tissue development. In addition, Hes1 was identified
The American Journal of Pathology - ajp.amjpathol.org
as an RBPjk-dependent Notch target gene important for
MSC maintenance and the suppression of osteogenesis.26

Notch Signaling and Osteocytes

Osteocytes are derived from terminally differentiated os-
teoblasts, located deep within the mineralized matrix, to
support bone structure and metabolism.30 Osteocytes are
dendritic cells that communicate through a canalicular
network with neighboring osteocytes, as well as sur-
rounding osteoblasts and osteoclasts.31 An in vitro study
showed that dysregulation of Notch in osteocyte differ-
entiation spontaneously can deposit calcium phosphate,
disturb transportation of intracellular mineral vesicles, alter
mineral crystal structure, decrease bonding force between
minerals and organic matrix, and suppress dendrite
development coupled with decreased expression of E11.
This suggests that Notch plays a critical role in osteocyte
differentiation and bone mineralization from an intracel-
lular mineral package to extracellular mineral deposition.32

Shao et al33 showed that Notch signaling regulates osteo-
cyte differentiation by promoting the expression of
important osteocyte markers. Furthermore, the antagonism
of Notch and Wnt signaling during the late differentiation
stage of osteocytes is mediated by regulating phosphory-
lation of Akt and aggregation of b-catenin. Zanotti and
Canalis34 reported that fluid shear stress activates Notch
signaling in osteocytic cell lines and an in vivo study
supported similar outcomes. Canalis et al35 further exam-
ined Notch effects in osteocytes by using dentin matrix
protein 1 promoter Cre. When Notch signaling was over-
expressed in osteocytes, suppressed bone resorption and
increased bone volume were observed. Consistent with
this, when Notch signaling is activated preferentially in
osteocytes by crossing the dentin matrix protein 1eCre
transgenics with Rosa-Notch mice, dentin matrix protein
1eCreþ/-; Rosa-Notch mice had an increase in trabecular
bone volume, an increase in cortical bone, as well as an
enhancement of Wnt signaling.36 Similarly, another in vivo
transgenic mice study found that Notch activation in os-
teocytes can suppress bone resorption and increase bone
volume, resulting in reduced expression of sclerostin
(Sost) and dickkopf WNT signaling pathway inhibitor 1
(Dkk1), as well as up-regulation of Wnt signaling.37

Notch Signaling and Osteoclasts

Osteoclasts are multinucleated cells that differentiate from
macrophage precursors and are responsible for bone resorp-
tion.38 Osteoclastogenesis has been reported to be regulated by
several molecules, induced by two critical cytokines, namely
receptor activator of nuclear factor kB ligand (RANKL) and
macrophage colony-stimulating factor, and inhibited by a
decoy receptor of RANKL, osteoprotegerin.39 The effect of
Notch signaling on osteoclast differentiation and function is
cell-contextedependent via direct and indirect mechanisms.
1497
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Figure 2 Notch effect on angiogenesis. Delta-
like (Dll) 4 negatively regulates vascular endothe-
lial growth factor (VEGF)-mediated angiogenesis,
while Jagged1 is a proangiogenic regulator that
antagonizes Dll4-mediated Notch signaling in
angiogenesis. Notch intracellular domain (NICD1)
enhances bone morphogenetic protein (BMP)-
induced angiogenesis.
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Deletion of Notch1e3 in murine bone marrowederived
macrophages directly promotes differentiation toward the
osteoclastic linages. As a result, these osteoclast precursors are
more sensitive and proliferate more rapidly than the wild type
in response to RANKL and macrophage colony-stimulating
factor. Furthermore, Notch1 deletion indirectly promotes
osteoclast differentiation by enhancing osteoblastic lineage
cellemediated stimulation of osteoclastogenesis.40 Constitu-
tive activation of Notch1 in mesenchymal cells leads to an
increased expression of osteoprotegerin and RANKL; how-
ever, the expression of macrophage colony-stimulating factor
strongly is inhibited, reducing the supportive effect of osteo-
clast development and a negative effect of osteoclast forma-
tion.41 In addition, an in vitro study showed that NF-kB
promotes RANKL-induced osteoclast differentiation and
resorption in RAW264.7 cells, while enhanced transcription
factor Hes1 also was observed.42 In contrast, Canalis et al43

found that enhanced osteoclast number, osteoclast differenti-
ation, and bone resorption are detected in Notch2 mutation
mice, when Notch signaling is suppressed by the g-secretase
inhibitor. Furthermore, the differential regulation of osteo-
clastogenesis may involve different Notch receptors and
ligands because it has been reported that Notch1/Jagged1 axis
suppresses, while Notch2/Delta-like 1 axis promotes, osteo-
clastogenesis.44 Together, the effect of Notch signaling on
osteoclastogenesis largely depends on the differentiation status
of cells and the expression of specific ligands and receptors.
Notch Signaling and Skeletal Tissue
Regeneration

Skeletal tissue regeneration is a dynamic process that bal-
ances the breakdown of old bones, the formation of new
1498
bones, and the infiltration of blood vessels in these areas,
which is important during normal fracture healing.45 Bone
repair is considered the prototypic physiological model for
bone regeneration that generates new bone at the site of
injury via intramembranous or endochondral ossification.
Numerous studies have shown that bone repair is pro-

moted via manipulation of Notch signaling activity. Previ-
ous studies have shown that Notch signaling regulates both
endochondral and intramembranous bone healing in exper-
imental models of fracture healing.46 Recently, a genetic
model study reported the requirement for Notch and bone-
marrowederived MSCs in fracture repair. Wang et al47

performed nonstabilized and stabilized fracture models in
Notch-deficient mice with targeted deletion of RBPjk in
skeletal progenitors. They found reduced Notch signaling in
bone-marrowederived MSCs, and the subsequent depletion
of this population leads to fracture nonunion. Our previous
study found that Notch activation by Jagged1 in human
bone-marrowederived MSCs decreases cellular senescence
and cell-cycle arrest, therefore allograft transplantation with
Notch activation of a human bone-marrowederived MSC
sheet significantly enhances callus formation and biome-
chanical properties.48 In contrast, a single administration of
g-secretase inhibitors coupled with the effects on MSC
accelerates bone repair in a mouse tibial fracture model.
This can be explained by the increase of osteoclastogenesis
and enhancement of bone remodeling via inhibited Notch
signaling.49 Interestingly, when a transgenic mouse model
[MX dynamin like GTPase 1 (Mx1)-Cre; dn Mastermind-
like f/�] is performed to impair RBPjk-mediated canoni-
cal Notch signaling, increased bone volume fraction and
trabecular thickness are observed.50 These findings suggest
that Notch signaling plays a critical and complex role in
bone tissue repair.
ajp.amjpathol.org - The American Journal of Pathology
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Notch Signaling and Angiogenesis

Angiogenesis is critical for skeletal tissue regeneration, and
impaired angiogenesis will lead to poor skeletal tissue
regeneration. In addition to osteoblasts, osteoclasts, and
chondrocytes, endothelial cells also greatly influence skel-
etal tissue regeneration. Skeletal tissue regeneration in the
absence of endothelial cells will affect bone morphology,
length, and mass. Endothelial progenitor cells are a
specialized subset of immature cells circulating in adult
bone marrow and peripheral circulation with the ability to
differentiate into mature endothelial cells. A cell lineage
tracing study showed that immature endothelial precursors
in the coupled vascular invasion are essential to endo-
chondral bone repair.51

Notch signaling also plays an important and complex
role in angiogenesis. It has been reported that Notch
signaling directly or indirectly regulates angiogenesis
through receptors for vascular endothelial growth fac-
tor.52,53 In a murine retinal model, it was suggested that
Delta-like 4 acts downstream of vascular endothelial
growth factor as a negative regulator on vascular endo-
thelial growth factoremediated angiogenesis.54 Another
in vitro study showed Notch ligand Jagged1 is a potent
proangiogenic regulator that antagonizes Delta-like
4emediated Notch signaling in angiogenesis.55 Recent
studies by Ramasamy et al56 found genetic disruption of
Notch signaling in mice damages bone vessel morphology
and growth, and reduces osteogenesis, resulting in shorter
long bones and loss of trabecular bone. In addition, Liao
et al57 showed that bone morphogenetic protein 9 up-
regulates the expression of NICD1 and angiogenic regu-
lator vascular endothelial growth factor-a in mouse
adipose-derived progenitor cells when used for ectopic
bone formation, which was blocked effectively by
dominant-negative Notch1 (Figure 2).

Conclusions

Notch signaling plays an important and complex role in
skeletal tissue development and regeneration. The regula-
tions of Notch signaling in osteogenesis, osteoclastogenesis,
and angiogenesis processes are cell-contextedependent via
direct or indirect mechanisms. Because Notch signaling is
the key factor for the coupling of osteogenesis and angio-
genesis in skeletal repair, targeting Notch signaling may be
an efficient way to develop novel therapeutic options for
bone tissue regeneration.
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